Разработка программы для решения систем линейных уравнений методом Гауса и Жордана-Гаусса в программном комплексе Delphi

Последовательное исключение неизвестных как принцип работы метода Гаусса для решения систем линейных уравнений. Краткое описание среды визуальной разработки Borland Delphi. Характеристика основных процедур и алгоритма работы программного приложения.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 14.04.2016
Размер файла 320,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Теоретическая часть

1.1 Методы решения примененные в программе

Метод Гаусса.

Метод Гаусса решения систем линейных уравнений состоит в последовательном исключении неизвестных и описывается следующей процедурой.

С помощью элементарных преобразований над строками и перестановкой столбцов расширенная матрица системы может быть приведена к виду:

Эта матрица является расширенной матрицей системы:

которая эквивалентна исходной системе

Заметим, что перестановка столбцов означает перенумерацию переменных. На практике обычно избегают этой процедуры, приводя расширенную матрицу к ступенчатому виду путем элементарных преобразований над строками.

Если хотя бы одно из чисел отлично от нуля, то система несовместна. Если же , то система совместна и можно получить явное выражение для базисных неизвестных через свободных неизвестных

Метод Жордана-Гаусса.

Элементарные преобразования этого метода аналогичны методу Гаусса, только матрица при использовании этого метода приводится к виду, тоесть столбец свободных коэффициентов превращается в столбец корней.

1.2 Краткое описание среды визуальной разработки Delphi

Среда Delphi - это сложный механизм, обеспечивающий высокоэффективную работу программиста. Визуально она реализуется несколькими одновременно раскрытыми на экране окнами. Окна могут перемещаться по экрану, частично или полностью перекрывая друг друга, что обычно вызывает у пользователя, привыкшего к относительной “строгости” среды текстового процессора Word или табличного процессора Excel, ощущение некоторого дискомфорта. После приобретения опыта работы с Delphi это ощущение пройдет, и вы научитесь быстро отыскивать нужное окно, чтобы изменить те или иные функциональные свойства создаваемой вами программы, ибо каждое окно несет в себе некоторую функциональность, т. е. предназначено для решения определенных задач.

Запустите Delphi - и вы увидите нечто, похожее на:

Рис. 1

На рисунке изображены шесть наиболее важных окон Delphi: главное окно, окно Дерева объектов (Object Tree View), окно Инспектора объектов, окно браузера, окно формы и окно кода программы.

Чтобы упорядочить окна так, как они показаны на рисунке, вам придется вручную изменять их положение и размеры, т. к. обычно окно кода программы почти полностью перекрыто окном формы. Впрочем, добиваться максимального сходства того, что вы видите на экране вашего ПК, с изображением, показанным на рисунке, вовсе не обязательно: расположение и размеры окон никак не влияют на их функциональностью.

Замечу, что при первом запуске Delphi поверх всех окон появится окно:

Рис. 2

С помощью этого окна вы сможете получить доступ к Web-страницам корпорации Inprise для просмотра самой свежей информации о корпорации и ее программных продуктах, копирования дополни тельных файлов, чтения ответов на наиболее часто задаваемые вопросы и т. д. При повторных запусках Delphi это окно появляется автоматически с некоторой периодичностью, определяемой настройками на странице окна Tolls | Environment Options, связанной с закладкой Delphi Direct. Вы также сможете его вызвать в любой момент с помощью опции Help | Delphi Direct главного меню.

Табл. 1. Таблица основных обозначений программы

Обозначение

Описание

Модуль

maxr

Константа для ограничения максимального размера системы

Unit2

arys, ary2s

Типы данных для переменных, в которых хранятся значения коэффициентов системы

Unit2

Gauss1

Процедура для решения системы линейных уравнений методом Гаусса

Unit2

Gaussj

Процедура для решения системы линейных уравнений методом Жордана-Гаусса

Unit2

i,j,l

Счетчики

Unit1

prover

Промежуточная переменная типа String, используется для проверки наличия букв среди коэффициентов системы, а также для замены «.» на «,».

Unit1

S

Переменная для хранения размера матрицы

Unit1

k

Переменная для хранения длины строчки хранящейся в переменной prover.

Unit1

dl

Переменная для проверки размера системы.

Unit1

MainMenu1

Меню программы.

Unit1

File1, New1, Save1, Exit1

Пункты меню.

Unit1

Matrix, Coef, Gauss, Jgauss

Таблицы для ввода элементов системы и вывода результатов расчета.

Unit1

XPManifest1

Компонент, который дает программе возможность использовать оформление Windows.

Unit1

SaveDialog1

Диалоговое окно для сохранения результатов.

Unit1

Button1, Button2

Кнопки для запуска процедур решения системы.

Unit1

New1Click

Процедура, которая выполняется после выбора пункта меню New.

Unit1

Button1Click

Процедура, которая выполняется после нажатия кнопки Gauss.

Unit1

Button2Click

Процедура, которая выполняется после нажатия кнопки J-Gauss.

Unit1

Save1Click

Процедура, которая выполняется после выбора пункта меню Save.

Unit1

Exit1Click

Процедура, которая выполняется после выбора пункта меню Exit.

Unit1

Form1

Собственно окно программы.

Unit1

1.3 Описание процедур и алгоритм роботы программы

программный алгоритм визуальный гаусс

В программу включены следующие процедуры: «gauss1», «gaussj», «New1Click», «Button1Click», «Button2Click», «Save1Click», «Exit1Click». С каждой из них мы ознакомимся ниже.

Процедура «gauss1» выполняет проверку системы на сходимость и решение методом Гаусса.

Процедура «gaussj» выполняет проверку системы на сходимость и решение методом Жордана-Гаусса.

Процедура «New1Click» выполняется после выбора пункта меню «New» или сразу после запуска программы и выполняет чтение размера системы и устанавливает размер таблиц для ввода коэффициентов системы.

Процедура «Button1Click» считывает коэффициенты системы, проверяет корректность ввода коэффициентов и заменяет при необходимости «.» на «,». Потом запускает процедуру «gauss1» для решения системы и выводит результаты.

Процедура «Button2Click» считывает коэффициенты системы, проверяет корректность ввода коэффициентов и заменяет при необходимости «.» на «,». Потом запускает процедуру «gaussj» для решения системы и выводит результаты.

Процедура «Save1Click» запускает диалог сохранения файлов и выполняет сохранение результатов.

Процедура «Exit1Click» - Выход из программы.

2. Текст программы

Файл-модуль unit1.pas

unit Unit1;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, Menus, XPMan, StdCtrls, Grids, unit2;

type

TForm1 = class(TForm)

Coef: TStringGrid;

Gauss: TStringGrid;

Jgauss: TStringGrid;

Button1: TButton;

Button2: TButton;

XPManifest1: TXPManifest;

SaveDialog1: TSaveDialog;

MainMenu1: TMainMenu;

File1: TMenuItem;

New1: TMenuItem;

Save1: TMenuItem;

Exit1: TMenuItem;

Matrix: TStringGrid;

procedure New1Click(Sender: TObject);

procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Save1Click(Sender: TObject);

procedure Exit1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

s:integer;

implementation

{$R *.dfm}

procedure TForm1.Exit1Click(Sender: TObject);

begin

close;

end;

procedure TForm1.New1Click(Sender: TObject);

var i,dl:integer;

prover:string;

begin

form1.Enabled:=false;

repeat

prover:=inputbox('Введите размер системы','Значение между 2 и 20','2');

dl:=length(prover);

if dl=0 then showmessage('Введите размер системы') else

begin

if (dl=1) and (prover<'9') and (prover>'0') then s:=trunc(strtofloat(prover))

else

begin

for i:=1 to dl do

begin

if prover[i]>'9' then

begin

showmessage('Введите число');

break;

end

else if i=dl then s:=trunc(strtofloat(inputbox('Введите размер системы','Значение между 2 и 20','2')));

end;

end;

end;

until (s>=2) and (s<=maxr);

form1.Enabled:=true;

matrix.RowCount:=s+1;

matrix.ColCount:=s+1;

gauss.colCount:=s+1;

coef.rowCount:=s+1;

jgauss.colCount:=s+1;

coef.Cells[1,0]:='B';

gauss.Cells[0,1]:='Gauss';

jgauss.Cells[0,1]:='J-Gauss';

for i:=1 to s do

begin

matrix.Cells[0,i]:=floattostr(i);

matrix.Cells[i,0]:='A'+floattostr(i);

coef.Cells[0,i]:=floattostr(i);

gauss.Cells[i,0]:='X'+floattostr(i);

jgauss.Cells[i,0]:='X'+floattostr(i);

end;

end;

procedure TForm1.Button1Click(Sender: TObject);

var a:ary2s;

x,y:arys;

error:boolean;

i,j,l,K:integer;

prover:string;

begin

{Считывание массивов с исходными данными и проверка '.' или ','}

{***********************************************}

for i:=1 to s do

for j:=1 to s do

begin

prover:=matrix.Cells[j,i];

k:=length(prover);

if k=0 then

begin

showmessage('Вы не ввели один или несколько элементов системы.');

exit;

end;

for l:=1 to length(prover) do

if prover[l]='.' then prover[l]:=','

else if prover[l]>'9' then

begin

showmessage('В качестве одного или нескольких элементов системы введена буква. Замените их на числа!');

exit;

end;

matrix.Cells[j,i]:=prover;

a[i,j]:=strtofloat(matrix.cells[j,i]);

end;

for i:=1 to s do

begin

prover:=coef.cells[1,i];

for l:=1 to length(prover) do

if prover[l]='.' then prover[l]:=','

else if prover[l]>'9' then

begin

showmessage('В качестве одного или нескольких элементов системы введена буква. Замените их на числа!');

exit;

end;

coef.cells[1,i]:=prover;

y[i]:=strtofloat(coef.cells[1,i]);

end;

{***********************************************}

{Решение и вывод результатов}

{***********************************************}

gauss1(a,y,x,s,error);

if not error then

for i:=1 to s do

gauss.cells[i,1]:=floattostr(x[i])

else

begin

showmessage('Система решения не имеет');

new1.Click;

end;

{***********************************************}

end;

procedure TForm1.Button2Click(Sender: TObject);

var a:ary2s;

x,y:arys;

error:boolean;

i,j,l,k:integer;

prover:string;

begin

{Считывание массивов с исходными данными}

{***********************************************}

{Считывание массивов с исходными данными и проверка '.' или ','}

{***********************************************}

for i:=1 to s do

for j:=1 to s do

begin

prover:=matrix.Cells[j,i];

k:=length(prover);

if k=0 then

begin

showmessage('Вы не ввели один или несколько элементов системы.');

exit;

end;

for l:=1 to length(prover) do

if prover[l]='.' then prover[l]:=','

else if prover[l]>'9' then

begin

showmessage('В качестве одного или нескольких элементов системы введена буква. Замените их на числа!');

exit;

end;

matrix.Cells[j,i]:=prover;

a[i,j]:=strtofloat(matrix.cells[j,i]);

end;

for i:=1 to s do

begin

prover:=coef.cells[1,i];

for l:=1 to length(prover) do

if prover[l]='.' then prover[l]:=','

else if prover[l]>'9' then

begin

showmessage('В качестве одного или нескольких элементов системы введена буква. Замените их на числа!');

exit;

end;

coef.cells[1,i]:=prover;

y[i]:=strtofloat(coef.cells[1,i]);

end;

{***********************************************}

{***********************************************}

{Решение и вывод результатов}

{***********************************************}

gaussj(a,y,x,s,error);

if not error then

for i:=1 to s do

jgauss.cells[i,1]:=floattostr(x[i])

else

begin

showmessage('Система решения не имеет');

new1.Click;

end;

{***********************************************}

end;

procedure TForm1.Save1Click(Sender: TObject);

var f:textfile;

i,j:integer;

begin

savedialog1.Filter:='Text files (*.txt)|*.txt|';

if savedialog1.Execute then

begin

assignfile(f,savedialog1.filename+'.txt');

rewrite(f);

for i:=1 to s do

begin

writeln(f);

for j:=1 to s do

write(f,matrix.cells[i,j]:4,' ');

write(f,'|',coef.cells[1,i]);

end;

writeln(f);

writeln(f);

writeln(f,'Gauss');

for i:=1 to s do

writeln(f,'X'+floattostr(i)+'='+gauss.cells[i,1],' ');

writeln(f);

writeln(f,'J-Gauss');

for i:=1 to s do

writeln(f,'X'+floattostr(i)+'='+jgauss.cells[i,1],' ');

closefile(f);

end;

end;

end.

unit unit2;

interface

constmaxr=20;

type arys=array[1..maxr] of real;

ary2s=array[1..maxr,1..maxr] of real;

procedure gauss1(a:ary2s; y:arys; var coef:arys; ncol:integer; var error:boolean);

procedure gaussj(var b:ary2s; y: arys; var coef:arys; ncol:integer; var error: boolean);

implementation

{Решение системы линейных уравнений методом Гаусса}

{**********************************************************}

procedure gauss1(a:ary2s; y:arys; var coef:arys; ncol:integer; var error:boolean);

var b:ary2s;

w:arys;

i,j,i1,k,l,n:integer;

hold,sum,t,ab,big: real;

begin

error:=false;

n:=ncol;

for i:=1 to n do

begin

for j:=1 to n do

b[i,j]:=a[i,j];

w[i]:=y[i]

end;

for i:=1 to n-1 do

begin

big:=abs(b[i,i]);

l:=i;

i1:=i+1;

for j:=i1 to n do

begin

ab:=abs(b[j,i]);

if ab>big then

begin

big:=ab;

l:=j

end

end;

if big=0.0 then error:= true

else

begin

if l<>i then

begin

for j:=1 to n do

begin

hold:=b[l,j];

b[l,j]:=b[i,j];

b[i,j]:=hold

end;

hold:=w[l];

w[l]:=w[i];

w[i]:=hold

end;

for j:=i1 to n do

begin

t:=b[j,i]/b[i,i];

for k:=i1 to n do

b[j,k]:=b[j,k]-t*b[i,k];

w[j]:=w[j]-t*w[i]

end

end

end;

if b[n,n]=0.0 then error:=true

else

begin

coef[n]:=w[n]/b[n,n];

i:=n-1;

repeat

sum:=0.0;

for j:=i+1 to n do

sum:=sum+b[i,j]*coef[j];

coef[i]:=(w[i]-sum)/b[i,i];

i:=i-1

until i=0

end

end;

{**********************************************************}

{Решение системы линейных уравнений методом Жордана-Гаусса}

{**********************************************************}

procedure gaussj(var b:ary2s; y: arys; var coef:arys; ncol:integer; var error: boolean);

var w:array[1..maxr,1..maxr] of real;

index:array[1..maxr,1..3] of integer;

i,j,k,l,nv,irow,icol,n,l1:integer;

determ,pivot,hold,sum,t,ab,big:real;

{++++++++++++++++++++++++++++++++++++++++++++}

procedure swap(var a,b: real);

var hold:real;

begin

hold:=a;

a:=b;

b:=hold

end;

{++++++++++++++++++++++++++++++++++++++++++++}

{@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@}

procedure gausj2;

var i,j,k,l,l1:integer;

{===============================================}

procedure gausj3;

var l:integer;

begin

if irow<>icol then

begin

determ:=-determ;

for l:=1 to n do

swap(b[irow,l],b[icol,l]);

if nv>0 then

for l:=1 to nv do

swap(w[irow,l],w[icol,l])

end

end;

{===============================================}

begin

error:=false;

nv:=1;

n:=ncol;

for i:=1 to n do

begin

w[i,1]:=y[i];

index[i,3]:=0

end;

determ:=1.0;

for i:=1 to n do

begin

big:=0.0;

for j:=1 to n do

begin

if index[j,3]<>1 then

begin

for k:=1 to n do

begin

if index[k,3]>1 then

begin

error:=true;

exit;

end;

if index[k,3]<1 then

if abs(b[j,k])>big then

begin

irow:=j;

icol:=k;

big:=abs(b[j,k])

end

end

end

end;

index[icol,3]:=index[icol,3]+1;

index[i,1]:=irow;

index[i,2]:=icol;

gausj3;

pivot:=b[icol,icol];

determ:=determ*pivot;

b[icol,icol]:=1.0;

for l:=1 to n do

b[icol,l]:=b[icol,l]/pivot;

if nv>0 then

for l:=1 to nv do

w[icol,l]:=w[icol,l]/pivot;

for l1:=1 to n do

begin

if l1<>icol then

begin

t:=b[l1,icol];

b[l1,icol]:=0.0;

for l:=1 to n do

b[l1,l]:=b[l1,l]-b[icol,l]*t;

if nv>0 then

for l:=1 to nv do

w[l1,l]:=w[l1,l]-w[icol,l]*t;

end

end

end;

end;

{@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@}

begin

gausj2;

if error then exit;

for i:=1 to n do

begin

l:=n-i+1;

if index[l,1]<>index[l,2] then

begin

irow:=index[l,1];

icol:=index[l,2];

for k:=1 to n do

swap(b[k,irow],b[k,icol])

end

end;

for k:=1 to n do

if index[k,3]<>1 then

begin

error:=true;

exit;

end;

for i:=1 to n do

coef[i]:=w[i,1];

end;

{**********************************************************}

end.

program Project1;

uses

Forms,

Unit1 in 'Unit1.pas' {Form1},

Unit2 in 'Unit2.pas';

{$R *.res}

begin

Application.Initialize;

Application.Title := 'Gauss&J-Gauss';

Application.CreateForm(TForm1, Form1);

Application.Run;

end.

3. Результат работы программы

Рис. 3

Результаты сохраненные в файле:

2 1 1 |2

3 2 3 |6

6 5 4 |5

Gauss

X1=-7,4

X2=1,2

X3=2,2

J-Gauss

X1=-7,4

X2=1,2

X3=2,2

4. Инструкция по работе с программой

Сразу после запуска файла программы (pragramma.exe) перед вами появиться окно с запросом размера системы. Введите нужный размер и нажмите «ОК»(поскольку система размера n на n нужно ввести только одно число).

После ввода размера перед вами появится рабочее окно программы. Введите в него данные по следующей схеме:

Рис. 4

Для решения нужным методом нажмите соответствующую кнопку, и в таблице возле нее будут выведены корни системы.

Для сохранения результатов в меню «File» выберите «Save», перейдите в нужную папку и введите имя файла. Нажмите «ОК».

Для начала новых рассчетов «File» выберите «New», введите новый размер системы, нажмите «ОК».

Для выхода в меню «File» выберите пункт «Exit».

Размещено на Allbest.ru


Подобные документы

  • Сущность метода Гаусса при решении систем линейных уравнений. Элементарные преобразования этого метода. Краткое описание среды визуальной разработки Delphi. Описание основных применяемых процедур и алгоритм роботы программы по решению уравнений.

    курсовая работа [1,1 M], добавлен 29.08.2010

  • Характеристика методов решений систем линейных алгебраических уравнений, основные виды численных методов и применение программного продукта Delphi 5.0 как наиболее эффективного. Сущность методов Гаусса, Гаусса-Жордана и Якоби, особенности метода Зейделя.

    курсовая работа [2,2 M], добавлен 25.06.2010

  • Программный продукт для решения систем линейных уравнений методом Гаусса. Алгоритм для проведения вычислений. Цель разработки и область ее применения. Схема информационных потоков. Метод Гаусса: исключение неизвестных. Проектирование удобного интерфейса.

    курсовая работа [340,0 K], добавлен 02.07.2010

  • Системы линейных алгебраических уравнений. Код программы для решения систем линейных алгебраических уравнений. Математические и алгоритмические основы решения задачи методом Гаусса. Программная реализация решения. Алгоритмы запоминания коэффициентов.

    лабораторная работа [23,5 K], добавлен 23.09.2014

  • Разработка программного продукта для решения систем линейных алгебраических уравнений методом Гаусса с помощью ЭВМ. Математическое описание объекта моделирования, начальные и граничные условия. Алгоритм реализации задачи. Использование модуля CRT.

    курсовая работа [269,6 K], добавлен 07.01.2016

  • Сущность матричного метода. Разработка программы решения системы уравнений линейных алгебраических уравнений методом решения через обратную матрицу на языке программирования Delphi. Представление блок-схемы и графического интерфейса программного продукта.

    курсовая работа [1,0 M], добавлен 27.09.2014

  • Метод Гаусса как прямой метод нахождения решений для систем системы линейных уравнений маленькой и средней размерности с помощью компьютерной техники. Редактор кода и исходный код основной программы в Delphi, блок-схема и графическое решение задачи.

    контрольная работа [460,8 K], добавлен 15.06.2015

  • Метод Гаусса-Зейделя как модификация метода Якоби, его сущность и применение. Разработка программы решения системы линейных алгебраических уравнений на языке VB, проверка правильности работы программы в MS Excel и математических пакетах MathCad и MatLab.

    курсовая работа [325,5 K], добавлен 27.10.2013

  • Разработка программного продукта на языке Delphi 7.0. Матричный метод решения однородных и неоднородных систем линейных уравнений. Разработка интерфейса. Тестирование и описание объектов программы. Описание процесса вычисления определителей матриц.

    курсовая работа [366,1 K], добавлен 04.02.2015

  • Алгоритм решения систем линейных уравнений методом Гаусса, его этапы. Система уравнений для определения коэффициентов сплайна, представляющая собой частный случай систем линейных алгебраических уравнений. Программная реализация, тестовый пример.

    курсовая работа [431,8 K], добавлен 15.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.