Дерево как связный ациклический граф
Понятие ациклического графа, пример графа для анализа логики перечисления всех его деревьев. Остовные деревья минимальной реализации. Рассмотрение методов Дж. Краскала и Р. Прима для построения каркасов. Особенности программной реализации графов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | презентация |
Язык | русский |
Дата добавления | 22.09.2017 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.
презентация [22,8 K], добавлен 16.09.2013Реализация алгоритмов Краскала и Прима для построения минимального остовного дерева взвешенного связного неориентированного графа. Анализ трудоемкости алгоритмов, их псевдокоды и тестирование. Применение алгоритма Краскала на практике в работе авиалиний.
курсовая работа [142,0 K], добавлен 25.12.2012Разработка программной реализации решения задачи о минимальном покрывающем дереве графа (построение минимального остова), используя алгоритмы Прима и Крускала. Подсчет времени работы алгоритмов. Их программная реализация на практике с помощью Delphi 7.
курсовая работа [538,1 K], добавлен 29.08.2010Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.
курсовая работа [1,1 M], добавлен 26.06.2012Граф - совокупность точек и линий, в которой каждая линия соединяет две точки. Представление графов в ЭВМ. Составление алгоритм Краскала с использованием графов с оперделением оптимального пути прокладки телефонного кабеля в каждый из 8 городов.
курсовая работа [241,5 K], добавлен 23.12.2009Применение теории графов и алгоритмов на графах среди дисциплин и методов дискретной математики. Граф как совокупность двух множеств. Основные способы численного представления графа. Элементы и изоморфизмы графов. Требования к представлению графов в ЭВМ.
курсовая работа [162,2 K], добавлен 04.02.2011Создание программного обеспечения для реализации алгоритма, позволяющего находить кратчайшее расстояние от одной из вершин графа до всех остальных, при условии, что ребра графа не имеют отрицательного веса. Примеры выполнения алгоритма Дейкстра.
курсовая работа [1,1 M], добавлен 11.01.2015Математические графы, области их применения. Способы раскраски вершин и ребер графов, задачи на их применение. Разработка алгоритма, работающего на основе операций с матрицей смежности. Описание логической структуры программы. Пример зарисовки графа.
курсовая работа [145,5 K], добавлен 27.01.2013История и термины теории графов. Описание алгоритма Дейкстры. Математическое решение проблемы определения кратчайшего расстояния от одной из вершин графа до всех остальных. Разработка программы на объектно-ориентированном языке программирования Delphi 7.
контрольная работа [646,9 K], добавлен 19.01.2016Последовательность формирования связного ациклического графа случайным образом в соответствии с заданным распределением. Вычисление потока минимальной стоимости. Генерация матрицы пропускных способностей. Реализация алгоритмов Фалкерсона, Дейкстры.
курсовая работа [526,3 K], добавлен 14.12.2014Применения языка логического программирования Пролог и языка программирования Haskell для реализации алгоритма поиска оптимального каркаса графа. Алгоритм Прима, преимущество перед другими алгоритмами нахождения оптимального каркаса, близких к полным.
курсовая работа [230,2 K], добавлен 13.06.2012Поиск источников ориентированного графа. Использование динамических структур при работе с графами. Способы представления графов, операции над ними, описание программной реализации. Процедуры и функции языка. Функции работы с динамической памятью, графами.
курсовая работа [58,6 K], добавлен 29.01.2009Основные понятия и определения теории графов: теоремы и способы задания графа, сильная связность графов. Построение блок-схем алгоритма, тестирование разработанного программного обеспечения, подбор тестовых данных, анализ и исправление ошибок программы.
курсовая работа [525,6 K], добавлен 14.07.2012Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.
реферат [39,6 K], добавлен 06.03.2010Теоретическое обоснование теории графов. Методы нахождения медиан графа. Задача оптимального размещения насосной станции для полива полей. Алгоритм Флойда, поиск суммарного расстояния до вершин. Функция нахождения индекса минимального значения в массиве.
курсовая работа [336,8 K], добавлен 28.05.2016Специфика построения и минимизации детерминированного автомата методом разбиения. Построение детерминированной сети Петри, моделирующей работу распознающего автомата. Особенности программной реализации праволинейной грамматики, построение ее графа.
курсовая работа [615,1 K], добавлен 19.06.2012Использование NP-трудных в сильном смысле задачи. Обслуживание требований без задержек. Алгоритм построения бесконтурного графа. Псевдополиномиальные сведения задач. Последовательный анализ вариантов допустимого расписания ориентированного графа.
курсовая работа [783,7 K], добавлен 15.06.2009Понятие дерево, двоичное дерево, поддерево. Способы хранения деревьев в памяти ЭВМ, их основные недостатки и достоинства. Преобразования, не нарушающие упорядоченности дерева и способствующие лучшей сбалансированности. Анализ алгоритмов управления.
лабораторная работа [310,1 K], добавлен 14.10.2013Двоичные деревья в теории информации. Двоичные кодовые деревья допускают интерпретацию в рамках теории поиска. Обоснование выбора, описание алгоритма и структур данных. Обоснование набора тестов. Построение оптимального кода. Сущность алгоритма Хаффмана.
курсовая работа [241,6 K], добавлен 17.10.2008Представление задач в виде графов AND/OR, примеры. Задача с ханойской башней. Формулировка процесса игры в виде графа. Основные процедуры поиска по заданному критерию. Эвристические оценки и алгоритм поиска. Пример отношений с определением задачи.
лекция [154,6 K], добавлен 17.10.2013