Искусственный интеллект

Понятие и сущность искусственного интеллекта, история и этапы его развития. Механизмы процесса обучения, природа языка и чувственного восприятия машин, имитирующих работу человеческого мозга. Организация диалога между пользователем и компьютером.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 26.06.2016
Размер файла 32,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине "Основы экономической кибернетики"

на тему: "Искусственный интеллект"

Исполнитель:

Гук Д.М.

Руководитель:

Бурда Алексей Григорьевич, профессор

Введение

По своей сути процессы адаптации являются оптимизационными процессами.

Понятие искусственный интеллект, как впрочем и просто интеллект, весьма расплывчаты. Если обобщить все сказанное за последние тридцать лет, то оказывается, что человек просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии. С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума. В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника. Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой - искусственный интеллект.

Искусственный интеллект является сейчас "горячей точкой" научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математикови инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехник и на жизнь будущих поколений людей. Здесь возникают и получают права гражданства новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов. Поэтому я посчитал актуальным раскрыть данную тему в реферате.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что, пожалуй, самая трудная проблема, стоящая перед современной наукой - познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относительно самого предмета их исследований - интеллекта. Некоторые считают, что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. "Компьютер можно считать разумным, - утверждал Тьюринг, - если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком".

1. Введение в искусственный интеллект

Начало современного этапа развития систем искусственного интеллекта (ИИ) может быть отнесено к середине 50-х гг. Этому способствовала программа, разработанная А. Ньюэллом, предназначенная для доказательства теорем в исчислении высказываний и названная "ЛОГИК-ТЕОРЕТИК". Некоторые авторы называют эту систему экспертной и связывают определение ее назначения с анализом ее возможностей, проведенных Клодом Шенноном и Марвином Минским.

Эти работы положили началу исследованиям в области ИИ, связанному с разработкой программ, решающих задачи на основе применения разнообразных эвристических методов и правил. Эвристика - совокупность логических приемов и методических правил, теоретического Исследования и отыскания истины, методика поиска доказательств. Эвристические правила - неформальные правила, используемые в целях повышения эффективности поиска в данной предметной области.

Данный метод решения задачи при этом рассматривался как свойственный человеческому мышлению "вообще", для которого характерно возникновение "догадок" о пути решения с последующей проверкой их. Эвристическому методу противопоставлялся используемый в ЭВМ алгоритмический (процедуральный, процедурный) метод, который интерпретировался как механическое осуществление заданной последовательности шагов, детерминированно приводящей к правильному ответу. Такая трактовка эвристических методов решения задачи и обусловила появление и распространение термина "искусственный интеллект".

В 70-80 гг. исследования в области ИИ характеризовались перемещением внимания специалистов от проблем создания автономно функционирующих систем к созданию человеко-машинных систем, интегрирующих в единое целое интеллект человека и способности ЭВМ для достижения общей цели - решения задачи, поставленной перед подобной системой. Многие считали, что это позволит создать новое направление информационных технологий - машинную экспертизу, которая заменит труд специалиста. Однако в силу ряда причин эти ожидания не вполне оправдались.

Тем не менее, в последнее десятилетие это направление возродилось в виде исследований и разработок, направленных на создание экспертных систем с базой знаний. Их используют в управленческой деятельности и многих отраслях экономики (страховании, банковском деле и др.), чтобы с помощью правил и объектов, суммирующих накопленный опыт, повысить качество принимаемых решений.

Проблематика ИИ в настоящее время довольно обширна. Список Дисциплин по искусственному интеллекту постоянно увеличивается. Сегодня в него входят представление знаний, решение задач, экспертные системы, средства общения с ЭВМ на естественном языке, обучение, когнитивное моделирование, обработка визуальной информации, робототехника, нейрокомпьютерные технологии и др.

Представление знаний - наиболее важная область исследований по искусственному интеллекту, основа всех остальных дисциплин. Знания имеют форму описаний объектов, взаимосвязей и процедур. Наличие адекватных знаний и способность их эффективно использовать означают "умение".

Создание общей теории или метода представления знаний является стратегической проблемой. Такая теория открыла бы возможность накопления знаний, которые нужны ежедневно для решения все новых и новых задач. Однако для достижения поставленной цели необходимо найти способ выражения общих закономерностей предметных областей (ПО), в чем и состоит суть проблемы представления знаний.

Решение задач сводится к поиску пути из некоторой исходной точки в целевую. Человек делает это весьма эффективно с помощью дедуктивного логического вывода (рассуждения), процедурального анализа, аналогии и индукции. Люди способны также учиться на собственном опыте. Компьютеры в общем случае решают задачи только с использованием дедуктивного логического вывода и процедурального анализа.

Тип задачи определяет метод, наиболее подходящий для ее решения. Задачи, которые сводятся к процедуральному анализу, вообще говоря, лучше всего решаются на компьютере. Учетные и аналитические задачи служат примерами процедуральных задач, решаемых компьютером быстрее и надежнее, чем человеком. Задачи же, связанные с использованием аналогии или индукции, эффективнее решаются человеком. Задачи, требующие дедуктивных и индуктивных рассуждений, представляются наиболее вероятными кандидатами для решения с помощью экспертных систем (систем, основанных на знаниях).

Экспертные системы представляют собой класс компьютерных программ, которые выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от программ, использующих процедуральный анализ, экспертные системы решают задачи в узкой предметной области (конкретной области экспертизы) на основе логических рассуждений. Такие системы часто способны найти решение задач, которые неструктурированно плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, что может быть полезным в тех ситуациях, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.

Машины обладают собственным языком для представления знаний и решения задач, т. е. набором символов, используемых для представления знаний (семантика), и правил, предназначенных для обработки этих символов (синтаксис) и решения задач. Человек работает наиболее эффективно, если он владеет специальными языками, которые развиваются до уровня потребностей конкретной предметной области.

Если правила трансляции с естественного языка в машинный и наоборот выражены в виде совокупности знаний (символов и процедур), то логично предположить, что могут быть разработаны средства, позволяющие компьютеру понимать постановку задачи на естественном языке, а затем на естественном же языке выдавать ее решение. Это основная тема исследований по разработке средств общения с ЭВМ на естественном языке. Здесь можно выделить четыре ключевые проблемы:

Машинный перевод - использование компьютеров для перевода текстов с одного языка на другой.

Информационный поиск - обеспечение с помощью компьютеров доступа к информации по конкретной тематике, хранящейся в большой базе данных.

Генерация документов - применение компьютеров для преобразования документов, имеющих определенную форму или заданных на специализированном языке, в эквивалентный документ в другой форме или на другом языке.

Взаимодействие с компьютером - организация диалога между пользователем и компьютером.

Считается, что способностью обучения должна быть наделена практически каждая прикладная программа, которая может понадобиться пользователю. Пятнадцать - двадцать лет назад большая часть обработки данных при решении задач проводилась программистами вычислительных центров. Они фактически выполняли роль посредников, являясь как бы связующим звеном между ЭВМ и теми, кто использовал полученные данные и принимал решения. С появлением персонального компьютера взаимоотношения между пользователем и вычислительной техникой, а следовательно, и роль программиста резко изменились. Вместо того чтобы заставлять пользователя преодолевать сложности программирования, проще обучить компьютер сложностям выполнения конкретной задачи. Это, конечно, не означает, что необходимость в программистах отпадет, но несколько изменяет их роль во взаимоотношениях между компьютером и конечными пользователями.

Цель когнитивного моделирования - разработка теории, концепций и моделей человеческого мышления и его функций. Оно позволяет реализовывать не только диагностические и лечебные функции, но и выявлять процессы, протекающие в сознании человека при решении задач. Однако отсюда вовсе не следует, что лучшими компьютерами являются те, которые моделируют работу человеческого мозга, но можно сделать вывод о том, какого типа компьютеры нужны, как спроектировать компьютер, который бы расширил возможности мышления человека и позволил бы ему более эффективно решать задачи.

Современные роботы уже облегчили труд (особенно неквалифицированный) многих рабочих, занятых в сфере производства, безупречно выполняя свою работу. Исследования в области робототехники являются составной частью исследований искусственного интеллекта, ставящих целью оснастить компьютеры средствами визуальной обработки и манипулирования объектами в некоторой среде. Эти исследования ведутся в трех основных направлениях:

разработка воспринимающих элементов (в частности, для визуальной информации) и распознавание информации, поступающей от систем восприятия;

создание манипуляторов и систем управления ими;

выявление эвристик для решения задач перемещения в пространстве и манипулирования объектами (планирование деятельности).

Анализ разработок в области нейрокомпьютерных систем позволил выделить перспективные основные направления современного развития нейрокомпьютерных технологий: нейропакеты, нейросетевые экспертные системы, системы управления базами данных и базами знаний с включением нейросетевых алгоритмов, обработка изображений, управление динамическими системами и обработка сигналов, управление финансовой деятельностью, оптические нейрокомпьютеры, виртуальная реальность.

2. История развития искусственного интеллекта в СССР и России

Коллежский советник Семён Николаевич Корсаков (1787--1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 году С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых "интеллектуальных машин", для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предтечами экспертных систем[8].

В СССР работы в области искусственного интеллекта начались в 1960-х годах[5]. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым. С начала 1960-х М. Л. Цетлин с коллегами разрабатывали вопросы, связанные с обучением конечных автоматов.

В 1964 году была опубликована работа ленинградского логика Сергея Маслова "Обратный метод установления выводимости в классическом исчислении предикатов", в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

В 1966 году В. Ф. Турчиным был разработан язык рекурсивных функций Рефал.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки "информатика" и "кибернетика" были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении "искусственный интеллект" как разделеинформатики. При этом родилась и сама информатика, подчинив себе прародительницу "кибернетику". В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы "Кибернетика" и "Искусственный интеллект" входят наряду с другими разделами в состав информатики. Термин "информатика" в 1980-е годы получает широкое распространение, а термин "кибернетика" постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху "кибернетического бума" конца 1950-х -- начала 1960-х годов[9]. Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются.

3. История развития в разных веках

Искусственный интеллект как научное направление представляет собой наглядный пример интеграции различных научных областей. Специалисты в естественно-научных областях и вычислительных науках изучают свойства и функционирование живых систем, пользуясь сходными методами.

В целом, искусственный интеллект - это самостоятельная область научных исследований, которая сформировалась в результате достижений в математике и логике и основана на накопленных человечеством знаниях о живой и неживой природе.

3.1 Древность

Как таковая устойчивая область научных знаний об искусственном интеллекта сформировалась в середине XX века, однако попытки в этом направлении делались ещё и в глубокой древности, и в средние века.

Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, которые жестикулировали и изрекали пророчества. Разумеется, делалось это с непосредственной помощью жрецов.

3.2 Средневековье

В средние века в понятие искусственного интеллекта вкладывали задачи создания механической человекоподобной мыслящей машины, способной, возможно, превзойти его по интеллекту. В это время, в частности, говорили о гомункулах - маленьких искусственных человечках, способных воспринимать информацию окружающего мира.

3.3 XVIII век

В XVIII веке благодаря развитию техники и, в особенности, часовых механизмов интерес к подобным изобретениям вырос ещё сильнее. В середине 1750-х годов австрийский изобретатель Фридрих фон Кнаус, служивший при дворе Франциска I, сконструировал серию машин, умевших писать пером довольно длинные тексты.

3.4 XIX век

Достижения в механике XIX века способствовали новому толчку изобретений в направлении к современному пониманию искусственного интеллекта. В 1830-х годах английский математик Чарльз Бэббидж придумал концепцию сложного цифрового калькулятора - аналитической машины, которая, как утверждал разработчик, могла бы рассчитывать ходы для игры в шахматы. А уже в 1914 году директор одного из испанских технических институтов Леонардо Торрес Кеведо изготовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хорошо, как и человек.

3.5 XX век

С середины 30-х годов прошлого столетия, с момента публикации работ Тьюринга, в которых обсуждались проблемы создания устройств, способных самостоятельно решать различные сложные задачи, к проблеме искусственного интеллекта стали относиться внимательно в мировом научном сообществе. Тьюринг предложил считать интеллектуальной такую машину, которую испытатель в процессе общения с ней не сможет отличить от человека.

В 1954 году американский исследователь Ньюэлл решил написать программу для игры в шахматы. К работе были привлечены аналитики корпорации RAND Corporation. В качестве теоретической основы программы был использован метод, предложенный основателем теории информации Шенноном, а его точная формализация была выполнена Тьюрингом. К работе также была привлечена группа голландских психологов под руководством Де Гроота, изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 - первый символьный язык обработки списков, а вскоре была написана первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Это была программа "Логик-Теоретик", предназначенная для автоматического доказательства теорем в исчислении высказываний. Собственно же программа для игры в шахматы была завершена в 1957 году. В её основе лежали так называемые эвристики - правила, позволяющие сделать выбор при отсутствии точных теоретических оснований, и описания конечных целей.

Одним из наиболее важных признаков интеллектуальности служит способность к обучению. Так, в 1961 году один из ведущих английских специалистов по искусственному интеллекту профессор Мичи, описал механизм, состоящий из 300 спичечных коробков, который мог научиться играть в "крестики-нолики". Однако делать вывод об интеллектуальности и тем более говорить об искусственном интеллекте, основываясь только на одном единственном признаке, явно недостаточно.

В 1956 году в США собрались основатели кибернетики с целью обсудить возможности реализации проекта "Искусственный интеллект". В числе участников конференции были Маккарти, Минский, Шеннон, Тьюринг и другие. Первоначально к данному понятию отнесли свойства машин брать на себя отдельные функции человека, например, перевод с одного языка на другой, распознавание объектов, принятие оптимальных решений.

В нашей стране направление "Искусственный интеллект" возникло с опозданием примерно на 10 лет и пришло на смену кибернетическому и бионическому буму первой половины 60-х годов XX века.

Практически с самого начала учёные, занимавшиеся этим новым направлением научных знаний, предположили, что к конструктивному определению и моделированию мышления полезно идти от специфики задач, вводя искусственный интеллект как механизм, необходимый для их решения. Таким образом, искусственный интеллект в современном понимании - это совокупность методов и инструментов решения различных сложных прикладных задач, использующих принципы и подходы, аналогичные размышляющему над их решением человеку или процессам, протекающим в живой или неживой природе.

Тем не менее, даже в настоящее время единого и признанного всеми определения искусственного интеллекта не существует. И это не удивительно. Достаточно вспомнить, что универсального определения человеческого интеллекта также нет.

На сегодняшний день исследования в области искусственного интеллекта ведутся по различным направлениям: представление знаний, моделирование рассуждений, приобретение знаний, машинное обучение и автоматическое порождение гипотез, интеллектуальный анализ данных и обработка образной информации, поддержка принятия решений, управление процессами и системами, динамические интеллектуальные системы, планирование и т.д.

4. Искусственный интеллект в наше время

В настоящее время искусственный интеллект широко применяется во всем мире. Компьютеры и другие вычислительные машины уже давно стали верными помощниками человека, готовые всегда придти на помощь при решении различных типов задач. Во многих случаях ЭВМ обеспечивают высокую скорость решения задач и точность вычисления, нежели если бы эти задачи человек решал самостоятельно

В наши дни искусственный интеллект является неотъемлимой частью цивилизации и применяется во всех сферах человеческой деятельности. В качестве подтверждения можно привести много примеров: от использования микрокалькуляторов до приминения роботов в качестве докторов, нянь, уборщиков (все больше применяется в Японии).

На протяжении всей своей короткой истории исследователи в области искусственного интеллекта всегда находились на переднем крае информатики. Многие ныне обычные разработки, в том числе усовершенствованные системы программирования, текстовые редакторы и программы распознавания образов, в значительной мере основаны на достижениях исследований по искусственному интеллекту.

Теории, новые идеи и разработки искусственного интеллекта неизменно привлекают внимание тех, кто стремиться расширить области применения и возможности компьютеров, сделать их более "дружелюбными", то есть более похожими на разумных помощников и активных советчиков, чем на тех педантичных и несообразительных электронных рабов, какими они всегда были. А пока эти идеи не будут воплощены в жизнь, компьютер никогда не сможет заменить человека, какими бы возможностями он не обладал.

Несмотря а многообещающие перспективы, ни одну из разработанных до сих пор программ искусственного интеллекта нельзя назвать "разумной" в обычном понимании этого слова. Это объясняется тем, что все они узко специализированны; самые сложные экспертные системы по своим возможностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким умом и широким кругозором. Даже среди исследователей искусственного интеллекта теперь многие сомневаются, что большинство изделий принесет существенную пользу. Немало критиков искусственного интеллекта считают, что такого рода ограничения вообще непреодолимы

К числу таких скептиков относится и Хьюберт Дрейфус, профессор филологии в Калифорнийском университете в Беркли. С его точки зрения, истинный разум невозможно отделить от его человеческой основы, заключенной в человеческом организме. "Цифровой компьютер- не человек,- говорит Дрейфус.- У компьютера нет ни тела, ни эмоций, ни потребностей. Он лишен социальной ориентации, которая приобретается жизнью в обществе, а именно она делает поведение разумным. Я не хочу сказать, что компьютеры не могут быть разумными. Но цифровые компьютеры, запрограммированные фактами и правилами из нашей, человеческой жизни, действительно не могут стать разумными. Поэтому искусственный интеллект в том виде, как мы его представляем, невозможен"

При всей своей универсальности, компьютер не может помочь в решении труднорешаемой задачи. Труднорешаемой(не решаемой) задачей можно назвать такую задачу, для которой не известен эффективный алгоритм быстрого решения или алгоритма решения вообще не существует. Эффективный алгоритм имеет не настолько резко возрастающую зависимость количества вычислений от входных данных. Такие алгоритмы называются полиномиальными, и как правило, если задача имеет полиномиальный алгоритм решения, то она не может быть решена на простом компьютере с малой эффективностью. К ним можно отнести задачи сортировки данных, многие задачи математического программирования и тому подобные.

Чего же не может и, скорее всего, никогда не сможет компьютер в его современном(цифровая вычислительная машина) понимании? Ответ очевиден: выполнить решение полностью аналитически. Постановка задачи заключается в замене аналитического решения численным алгоритмом, который рекурсивно выполняет операции, шаг за шагом приближаясь к решению. Если число этих операций возрастает, время выполнения, а возможно и расход других ресурсов( например ограниченной машинной памяти), также возрастает, стремясь к бесконечности. Задачи, своими алгоритмами решения создающие предпосылки для резкого возрастания использования ресурсов, в общем виде не могут быть решены на цифровых вычислительных машинах, так как ресурсы всегда ограничены.

В настоящее время наличие сверхпроизводительных микропроцессоров и дешевизна электронных компонентов позволяют делать значительные успехи в алгоритмическом моделировании искусственного интеллекта. Такой подход дает определенные результаты на цифровых компьютерах общего назначения и заключается в моделировании процессов жизнедеятельности и мышления с использованием численных алгоритмов, реализующих искусственный интеллект. Здесь можно привести много примеров, начиная от простой программы игрушки "Тамагочи" и заканчивая моделями колонии живых организмов и шахматными программами, способными обыграть известных гроссмейстеров. Сегодня этот подход поддерживается практически всеми крупнейшими разработчиками аппаратного и программного обеспечения, поскольку достижения по созданию алгоритмов, реализующих искусственный интеллект используются и в узкоспециальных прикладных областях при решении сложных задач, принося значительную прибыль разработчикам. Другие подходы сводятся к созданию аппаратуры, специально ориентированной на те или иные задачи. Как правило, эти устройства не общего назначения (аналоговые вычислительные цепи и машины, самоорганизующие системы и тому подобное.

Заключение

искусственный интеллект компьютер обучение

В заключении хочу сказать, что на первых порах многие пионеры искусственного интеллекта верили, что через какой-нибудь десяток лет машины обретут высочайшие человеческие таланты. Предполагалось, что преодолев период "электронного детства" и обучившись в библиотеках всего мира, хитроумные компьютеры благодаря быстродействию, точности и безотказной памяти постепенно превзойдут своих создателей-людей. Сейчас, в соответствии с тем, что было сказано выше, мало кто говорит об этом, а если и говорит, то отнюдь не считает, что подобные чудеса не за горами.

Список использованной литературы

1.http://www.0zd.ru/programmirovanie_kompyutery_i/sozdanie_i_razvitie_iskusstvennogo.html

2. http://www.life-prog.ru/1_38859_istoriya-razvitiya-iskusstvennogo-intellekta-v-sssr-i-rossii.html

3. http://neuronus.com/history/4-istoriya-vozniknoveniya-ikustvennogo-intellekta.html

4. http://hnu.docdat.com/docs/index-219969.html

Размещено на Allbest.ru


Подобные документы

  • Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.

    реферат [40,8 K], добавлен 17.08.2015

  • История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.

    научная работа [255,5 K], добавлен 23.12.2014

  • Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.

    реферат [70,7 K], добавлен 18.11.2010

  • Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.

    презентация [511,2 K], добавлен 04.03.2013

  • Сущность термина "искусственный интеллект"; история его развития. Наука и технология создания интеллектуальных машин и компьютерных программ. Задача использования компьютеров для понимания человеческого интеллекта. Анализ, синтез и понимание текстов.

    дипломная работа [29,4 K], добавлен 17.06.2013

  • Актуализация процесса мышления у машин в связи с развитием искусственного интеллекта и развитием робототехники. Определение возможности вычисления управляемой правилами функции с входами и выходами с помощью компьютера. Сущность сознательного процесса.

    эссе [16,9 K], добавлен 23.06.2019

  • История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат [45,1 K], добавлен 20.11.2009

  • Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат [24,7 K], добавлен 05.01.2010

  • Компоненты и архитектура интеллектуального агента, его дополнение средствами обучения. Различные подходы к созданию искусственного интеллекта, перспективы его развития. Этические и моральные последствия разработки интеллектуальных машин и программ.

    реферат [708,9 K], добавлен 02.03.2014

  • Агентно-ориентированный подход к исследованию искусственного интеллекта. Моделирование рассуждений, обработка естественного языка, машинное обучение, робототехника, распознание речи. Современный искусственный интеллект. Проведение теста Тьюринга.

    контрольная работа [123,6 K], добавлен 10.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.