Экспертные системы

Экспертные системы (ЭС) как одно из направлений развития искусственного интеллекта. Состояние и современные тенденции развития искусственного интеллекта. Главные причины успеха коммерческих ЭС. Классификация ЭС, их основные преимущества и недостатки.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 18.05.2016
Размер файла 19,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Состояние и тенденции развития искусственного интеллекта

2. Причины успеха коммерческих ЭС

3. Классификация экспертных систем

4. Преимущества и недостатки ЭС

Список использованных источников

Введение

Результатом развития современных интеллектуальных технологий является возникновение понятия «искусственный интеллект». Искусственный интеллект - это область информатики, цель которой разработка аппаратно-программных средств, позволяющих человеку-непрофессионалу ставить и решать интеллектуальные задачи.

Одним из направлений развития искусственного интеллекта являются экспертные системы (системы, основанные на знаниях).

Экспертные системы (ЭС)- это яркое и быстро прогрессирующее направление в области искусственного интеллекта(ИИ). Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или, по крайней мере, такие попытки не предпринимались бы.

ЭС - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции. ЭС, как и эксперт-человек, в процессе своей работы оперирует со знаниями. Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы и представлены в памяти ЭВМ в виде базы знаний, которая может изменяться и дополняться в процессе развития системы.

ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы)на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые не структурированы и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых “с потолка”, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.

Главное достоинство ЭС - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.

экспертный искусственный интеллект коммерческий

1. Состояние и тенденции развития искусственного интеллекта

Программные средства, базирующиеся на технологии и методах искусственного интеллекта, получили значительное распространение в мире. Их важность, и, в первую очередь, экспертных систем и нейронных сетей, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект. В то же время, технология экспертных систем является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки приложений; высокая стоимость сопровождения сложных систем; повторная используемость программ и т.п. Кроме того, объединение технологий экспертных систем и нейронных сетей с технологией традиционного программирования добавляет новые качества к коммерческим продуктам за счет обеспечения динамической модификации приложений пользователем, а не программистом, большей "прозрачности" приложения (например, знания хранятся на ограниченном естественном языке, что не требует комментариев к ним, упрощает обучение и сопровождение), лучших графических средств, пользовательского интерфейса и взаимодействия.

По мнению специалистов [1], в недалекой перспективе экспертные системы будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг. Их технология, получив коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

Выделяют несколько основных направлений рынка коммерческих экспертных систем:

1) экспертные системы; теперь их часто обозначают еще одним термином - "системы, основанные на знаниях";

2) нейронные сети и "размытые" (fuzzy) логики;

3) естественно-языковые системы.

Рынок можно разделить и иначе: на системы искусственного интеллекта (приложения) и инструментальные средства, предназначенные для автоматизации всех этапов существования приложения.

2. Причины успеха коммерческих ЭС

Причины, приведшие системы искусственного интеллекта к коммерческому успеху, следующие:

1. Специализация. Переход от разработки инструментальных средств общего назначения к проблемно/предметно специализированным средствам [4], что обеспечивает сокращение сроков разработки приложений, увеличивает эффективность использования инструментария, упрощает и ускоряет работу эксперта, позволяет повторно использовать информационное и программное обеспечение (объекты, классы, правила, процедуры).

2. Использование языков традиционного программирования и рабочих станций. Переход от систем, основанных на языках искусственного интеллекта (Lisp, Prolog и т.п.), к языкам традиционного программирования (С, С++ и т.п.) упростил "интегрированность" и снизил требования приложений к быстродействию и емкости памяти. Использование рабочих станций вместо ПК резко увеличило круг возможных приложений методов искусственного интеллекта.

3. Интегрированность. Разработаны инструментальные средства искусственного интеллекта, легко интегрирующиеся с другими информационными технологиями и средствами.

4. Открытость и переносимость. Разработки ведутся с соблюдением стандартов, обеспечивающих данные характеристики [5].

5. Архитектура клиент/сервер. Разработка распределенной информационной системы в данной архитектуре позволяет снизить стоимость оборудования, используемого в приложении, децентрализовать приложения, повысить надежность и общую производительность, поскольку сокращается объем информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном оборудовании.

3. Классификация экспертных систем

Медицинская диагностика.

· Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая система MYCIN, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины.

Прогнозирование.

· Прогнозирующие системы предсказывают возможные результаты или события на основе данных о текущем состоянии объекта. Прогнозирование позволяет предсказать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

Примеры:

1. Предсказание погоды - WIILARD.

2. Оценки будущего урожая - PLANT.

3. Прогнозы в экономике - ECON.

Планирование.

Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких экспертных системах используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности. Примеры:

1. Планирование поведения робота - STRIPS.

2. Планирование промышленных заказов - ISIS.

3. Планирование эксперимента - MOLGEN.

Интерпретация.

Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.

Контроль и управление.

Системы, основанные на знаниях, могут применяются в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях. Примеры:

1. Помощь в управлении газовой котельной - GAS.

2. Управление системой календарного планирования - Project Assistant.

Диагностика неисправностей в механических и электрических устройствах.

В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.

Обучение.

Под обучением понимается использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью компьютера и подсказывают правильные решения. Они содержат знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабые места в познаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика.

Примеры:

1. Обучение языку программирования LISP в системе «учитель ЛИСПа».

2. Обучение языку Паскаль - система PROUST.

4. Преимущества и недостатки ЭС

Преимущества экспертных систем:

· Постоянство. Экспертные системы ничего не забывают в отличие от человека.

· Воспроизводимость. Можно сделать любое количество копий экспертной системы, а обучение новых экспертов отнимает много времени и средств.

· Эффективность. Может увеличить производительность и уменьшать затраты персонала.

· Документация. Экспертная система может документировать процесс решения.

· Законченность. Экспертная система может выполнять обзор всех транзакций, a человек-эксперт сможет сделать обзор только отдельной выборки.

· Своевременность. Погрешности в конструкциях и/или могут быть своевременно найдены.

· Широта. Могут быть объединены знания многих экспертов, что дает системе больше широты, чем с вероятно может достичь один человек.

· Снижение риска ведения дела благодаря последовательности принятия решения документированности и компетентности.

Недостатки экспертных систем:

· Здравый смысл. В дополнение к широкому техническому знанию, человек имеет здравый смысл. Еще не известно, как заложить здравый смысл в экспертные системы.

· Творческий потенциал. Человек может реагировать творчески на необычные ситуации, экспертные системы не могут.

· Обучение. Человек автоматически адаптируются к изменению среды; экспертные системы нужно явно модифицировать.

· Сенсорный опыт. Человек располагает широким диапазоном сенсорного опыта; экспертные системы в настоящее время основаны на вводе символов.

Список использованных источников

1. Попов Э.В. Экспертные системы: Решение неформализованных задач в диалоге с ЭВМ. - М.: Наука. Гл. ред. физ.-мат. Лит., 1987 г.

2. Марселлус Д. Программирование экспертных систем на Турбо Прологе: Пер. с англ. - М.: Финансы и статистика, 1994 г.

3. Моисеев В.Б. Представление знаний в интеллектуальных системах. Информатика и образование,. №2, 2003 г. с. 84-91с

4. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы: М. Наука, 2004 г.

5. http://www.osp.ru/os/1995/02/178608/

6. http://www.intuit.ru/

Размещено на Allbest.ru


Подобные документы

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

  • История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.

    реферат [85,7 K], добавлен 20.12.2011

  • Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.

    реферат [40,8 K], добавлен 17.08.2015

  • Экспертные системы как наиболее значительное практическое достижение в области искусственного интеллекта, их современная известность и применение. Назначение систем и обоснование их важности, структура и обязательные элементы, требования к системам.

    контрольная работа [144,6 K], добавлен 02.09.2009

  • Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат [24,7 K], добавлен 05.01.2010

  • Решение прикладных задач с использованием искусственного интеллекта. Преимущества и недостатки экспертных систем по сравнению с использованием специалистов, области их применения. Представление знаний и моделирование отношений семантическими сетями.

    реферат [260,9 K], добавлен 25.06.2015

  • История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат [45,1 K], добавлен 20.11.2009

  • Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа [27,9 K], добавлен 07.12.2009

  • Экспертные системы как самостоятельное направление в исследованиях по искусственному интеллекту, история его зарождения и развития, главные цели и оценка важности. Сферы применения экспертных систем и причины их коммерческого успеха, перспективы.

    реферат [140,8 K], добавлен 27.03.2010

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.