Построение алгоритмов распознавания событий сна на основе исследования гистограмм
Метод распознавания событий сна, отличительной чертой которых является характерное выраженное амплитудное изменение. Регистрация при помощи электромиографических датчиков и датчиков двигательной активности. Этапы построения и анализа гистограмм.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа [887,3 K], добавлен 26.11.2013Методы предобработки изображений текстовых символов. Статистические распределения точек. Интегральные преобразования и структурный анализ. Реализация алгоритма распознавания букв. Анализ алгоритмов оптического распознавания символов. Сравнение с эталоном.
курсовая работа [2,1 M], добавлен 20.09.2014Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.
курсовая работа [16,2 M], добавлен 21.06.2014Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.
презентация [31,6 K], добавлен 06.01.2014Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.
курсовая работа [462,2 K], добавлен 15.01.2014Словесный, графический, табличный, программный способы представления алгоритма. Основные конструкции в любом алгоритмическом языке. Теория обнаружения, различения и оценивания сигналов. Радиолокационные системы обнаружения. Система распознавания образов.
презентация [4,8 M], добавлен 09.06.2015Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.
курсовая работа [1,4 M], добавлен 11.04.2012Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.
презентация [469,2 K], добавлен 15.03.2015Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.
курсовая работа [2,7 M], добавлен 15.08.2011Обзор математических методов распознавания. Общая архитектура программы преобразования автомобильного номерного знака. Детальное описание алгоритмов: бинаризация изображения, удаление обрамления, сегментация символов и распознавание шаблонным методом.
курсовая работа [4,8 M], добавлен 22.06.2011Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.
дипломная работа [332,2 K], добавлен 30.11.2012Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.
курсовая работа [215,2 K], добавлен 19.10.2010Методика исследования и анализа средств аудита системы Windows с целью обнаружения несанкционированного доступа программного обеспечения к ресурсам вычислительных машин. Анализ угрозы информационной безопасности. Алгоритм работы программного средства.
дипломная работа [2,9 M], добавлен 28.06.2011Появление технических систем автоматического распознавания. Человек как элемент или звено сложных автоматических систем. Возможности автоматических распознающих устройств. Этапы создания системы распознавания образов. Процессы измерения и кодирования.
презентация [523,7 K], добавлен 14.08.2013Строение артикуляционного аппарата человека с точки зрения возможности распознавания речи по артикуляции. Комплекс параметров артикуляции на основе контура внутренней области губ. Реализация модуля распознавания фонем русской речи по изображениям губ.
дипломная работа [3,1 M], добавлен 19.08.2012Анализ физических предпосылок селекции движущихся малоразмерных наземных целей по спектральным параметрам. Разработка алгоритмов обнаружения МНЦ и повышения эффективности их распознавания в интересах радиолокационных станций разведки и целеуказания.
дипломная работа [830,3 K], добавлен 28.04.2009Программа визуализации космических изображений. Файлы формата LAN. В программе реализован инструмент ресинтеза цветного изображения, отображаемого в главном окне, инструмент выравнивания гистограмм яркости каналов и диалоговое окно вывода гистограмм.
курсовая работа [2,9 M], добавлен 12.05.2012Яркость точек и гистограммы изображения. Изменение яркости и контрастности. Метод ранговой фильтрации с оценкой середины диапазона. Наложение шумов на изображение. Преобразование изображения в негатив. Получение матрицы яркостей и построение гистограмм.
курсовая работа [1,5 M], добавлен 11.12.2012Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.
дипломная работа [1019,9 K], добавлен 13.10.2017Выбор типа и структуры нейронной сети. Подбор метода распознавания, структурная схема сети Хопфилда. Обучение системы распознавания образов. Особенности работы с программой, ее достоинства и недостатки. Описание интерфейса пользователя и экранных форм.
курсовая работа [3,0 M], добавлен 14.11.2013