Об эффективности поиска данных в веб-приложениях

Характеристика механизма полнотекстового поиска, позволяющего реализовывать удобные средства поиска интересующей информации по содержимому электронных документов. Особенности проведения оценки эффективности полнотекстового поиска в базах данных.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 29.07.2017
Размер файла 474,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1Волгоградский государственный технический университет

2Национальный экономический университет

Об эффективности поиска данных в веб-приложениях

А.Н. Земцов1, Зунг Хань Чан2

Аннотация

Рассматривается важная составляющая систем электронного документооборота и обучения - механизм полнотекстового поиска, позволяющий реализовывать удобные средства поиска интересующей информации по содержимому электронных документов. Приводятся оценки эффективности полнотекстового поиска в базах данных.

Ключевые слова: Базы данных, полнотекстовый поиск, система управления базами данных, MySQL, PostgreSQL, Oracle.

полнотекстовый поиск электронный документ

Организация полнотекстового поиска, расширение возможностей индексирования, а также оценка эффективности их применения в различных СУБД, являются важными этапами создания современных систем, работающих с электронными документами. Под полнотекстовым поиском понимается поиск по содержимому документов базы данных системы электронного документооборота [1], а также совокупность концептуальных подходов и методов к оптимизации этого процесса [2].

Использование механизма полнотекстового поиска в современных системах электронного документооборота, в том числе с применением онтологий [3], создает для пользователей более широкие возможности поиска информации в базе данных, по сравнению с традиционным поиском по названию документа и ключевым словам [2]. Такой подход позволяет обеспечить пользователю возможность получения лучшей связности материала, а также эффективную навигацию по нему [4, 5].

Полнотекстовый поиск является важной составляющей различных информационных систем: систем электронного документооборота и обучения [6,7], веб-систем широкого спектра, систем биометрического контроля доступа [8, 9] и т.д.

Оценка эффективности выполнения поисковых запросов в СУБД MySQL, PostgreSQL и Oracle производилась с помощью тестовой таблицы, содержащей только ключевое поле id и текстовое поле content, по которому выполнялся полнотекстовый поисковый запрос с ранжированием результатов.

Ниже показан пример создания тестовой таблицы в СУБД MySQL:

create table 'test1000' ('id' int(11) not null auto_increment, 'content' text character set utf8 collate utf8_bin, primary key ('id'), fulltext key 'content' ('content')) default charset=utf8

Создадим соответствующую таблицу в СУБД PostgreSQL:

create table test1000 (id serial not null, content text, primary key (id))

Создание тестовой таблицы в СУБД Oracle запишется в виде:

create table test1000 (id number primary key, content varchar2(200))

Дополнительно создадим индекс для тестовой таблицы:

create index test_content_idx on test1000 (content) index type is ctxsys.context;

Выполнение запроса в СУБД PostgreSQL может производиться как с использованием, так и без использования индекса [10]. В связи с этим, представляет интерес дополнительно рассмотреть вариант организации таблицы с полем fts типа tsvector, для которого создадим GIN-индекс:

create index fts_idx on test1000 using gin(fts);

Тип данных tsvector используется как хранилище для лексем, помимо которых может хранить сведения о месте лексемы в документе и ее весе, который может использоваться для ранжирования результатов [11].

Поисковые запросы для тестовых баз данных будут выглядеть соответствующим образом. В СУБД MySQL запрос запишется в виде:

select id, content, match (content) against ('Россия') as score from test1000 where match (content) against ('Россия') order by score desc

В СУБД PostgreSQL без использования индекса:

select id, content, ts_rank (to_tsvector(content), q) from test1000, to_tsquery('Россия') q where to_tsvector(content) @@ q order by ts_rank desc

В СУБД PostgreSQL с использованием индекса:

select id, content, rank_cd (fts, q) from test1000, to_tsquery('Россия') q where fts @@ q order by rank_cd desc

Поисковый запрос в СУБД Oracle:

select id, content, score (1) from test1000 where contains (content, 'Россия', 1) > 0 order by score (1) desc

Для оценки эффективности выполнения поисковых запросов рассмотрим 9 вариантов тестовой таблицы: c количеством записей равным , каждая из которых может содержать ключевых слов в поле content, где .

Поскольку СУБД MySQL и СУБД Oracle для реализации поискового запроса по текстовому полю требуют наличия индекса, то будем сравнивать их с СУБД PostgreSQL с учетом выполнения требования индексации данных.

Рис. 1. -Производительность выполнения запроса в СУБД MySQL.

Рис. 2. -Производительность выполнения запроса в СУБД PostgreSQL.

Рис. 3. -Производительность выполнения запроса в СУБД Oracle.

Рис. 4. -Сравнение производительности различных СУБД.

Полученные в результате исследования данные для наглядности представим в виде семейства кривых, образующих поверхность. Осями абсцисс и ординат служат количество ключевых слов и количество записей , соответственно.

Для отображения зависимостей, показанных на рис.1-3, используется собственный масштаб по оси аппликат, поэтому для сравнения эффективности поиска различных СУБД между собой приведем результаты в одном масштабе на рис. 4.

В данном случае логарифмическая шкала для удобнее для анализа результатов и дает более показательный результат для зависимости времени выполнения поискового запроса от количества записей . Ось аппликат соответствует времени в миллисекундах, затраченному на выполнение поискового запроса.

При малом количестве записей рассматриваемые СУБД характеризуются схожими временными затратами при выполнении поисковых запросов. Необходимо отметить, что время выполнения поискового запроса не зависит от длины полей с ключевыми словами , но с увеличением количества записей зависимость времени выполнения поискового запроса от количества ключевых слов становится более выраженной. Зависимость времени выполнения поискового запроса от количества записей при любом количестве ключевых слов имеет логарифмический вид.

СУБД MySQL имеет более высокую эффективность поиска на представленных интервалах и , т.к. реализует упрощенную схему полнотекстового поиска и ранжирования. Кроме того, СУБД MySQL в рассмотренных случаях показала лучшие результаты на малых объемах данных.

СУБД PostgreSQL с индексированием и СУБД Oracle демонстрируют примерно одинаковую производительность. Необходимо отметить, что СУБД Oracle незначительно уступает СУБД PostgreSQL, но имеет менее выраженную зависимость от с увеличением количества записей , что скажется в пользу СУБД Oracle при количестве записей .

Литература

1. Кацупеев А.А., Щербакова Е.А., Воробьев С.П., Литвяк Р.К. Модификация математической модели выбора оптимальной стратегии защиты распределённых систем// Инженерный вестник Дона, 2017, №1. URL:ivdon.ru/ru/magazine/archive/n1y2017/4078.

2. Земцов А.Н., Болгов Н.В., Божко С.Н. Многокритериальный выбор оптимальной системы управления базы данных с помощью метода анализа иерархий// Инженерный вестник Дона, 2014, № 2.URL: ivdon.ru/ru/magazine/archive/n2y2014/2360.

3. Евдошенко О.И., Кравец А.Г., Петрова И.Ю. Разработка онтологии и базы данных для эффективного поиска научно-технической информации // Прикладная информатика, 2015. Т.10. № 5. С. 85-92.

4. Лавриченко О.В. Разработка логико-концептуальной модели при принятии решений в теории экономики активного коннекта // Инженерный вестник Дона, 2015, № 1-2. URL: ivdon.ru/ru/magazine/archive/n1p2y2015/2834.

5. Седов В.А., Седова Н.А. Самооценка системы менеджмента качества с использованием теории нечетких множеств // Программные системы и вычислительные методы, 2014. № 4. С. 456-463.

6. Шапошников, Д.Е. Применение принципа гарантированного результата для учёта качественной информации о предпочтениях при комплексной оценке качества функционирования телекоммуникационных сетей // Инженерный вестник Дона, 2014, № 4-1. URL: ivdon.ru/ru/magazine/archive/N4y2014/2574.

7. Кацупеев А.А., Щербакова Е.А., Воробьев С.П. Постановка и формализация задачи формирования информационной защиты распределённых систем// Инженерный вестник Дона, 2015, № 1-2. URL: ivdon.ru/ru/magazine/archive/n1p2y2015/2868.

8. Zemtsov A.N. Robust audio stream protection method based on higher bits embedding // Nauka i studia. Przemysl (Poland), 2015. NR3(134). pp. 37-43.

9. Земцов А.Н. Методы цифровой стеганографии для защиты авторских прав. LAP Academic Publishing, 2012. 148 c.

10. Vitolo C. Web technologies for environmental Big Data // Environmental Modelling and Software, 2015. Vol. 63, pp. 185-198.

11. Rodrнguez-Garcнa M.A. Ontology-based annotation and retrieval of services in the cloud // Knowledge-Based Systems, 2014. Vol.56. pp. 15-25.

References

1. Kacupeev A.A., Shherbakova E.A., Vorob'ev S.P., Litvjak R.K. Inћenernyj vestnik Dona (RUS), 2017, № 1. URL: ivdon.ru/ru/magazine/archive/n1y2017/4078.

2. Zemtsov A.N., Bolgov N.V., Bozhko S.N. Inћenernyj vestnik Dona (RUS), 2014. T. 29. № 2. URL: ivdon.ru/ru/magazine/archive/n2y2014/2360.

3. Evdoshenko O.I., Kravec A.G., Petrova I.Ju. Prikladnaja informatika, 2015. T.10. № 5. pp. 85-92.

4. Lavrichenko O.V. Inћenernyj vestnik Dona (RUS), 2015, № 1-2. URL: ivdon.ru/ru/magazine/archive/n1p2y2015/2834.

5. Sedov V.A., Sedova N.A. Programmnye sistemy I vychislitel'nye metody, 2014. № 4. pp. 456-463.

6. Shaposhnikov, D.E. Inћenernyj vestnik Dona (RUS), 2014, № 4-1. URL: ivdon.ru/ru/magazine/archive/N4y2014/2574.

7. Kacupeev A.A., Shherbakova E.A., Vorob'ev S.P. Inћenernyj vestnik Dona (RUS), 2014, № 4-1. URL:ivdon.ru/ru/magazine/archive/n1p2y2015/2868.

8. Zemtsov A.N. Nauka I studia. Przemysl (Poland), 2015. NR3 (134). pp. 37-43.

9. Zemtsov A.N. Metody cifrovoj steganografii dlja zashhity avtorskih prav [Methods of digital steganography for copyright protection]. LAP Academic Publishing, 2012. 148 p.

10. Vitolo C. Environmental Modelling and Software, 2015. Vol.63, pp.185-198.

11. Rodrнguez-Garcнa M.A. Knowledge-Based Systems, 2014. Vol.56. pp.15-25.

Размещено на Allbest.ru


Подобные документы

  • Средства поиска информации в сети Интернет. Основные требования и методика поиска информации. Структура и характеристика поисковых сервисов. Глобальные поисковые машины WWW (World Wide Web). Планирование поиска и сбора информации в сети Интернет.

    реферат [32,2 K], добавлен 02.11.2010

  • Особенности проведения поиска по реквизитам документа, контексту, специализированным классификаторам (тематический), интеллектуальный. Средства и инструменты поиска в компьютерных справочно-правовых системах "гарант", "консультантплюс", "кодекс".

    реферат [25,9 K], добавлен 19.03.2016

  • Методы реализации алгоритмов сортировки и алгоритмов поиска на языках программирования высокого уровня. Программирование алгоритмов сортировки и поиска в рамках создаваемого программного средства на языке Delphi. Создание руководства пользователя.

    курсовая работа [1,7 M], добавлен 16.04.2012

  • Основные критерии и требования к средствам поиска по ресурсу. Технологии создания инструментов поиска. Способы поиска по ресурсу. Принцип действия поиска по ключевым словам и при помощи поисковых систем. Разработка ресурса "Поиск по ресурсу" в виде блога.

    курсовая работа [983,7 K], добавлен 01.02.2015

  • Обзор существующих систем атоматизированного поиска. Мир электронных денег. Разработка структуры системы автоматизированного поиска отделений и терминалов банков. Обоснование выбора технологии разработки, программной среды и языка программирования.

    курсовая работа [1,2 M], добавлен 17.01.2011

  • Программа поиска в базе данных в среде Borland Delphi 7.0 Enterprise. Условия и блок-схемы задач. Ввод массива. Текст программ в Delphi, в Паскаль. Текст программы поиска в базе данных. Кодирование материала. Изготовление реляционной базы данных.

    практическая работа [27,6 K], добавлен 11.10.2008

  • Удовлетворение информационной потребности как цель поиска информации. Виды информационных ресурсов. Понятие документа в информационном поиске. Схема информационного поиска, этапы его представления. Характеристика качества поиска, его базовые положения.

    презентация [1,2 M], добавлен 06.01.2014

  • Методы и инструментарий хранения данных во Всемирной сети. Понятие и разновидности гипертекстовых документов и графических файлов. Принципы работы поисковых систем и правила поиска нужной информации. Характеристика некоторых поисковых систем Сети.

    курсовая работа [30,9 K], добавлен 18.04.2010

  • Обоснование выбора метода извлечения ключевых слов. Анализ предметной области, проектирование информационной системы поиска релевантных документов. Реализация запросов к электронным библиотекам. Реализация интерфейса системы поиска релевантных документов.

    дипломная работа [1,1 M], добавлен 21.09.2016

  • Выбор и анализ языка программирования для проектирования системы автоматизированного поиска по таблицам. Ввод в теории поиска и принятия решений. Роль формальных методов при решении практических проблем выбора. Средства ввода и корректировки таблиц.

    отчет по практике [53,0 K], добавлен 12.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.