Корпоративные информационные системы (КИС)

История развития, классификация и характеристики корпоративных информационных систем (КИС). Требования к корпоративным информационным системам. Уровни архитектуры КИС. CASE-технологии, современные методы и средства проектирования информационных систем.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 30.03.2016
Размер файла 439,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

«Что же такое Корпоративная Информационная Система?»

Ответ на этот вопрос связан с пониманием того факта, что любой собственник компании (предприятия) желает управлять своим бизнесом с наибольшей эффективностью. Это значит, что компания должна контролировать и планировать свои расходы и доходы, и быть конкурентоспособной на рынке.

Современный рынок требует, чтобы вся продукция удовлетворяла общепризнанным стандартам качества, которые касаются не только качества конечного продукта, выставляемого на рынке, но и всего процесса производства этого продукта, начиная от выбора поставщиков и заканчивая сервисным обслуживанием.

В настоящее время всемирное распространение получил комплекс стандартов на систему качества предприятия, разработанный ISO (International Standards Organization), точнее, техническим комитетом ISO/TC 176 (ИСО/ТК 176). Этот комплекс стандартов имеет общее название ISO 9000 (ИСО 9000). Структура ИСО 9000 показана на рис. 1.

Рисунок 1. Структура семейства стандартов ИСО 9000

информационный кис case проектирование

Внедрение и поддержание на предприятии системы качества в соответствии со стандартами семейства ИСО 9000 предполагает использование программных продуктов, по крайней мере, трех классов:

- комплексные системы управления предприятием (автоматизированные информационные системы поддержки принятия управленческих решений), АИСППР

- системы электронного документооборота,

- продукты, позволяющие создавать модели функционирования организации, проводить анализ и оптимизацию ее деятельности (в том числе, системы нижнего уровня класса АСУТП и САПР, продукты интеллектуального анализа данных, а также ПО, ориентированное исключительно на подготовку и поддержание функционирования систем качества в соответствии со стандартом ИСО 9000)

Термин корпорация происходит от латинского слова corporatio - объединение. Корпорация обозначает объединение предприятий, работающих под централизованным управлением и решающих общие задачи. Как правило, корпорации включают предприятия, расположенные в разных регионах и даже в различных государствах (транснациональные корпорации).

Корпоративные информационные системы (КИС) - это интегрированные системы управления территориально распределенной корпорацией, основанные на углубленном анализе данных, широком использовании систем информационной поддержки принятия решений, электронных документообороте и делопроизводстве. КИС призваны объединить стратегию управления предприятием и передовые информационные технологии.

Ресурсы корпораций включают:

* материальные (материалы, готовая продукция, основные средства);

* финансовые;

* людские (персонал);

* знания (ноу-хау);

* КИС.

Классификация и характеристики КИС

Корпоративные информационные системы можно также разделить на два класса: финансово-управленческие и производственные.

Финансово-управленческие системы включают подкласс малых интегрированных систем. Такие системы предназначены для ведения учета по одному или нескольким направлениям (бухгалтерия, сбыт, склад, кадры и т.д.). Системами этой группы может воспользоваться практически любое предприятие.

Системы этого класса обычно универсальны, цикл их внедрения Невелик, иногда можно воспользоваться «коробочным» вариантом, купив программу и самостоятельно установив ее на ПК.

Финансово-управленческие системы (особенно системы российских разработчиков) значительно более гибкие в адаптации к нуждам конкретного предприятия. Часто предлагаются «конструкторы», с помощью которых можно практически полностью перестроить исходную систему, самостоятельно или с помощью поставщика установив связи между таблицами БД или отдельными модулями.

Производственные системы (также называемые системами производственного управления) включают подклассы средних и крупных интегрированных систем. Они предназначены в первую очередь для управления и планирования производственного процесса. Учетные функции, хотя и глубоко проработаны, играют вспомогательную роль, и порой невозможно выделить модуль бухгалтерского учета, так как информация в бухгалтерию поступает автоматически из других модулей.

Производственные системы часто ориентированы на одну или несколько отраслей и/или типов производства: серийное сборочное (электроника, машиностроение), мелкосерийное и опытное (авиация, тяжелое машиностроение), дискретное (металлургия, химия, упаковка), непрерывное (нефтедобыча, газодобыча).

Производственные системы по многим параметрам значительно более жестки, чем финансово-управленческие. Основное внимание уделяется планированию и оптимальному управлению производством. Эффект от внедрения производственных систем проявляется на верхних эшелонах управления предприятием, когда становится видна вся картина его работы, включая планирование, закупки, производство, сбыт, запасы, финансовые потоки и другие аспекты.

При увеличении сложности и широты охвата функций предприятия системой возрастают требования к технической инфраструктуре и программно-технической платформе. Все производственные системы разработаны с помощью промышленных баз данных. В большинстве случаев используются технология клиент-сервер или Internet-технологии.

Для автоматизации больших предприятий в мировой практике часто используется смешанное решение из классов крупных, средних и малых интегрированных систем. Наличие электронных интерфейсов упрощает взаимодействие между системами и позволяет избежать двойного ввода данных.

Основные характеристики КИС:

· обеспечение полного цикла управления в масштабах корпорации: нормирование, планирование, учет, анализ, регулирование на основе обратной связи в условиях информационной и функциональной интеграции;

· территориальная распределенность и значительные масштабы системы и объекта управления;

· неоднородность составляющих технического и программного обеспечения структурных компонентов системы управления;

· единое информационное пространство для выработки управленческих решений, объединяющее управление финансами, персоналом, снабжением, сбытом и процесс управления производством;

· функционирование в неоднородной вычислительной среде на разных вычислительных платформах;

· реализация управления в реальном масштабе времени;

· высокая надежность, безопасность, открытость и масштабируемость информационных компонентов.

Концепция построения КИС в экономике предусматривает наличие типовых компонентов:

· ядро системы, обеспечивающее комплексную автоматизацию совокупности бизнес-приложений, содержит полный набор функциональных модулей для автоматизации задач управления;

· система автоматизации документооборота в рамках корпорации;

· вспомогательные инструментальные системы обработки информации (экспертные системы, системы подготовки и принятия решений и др.) на базе хранилищ данных КИС;

· программно-технические средства системы безопасности КИС;

· сервисные коммуникационные приложения (электронная почта, программное обеспечение удаленного доступа);

· компоненты интернет/интранет для доступа к разнородным базам данных и информационным ресурсам, сервисным услугам;

· офисные программы - текстовый редактор, электронные таблицы, СУБД настольного класса и др.

· системы специального назначения - системы автоматизированного проектирования (САПР), автоматизированные системы управления технологическими процессами (АСУТП), банковские системы и др.

Требования к корпоративным информационным системам

Исторически сложился ряд требований к корпоративным информационным системам. Требования эти таковы:

- Системность;

- Комплексность;

- Модульность;

- Открытость;

- Адаптивность;

- Надежность;

- Безопасность;

- Масштабируемость;

- Мобильность;

- Простота в изучении;

- Поддержка внедрения и сопровождения со стороны разработчика.

Рассмотрим эти требования подробнее.

В современных условиях производство не может существовать и развиваться без высоко эффективной системы управления, базирующейся на самых современных информационных технологиях. Постоянно изменяющиеся требования рынка, огромные потоки информации научно-технического, технологического и маркетингового характера требуют от персонала предприятия, отвечающего за стратегию и тактику развития высокотехнологического предприятия быстроты и точности принимаемых решений, направленных на получение максимальной прибыли при минимальных издержках. Оптимизация затрат, повышение реактивности производства в соответствии со все возрастающими требованиями потребителей в условиях жесткой рыночной конкуренции не могут базироваться только на умозрительных заключениях и интуиции даже самых опытных сотрудников. Необходим всесторонний контроль над всеми центрами затрат на предприятии, сложные математические методы анализа, прогнозирования и планирования, основанные на учете огромного количества параметров и критериев и стройной системе сбора, накопления и обработки информации. Экстенсивные пути решения этой проблемы, связанные с непомерным разрастанием управленческого аппарата, даже при самой хорошей организации его работы не могут дать положительный результат. Переход на современные технологии, реорганизация производства не могут обойти и такой ключевой аспект как управление. И путь здесь может быть только один - создание КИС, отвечающей ряду жестких требований.

КИС, прежде всего, должна отвечать требованиям комплексности и системности. Она должна охватывать все уровни управления от корпорации в целом с учетом филиалов, дочерних фирм, сервисных центров и представительств, до цеха, участка и конкретного рабочего места и работника. Весь процесс производства с точки зрения информатики представляет собой непрерывный процесс порождения, обработки, изменения, хранения и распространения информации. Каждое рабочее место - будь то рабочее место сборщика на конвейере, бухгалтера, менеджера, кладовщика, специалиста по маркетингу или технолога - это узел, потребляющий и порождающий определенную информацию. Все такие узлы связаны между собой потоками информации, овеществленными в виде документов, сообщений, приказов, действий и т.п. Таким образом, функционирующее предприятие можно представить в виде информационно-логической модели, состоящей из узлов и связей между ними. Такая модель должна охватывать все аспекты деятельности предприятия, должна быть логически обоснована и направлена на выявление механизмов достижения основной цели в условиях рынка - максимальной прибыли, что и подразумевает требование системности. Достаточно эффективное решение этой задачи возможно только на базе строгого учета максимально возможного обоснованного множества параметров и возможности многокритериальных поливариантных анализа, оптимизации и прогнозирования - то есть комплексности системы.

Информация в такой модели носит распределенный характер и может быть достаточно строго структурирована на каждом узле и в каждом потоке. Узлы и потоки могут быть условно сгруппированы в подсистемы, что выдвигает еще одно важное требование к КИС - модульность построения. Это требование также очень важно с точки зрения внедрения системы, поскольку позволяет распараллелить, облегчить и, соответственно, ускорить процесс инсталляции, подготовки персонала и запуска системы в промышленную эксплуатацию. Кроме того, если система не создается под конкретное производство, а приобретается на рынке готовых систем, модульность позволяет исключить из поставки компоненты, которые не вписываются в инфологическую модель конкретного предприятия или без которых на начальном этапе можно обойтись, что позволяет сэкономить средства.

Поскольку ни одна реальная система, даже если она создается по специальному заказу, не может быть исчерпывающе полной (нельзя объять необъятное) и в процессе эксплуатации может возникнуть необходимость в дополнениях, а также в силу того, что на функционирующем предприятии могут быть уже работающие и доказавшие свою полезность компоненты КИС, следующим определяющим требованием является открытость. Это требование приобретает особую важность, если учесть, что автоматизация не исчерпываются только управлением, но охватывает и такие задачи, как конструкторское проектирование и сопровождение, технологические процессы, внутренний и внешний документооборот, связь с внешними информационными системами (например, Интернет), системы безопасности и т.п.

Любое предприятие существует не в замкнутом пространстве, а в мире постоянно меняющегося спроса и предложения, требующем гибко реагировать на рыночную ситуацию, что может быть связано иногда с существенным изменением структуры предприятия и номенклатуры выпускаемых изделий или оказываемых услуг. Кроме того, в условиях переходной экономики законодательство имеет неустоявшийся, динамично меняющийся характер. У крупных корпораций, к тому же могут быть экстерриториальные подразделения, находящиеся в зоне юрисдикции других стран или свободных экономических зон. Это означает, что КИС должна обладать свойством адаптивности, то есть гибко настраиваться на разное законодательство, иметь разноязыковые интерфейсы, уметь работать с различными валютами одновременно. Не обладающая свойством адаптивности система обречена на очень непродолжительное существование, в течение которого вряд ли удастся окупить затраты на ее внедрение. Желательно, чтобы кроме средств настройки система обладала и средствами развития - инструментарием, при помощи которого программисты и наиболее квалифицированные пользователи предприятия могли бы самостоятельно создавать необходимые им компоненты, которые органично встраивались бы в систему.

Когда КИС эксплуатируется в промышленном режиме, она становится незаменимым компонентом функционирующего предприятия, способным в случае аварийной остановки застопорить весь процесс производства и нанести громадные убытки. Поэтому одним из важнейших требований к такой системе является надежность ее функционирования, подразумевающая непрерывность функционирования системы в целом даже в условиях частичного выхода из строя отдельных ее элементов вследствие непредвиденных и непреодолимых причин.

Чрезвычайно большое значение для любой крупномасштабной системы, содержащей большое количество информации, имеет безопасность. Требование безопасности включает в себя несколько аспектов:

Защита данных от потери. Это требование реализуется, в основном, на организационном, аппаратном и системном уровнях. Прикладная система, какой является, например АСУ, не обязательно должна содержать средства резервного копирования и восстановления данных. Эти вопросы решаются на уровне операционной среды.

Сохранение целостности и непротиворечивости данных. Прикладная система должна отслеживать изменения во взаимозависимых документах и обеспечивать управление версиями и поколениями наборов данных.

Предотвращение несанкционированного доступа к данным внутри системы. Эти задачи решаются комплексно как организационными мероприятиями, так и на уровне операционных и прикладных систем. В частности, прикладные компоненты должны иметь развитые средства администрирования, позволяющие ограничивать доступ к данным и функциональным возможностям системы в зависимости от статуса пользователя, а также вести мониторинг действий пользователей в системе.

Предотвращение несанкционированного доступа к данным извне. Решение этой части проблемы ложится в основном на аппаратную и операционную среду функционирования КИС и требует ряда административно-организационных мероприятий.

Предприятие, успешно функционирующее и получающее достаточную прибыль, имеет тенденцию к росту, образованию дочерних фирм и филиалов, что в процессе эксплуатации КИС может потребовать увеличения количества автоматизированных рабочих мест, увеличения объема хранимой и обрабатываемой информации. Кроме того, для компаний типа холдингов и крупных корпораций должна быть возможность использовать одну и ту же технологию управления как на уровне головного предприятия, так и на уровне любой, даже небольшой входящей в него фирмы. Такой подход выдвигает требование масштабируемости.

На определенном этапе развития предприятия рост требований к производительности и ресурсам системы может потребовать перехода на более производительную программно-аппаратную платформу. Чтобы такой переход не повлек за собой кардинальной ломки управленческого процесса и неоправданных капиталовложений на приобретение более мощных прикладных компонентов, необходимо выполнение требования мобильности.

Простота в изучении - это требование, включающее в себя не только наличие интуитивно понятного интерфейса программ, но и наличие подробной и хорошо структурированной документации, возможности обучения персонала на специализированных курсах и прохождения ответственными специалистами стажировки на предприятиях родственного профиля, где данная система уже эксплуатируется.

Поддержка разработчика. Это понятие включает в себя целый ряд возможностей, таких, как получение новых версий программного обеспечения бесплатно или с существенной скидкой, получение дополнительной методической литературы, консультации по горячей линии, получение информации о других программных продуктах разработчика, возможность участия в семинарах, научно-практических конференциях пользователей и других мероприятиях, проводимых разработчиком или группами пользователей и т.д. Естественно, что обеспечить такую поддержку пользователю способна только серьезная фирма, устойчиво работающая на рынке программных продуктов и имеющая довольно ясную перспективу на будущее.

Сопровождение. В процессе эксплуатации сложных программно-технических комплексов могут возникать ситуации, требующие оперативного вмешательства квалифицированного персонала фирмы-разработчика или ее представителя на месте. Сопровождение включает в себя выезд специалиста на объект заказчика для устранения последствий аварийных ситуаций, техническое обучение на объекте заказчика, методическую и практическую помощь при необходимости внести изменения в систему, не носящие характер радикальной реструктуризации или новой разработки. Подразумевается также установка новых релизов программного обеспечения, получаемого от разработчика бесплатно силами уполномоченной разработчиком сопровождающей организации или силами самого разработчика.

Архитектура КИС

Архитектура КИС состоит из нескольких уровней.

Информационно-логический уровень

Представляет собой совокупность потоков данных и центров (узлов) возникновения, потребления и модификации информации. Может быть представлен в виде модели, на основании которой разрабатываются структуры баз данных, системные соглашения и организационные правила для обеспечения взаимодействия компонентов прикладного программного обеспечения.

Прикладной уровень

Представляет собой совокупность прикладных программ и программных комплексов, которые реализуют функционирование информационно-логической модели. Это могут быть системы документооборота, системы контроля над исполнением заданий, системы сетевого планирования, АСУ ТП, САПР, бухгалтерские системы, офисные пакеты, системы управления финансами, кадрами, логистикой, и т.д. и т.п.

Системный уровен.

Операционные системы и сетевые средства.

Аппаратный

Средства вычислительной техники.

Транспортный

Активное и пассивное сетевое оборудование, сетевые протоколы и технологии.

История развития КИС

Рисунок 3 отражает периоды развития взглядов на функции КИС и характерные названия типов систем в рамках каждого периода. В дальнейшем, мы рассмотрим каждый тип систем подробнее.

Следует отметить, что система любого типа включает в себя системы более ранних типов. Это значит, что системы всех типов мирно сосуществуют и ныне.

История развития корпоративных информационных систем.

Системы класса MRP

История систем MRP

Как мы уже обсуждали, любая производственная компания борется за конкурентоспособность своих товаров на рынке.

Основными целями производственных компаний являются:

- снижение реальной себестоимости продукции

- повышение производительности производства за счет эффективного планирования производственных мощностей и ресурсов.

С начала 60-х г.г., когда появилась возможность хранения и анализа больших объемов данных (время первых операционных систем и вычислительных комплексов для предприятий), стала развиваться отрасль разработки программного обеспечения для предприятий.

Задача планирования потребностей в материалах (Materials Requirements Planning, MRP) оказалась той первой задачей, которая привела к созданию целой индустрии программного обеспечения для управления предприятием.

Решение задачи планирования потребностей в материалах реализуется с помощью алгоритма, который также носит название MRP-алгоритма.

MRP-алгоритм - это алгоритм оптимального управления заказами на готовую продукцию, производством и запасами сырья и материалов.

MRP-методология - это реализация MRP-алгоритма с помощью компьютерной системы.

Реализация системы, работающей по этой методологии представляет собой компьютерную программу, позволяющую оптимально регулировать поставки комплектующих в производственный процесс, контролируя запасы на складе и саму технологию производства. Главной задачей MRP является обеспечение гарантии наличия необходимого количества требуемых материалов и комплектующих в любой момент времени в рамках срока планирования, наряду с возможным уменьшением постоянных запасов, а следовательно разгрузкой склада.

В настоящее время MRP системы присутствуют практически во всех интегрированных информационных системах управления предприятием.

Изначально MRP системы разрабатывались для использования на производственных предприятиях с дискретным типом производства, например:

- Сборка на заказ (Assembly-To-Order, ATO)

- Изготовление на заказ (Make-To-Order, MTO)

- Изготовление на склад (Make-To-Stock, MTS)

- Серийное (RPT)

Структура MRP системы

Терминология

· Материалы - все сырье и отдельные комплектующие, составляющие конечный продукт. В дальнейшем мы не будем делать различий между понятиями "материал" и "комплектующий".

· MRP-система, MRP-программа - компьютерная программа, работающая по MRP алгоритму.

· Статус материала является основным указателем на текущее состояние материала. Каждый отдельный материал, в каждый момент времени, имеет статус в рамках MRP-системы, например:

o материал есть в наличии на складе,

o материал есть на складе, но зарезервирован для других целей

o материал присутствует в текущих заказах

o заказ на материал планируется

Как видно, статус материала отражает степень готовности этого материала быть пущенным в производственный процесс.

· Страховой запас (safety stock) материала необходим для поддержания процесса производства в случае возникновения непредвиденных и неустранимых задержек в его поставках. По сути, в идеальном случае, если механизм поставок полагать безупречным, MRP-методология не постулирует обязательное наличие страхового запаса, и его объемы устанавливаются различными для каждого конкретного случая, в зависимости от сложившейся ситуации с поступлением материалов. Подробней об этом будет рассказано ниже.

· Потребность в материале в MRP-программе представляет собой определенную количественную единицу, отображающую возникшую в некоторой момент времени в течение периода планирования необходимость в заказе данного материала.

Различают понятия полной потребности в материале, которая отображает то количество, которое требуется пустить в производство, и чистой потребности, при вычислении которой учитывается наличие всех страховых и зарезервированных запасов данного материала. Заказ в системе автоматически создается по возникновению отличной от нуля чистой потребности.

Формула вычисления чистой потребности такова:

Чистая потребность = полная потребность - инвентаризовано на руках - страховой запас - зарезервировано для других заказов

Основные элементы MRP системы можно разделить на элементы, предоставляющие информацию, программная реализация алгоритмической основы MRP и элементы, представляющие результат функционирования программной реализации MRP.

На рис. 1 показаны входные и выходные параметры для MRP-системы.

Рисунок 1 Входы и выходы MRP-системы.

Входные данные:

Программа производства (Основной Производственный План-график (ОПП), Master Production Schedule (MPS))

Основной производственный план, как правило, формируется для пополнения запаса готовой продукции или удовлетворения заказов потребителей.

На практике разработка ОПП представляется петлей планирования. Первоначально формируется черновой вариант для оценки возможности обеспечения реализации по материальным ресурсам и мощностям.

Система MRP осуществляет детализацию ОПП в разрезе материальных составляющих. Если необходимая номенклатура и ее количественный состав не присутствует в свободном или заказанном ранее запасе или в случае неудовлетворительных по времени планируемых поставок материалов и комплектующих, ОПП должен быть соответствующим образом скорректирован.

После проведения необходимых итераций ОПП утверждается как действующий и на его основе осуществляется запуск производственных заказов.

Перечень составляющих конечного продукта (Ведомость материалов и состав изделия (ВМ), Bill Of Materials (BOM))

Ведомость материалов (ВМ) представляет собой номенклатурный перечень материалов и их количества для производства некоторого узла или конечного изделия. Совместно с составом изделия ВМ обеспечивает формирование полного перечня готовой продукции, количества материалов и комплектующих для каждого изделия и описание структуры изделия (узлы, детали, комплектующие, материалы и их взаимосвязи).

Ведомость материалов и состав изделия представляют собой таблицы базы данных, информация которых корректно отражает соответствующие данные, при изменении физического состава изделия или ВМ состояние таблиц должно быть своевременно скорректировано.

Описание состояния материалов (Состояние запасов, Stock/Requirement List)

Текущее состояние запасов отражается в соответствующих таблицах базы данных с указанием всех необходимых характеристик учетных единиц. Каждая учетная единица, вне зависимости от вариантов ее использования в одном изделии или многих готовых изделиях должна иметь только одну идентифицирующую запись с уникальным кодом. Как правило, идентификационная запись учетной единицы содержит большое количество параметров и характеристик, используемых MRP системой, которые можно классифицировать следующим образом:

- общие данные: код, описание, тип, размер, вес …

- данные запаса: единица запаса, единица хранения, свободный запас, оптимальный запас, запланированный к заказу, заказанный запас, распределенный запас, признак партии/серии …

- данные по закупкам и продажам: единица закупки/продажи, основной поставщик, цена...

- данные по производству и производственным заказам и т.д.

Записи учетных единиц обновляются всякий раз при выполнении операций с запасами, например, запланированные к закупке, заказанные к поставке, оприходованные, брак и т.д.

Основные операции

На основании входных данных MRP система выполняет следующие основные операции:

- на основании ОПП определяется количественный состав конечных изделий для каждого периода времени планирования

- к составу конечных изделий добавляются запасные частей, не включенных в ОПП

- для ОПП и запасных частей определяется общая потребность в материальных ресурсах в соответствии с ВМ и составом изделия с распределением по периодам времени планирования

- общая потребность материалов корректируется с учетом состояния запасов для каждого периода времени планирования

- осуществляется формирование заказов на пополнение запасов с учетом необходимых времен опережения

Выходные данные

Результатами работы MRP системы являются:

- план-график снабжения материальными ресурсами производства - количество каждой учетной единицы материалов и комплектующих для каждого периода времени для обеспечения ОПП.

Для реализации плана-графика снабжения система порождает план-график заказов в привязке к периодам времени, который используется для размещения заказов поставщикам материалов и комплектующих или для планирования самостоятельного изготовления

- изменения плана-графика снабжения - внесение корректировок в ранее сформированный план-график снабжения производства

- ряд отчетов, необходимых для управления процессом снабжения производства

CRP - система планирования производственных мощностей

Одной из составляющих интегрированных информационных систем управления предприятием класса MRP является система планирования производственных мощностей (CRP).

Основной задачей системы CRP является проверка выполнимости ОПП с точки зрения загрузки оборудования по производственным технологическим маршрутам с учетом времени переналадки, вынужденных простоев, субподрядных работ и т.д.

Входные данные для CRP:

план-график производственных заказов и заказов на поставку материалов и комплектующих, Выходные данные:

график загрузки оборудования и рабочего персонала.

Основные функции MRP систем:

MRP-система в целом

- описание плановых единиц и уровней планирования

- описание спецификаций планирования

- формирование основного производственного плана графика

MRP-подсистема

- управление изделиями (описание материалов, комплектующих и единиц готовой продукции)

- управление запасами

- управление конфигурацией изделия (состав изделия)

- ведение ведомости материалов

- расчет потребности в материалах

- формирование MRP заказов на закупку

- формирование MRP заказов на перемещение

CRP-подсистема

- рабочие центры (описание структуры производственных рабочих центров с определением мощности)

- машины и механизмы (описание производственного оборудования с определением нормативной мощности)

- производственные операции, выполняемые в привязке к рабочим центрам и оборудованию

- технологические маршруты, представляющих последовательность операций, выполняемых в течение некоторого времени на конкретном оборудовании в определенном рабочем центре

расчет потребностей по мощностям для определения критической загрузки и принятия решения

Системы класса MRPII

Структура MRPII системы

MRPII-система должна состоять из следующих функциональных модулей (см. рис.1):

1. Планирование развития бизнеса (Составление и корректировка бизнес-плана)

2. Планирование деятельности предприятия

3. Планирование продаж

4. Планирование потребностей в сырье и материалах

5. Планирование производственных мощностей

6. Планирование закупок

7. Выполнение плана производственных мощностей

8. Выполнение плана потребности в материалах

9. Осуществление обратной связи

Модуль планирования развития бизнеса определяет миссию компании: её нишу на рынке, оценку и определение прибылей, финансовые ресурсы. Фактически, он утверждает, в условных финансовых единицах, что компания собирается произвести и продать, и оценивает, какое количество средств необходимо инвестировать в разработку и развитие продукта, чтобы выйти на планируемый уровень прибыли. Таким образом, выходным элементом этого модуля является бизнес-план.

Модуль планирования продаж оценивает (обычно в единицах готового изделия), какими должны быть объем и динамика продаж, чтобы был выполнен установленный бизнес-план. Изменения плана продаж, несомненно, влекут за собой изменения в результатах других модулей.

Модуль планирования производства утверждает план производства всех видов готовых изделий и их характеристики. Для каждого вида изделия в рамках выпускаемой линии продукции существует своя собственная программа производства. Таким образом, совокупность производственных программ для всех видов выпускаемых изделий, представляет собой производственный план предприятия в целом.

Модуль планирования потребности в материалах (или видах услуг) на основе производственной программы для каждого вида готового изделия определяет требуемое расписание закупки и/или внутреннего производства всех материалов комплектующих этого изделия, и, соответственно, их сборку.

Модуль планирования производственных мощностей преобразует план производства в конечные единицы загрузки рабочих мощностей (станков, рабочих, лабораторий и т.д.)

Модуль обратной связи позволяет обсуждать и решать возникающие проблемы с поставщиками комплектующих материалов, дилерами и партнерами. Тем самым, этот модуль собственно и реализует знаменитый "принцип замкнутой петли" (closed loop principle) в системе. Обратная связь особенно необходима при изменении отдельных планов, оказавшихся невыполнимыми и подлежащих пересмотру.

Рисунок 1 Взаимодействие модулей в MRPII-системе.

MRPII-система как черный ящик

На рис. 2 показаны входные и выходные параметры для MRPII-системы. Легко видеть, что эти параметры практически совпадают с параметрами для MRP-системы, но к обычной линейной последовательности операций добавляются две петли обратной связи: петля обратной связи по доступным материалам для производства, и петля обратной связи по доступным производственным мощностям.

Рисунок 2 Входы и выходы MRPII-системы.

Обратная связь (feedback) и её роль в MRPII-системе

Чрезвычайно важно обратить внимание на функции обратной связи (feedback) в MRPII-системе. Например, если поставщики не способны поставить материалы/комплектующие в оговоренные сроки, они должны послать отчет о задержках, сразу, как только они узнают о существовании этой проблемы. Обычно, стандартная компания имеет большое количество просроченных заказов с поставщиками. Но, как правило, даты этих заказов не отражают в достаточной степени дат реальной потребности в этих материалах. На предприятиях же, управляемых системами класса MRPII, даты поставки являются максимально близкими к времени реальной потребности в поставляемых материалах. Поэтому крайне важно заранее поставить систему в известность о возможных проблемах с заказами. В этом случае система должна сгенерировать новый план работы производственных мощностей, в соответствии с новым планом заказов. В ряде случаев, когда задержка заказов далеко не является исключением, в MRPII-системе задаётся объем минимального поддержания запасов "ненадежных" материалов на складе (safety stock).

В настоящее время, системы MRPII класса прочно входят в жизнь крупных и средних производственных организаций. Основной и эффективной чертой этих систем является возможность планировать потребности предприятия на короткие промежутки времени (недели и даже дни) и осуществлять обратную связь (например, автоматически изменять ранее построенные планы производства при сбоях поставок или поломке оборудования) внося в систему данные о проблемах в реальном времени.

Алгоритм работы MRPII-системы нацелен на внутреннее моделирование всей области деятельности предприятия. Его основная цель - учитывать и с помощью компьютера анализировать все внутрикоммерческие и внутрипроизводственные события: все те, что происходят в данный момент и все те, что запланированы на будущее. Как только в производстве допущен брак, как только изменена программа производства, как только в производстве утверждены новые технологические требования, MRPII-система мгновенно реагирует на произошедшее, указывает на проблемы, которые могут быть результатом этого и определяет, какие изменения надо внести в производственный план, чтобы избежать этих проблем или свести их к минимуму. Разумеется, далеко не всегда реально полностью устранить последствия того или иного сбоя в производственном процессе, однако MRPII-система информирует о них за максимально длительный промежуток времени, до момента их возникновения.

Таким образом, предвидя возможные проблемы заранее, и создавая руководству предприятия условия для предварительного их анализа, MRPII-система является надежным средством прогнозирования и оценки последствий внесения тех или иных изменений в производственный цикл.

Любая MRPII-система обладает определенным инструментарием для проведения планирования. Нижеперечисленные системные методологии являются фундаментальными рычагами управления любой MRPII-системы:

1. Методология расчёта и пересчета MRP и CRP планов.

2. Принцип хранения данных о внутрипроизводственных и внутрикоммерческих событиях, которые необходимы для планирования.

3. Методология описания рабочих и нерабочих дней для планирования ресурсов.

4. Установление горизонта планирования (planning horizon) - промежутка времени, на который составляется план на уровне отдельного предприятия.

Горизонт планирования (planning horizon, time fence (временные рамки)) -- период времени, в течение которого система планирования «видит» плановые показатели. Обычно горизонт планирования не выбирается меньше периода оборачиваемости средств или максимальной длительности производства продукции.

Эти методологии и принципы не являются универсальными и определяются исходя из постановки конкретной задачи, применительно к конкретному коммерческому предприятию.

Преимущества использования систем MRPII

· улучшить обслуживание заказчиков - за счет своевременного исполнения поставок

· сократить цикл производства и цикл выполнения заказа - следовательно, бизнес будет более гибко реагировать на спрос

· сократить незавершенное производство - работа не будет выдаваться, пока не потребуется "точно ко времени" для удовлетворения конечного спроса

· значительно сократить запасы, что позволит более экономно использовать складские помещения и потребуется меньше средств на его хранение

· сбалансировать запасы - будет меньше дефицита и меньше устаревших запасов

· повысить производительность - людские ресурсы и материалы будут использоваться в соответствии с заказами с меньшими потерями; можно использовать анализ "что-если", чтобы проверить, соответствует ли производство задачам предприятия по получению прибыли

создать скоординированную группу управления, которая сможет решать стратегические и оперативные вопросы и организовать работу в соответствии с выработанным основным планом производства

Системы класса ERP

Определение ERP

Основные понятия производственного менеджмента (в том числе и термин «ERP») можно считать вполне устоявшимися. В этой области признанным «стандартом де-факто» служит терминология Американской ассоциации по управлению запасами и производством (American Production and Inventory Control Society, APICS). Основные термины и определения приводятся в Словаре APICS, который регулярно обновляется по мере развития теории и практики управления. Именно в этом издании содержится наиболее полное и точное определение ERP-системы.

В соответствии со Словарем APICS, термин «ERP-система» (Enterprise Resource Planning -- Управление ресурсами предприятия) может употребляться в двух значениях.

ERP-система - информационная система для идентификации и планирования всех ресурсов предприятия, которые необходимы для осуществления продаж, производства, закупок и учета в процессе выполнения клиентских заказов.

ERP методология - это методология эффективного планирования и управления всеми ресурсами предприятия, которые необходимы для осуществления продаж, производства, закупок и учета при исполнении заказов клиентов в сферах производства, дистрибьюции и оказания услуг.

Таким образом, термин ERP может означать не только информационную систему, но и соответствующую методологию управления, реализуемую и поддерживаемую этой информационной системой.

Отличия ERP от MRPII.

В настоящее время практически все разработчики MRPII-/ERP-систем относят свои системы к классу ERP. "ERP" - очень модная аббревиатура, способная увеличить продажи системы, по сути не принадлежащей к этому классу. Дело доходит до того, что начинают позиционировать финансово-управленческие системы со слабым производственным блоком как "полноценные ERP-системы", вводя потребителей в заблуждение. Эта путаница усугубляется отсутствием ERP-стандарта.

Проведем сравнительную характеристику систем двух классов - ERP и MRPII.

Сразу следует отметить, что и для MRPII-систем, и для ERP-систем основным является производство. Они, безусловно, развиваются в связи с запросами рынка: добавляются новые функциональности, решения переносятся на новые технологические платформы. Однако производственные подсистемы остаются центральными для рассматриваемых систем, и различия между MRPII-/ERP-системами лежат именно в области планирования производства. Связаны эти различия с глубиной реализации планирования, что обусловлено ориентацией этих систем на различные сегменты рынка.

ERP-системы создаются для больших многофункциональных и территориально распределенных производственных корпораций (например, холдингов, ТНК, ФПГ и т. д.). MRPII-системы ориентированы на рынок средних предприятий, которым не требуется вся мощность ERP-систем.

Собственно, различие MRPII- и ERP-систем понятно уже из их названия: с одной стороны, планирование корпоративных ресурсов (Enterprise Resources Planning), с другой - планирование производственных ресурсов (Manufacturing Resources Planning).

Существенные же отличия ERP от MRP II можно выразить следующей формулой:

ERP = MRPII + реализация всех типов производства + интегрирование планирования ресурсов по различным направлениям деятельности компании + многозвенное планирование

Безусловно, многие MRPII-системы развиваются с позиций глубины планирования и по некоторым параметрам приближаются к ERP-системам. Однако "по некоторым" не значит "по всем", поэтому с употреблением термина "ERP" нужно обращаться осторожно.

В то же время среди ERP, MRPII-систем не все могут предложить решения по системе планирования и управления производством процессного типа.

Современный рынок информационных управленческих систем состоит из тройки (по другим оценкам - пятерки) систем-лидеров, которые, собственно, и относятся к классу ERP, и множества "продвинутых" систем класса MRPII.

Характеристические черты ERP-систем

Главная цель концепции ERP - распространить принципы MRPII (Manufactory Resource Planning, планирование производственных ресурсов) на управление современными корпорациями. Концепция ERP представляет собой надстройку над методологией MRPII. Не внося никаких изменений в механизм планирования производственных ресурсов, она позволяет решить ряд дополнительных задач, связанных с усложнением структуры компании.

Концепция ERP до сих пор не стандартизована. Когда возникает вопрос об отнесении конкретной информационной системы управления к классу развитых MRP II-систем или к классу ERP, специалисты расходятся во мнениях, поскольку выделяют различные критерии принадлежности системы классу ERP. Однако, суммируя различные точки зрения, можно указать основные черты, которыми должны обладать ERP-системы.

Системы класса ERP отличает набор следующих свойств:

· универсальность с точки зрения типов производств;

· поддержка многозвенного производственного планирования;

· более широкая (по сравнению с MRPII) сфера интегрированного планирования ресурсов;

· включение в систему мощного блока планирования и учета корпоративных финансов;

· внедрение в систему средств поддержки принятия решений.

CASE-технологии. Современные методы и средства проектирования информационных систем

Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:

сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;

наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования;

отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;

необходимость интеграции существующих и вновь разрабатываемых приложений;

функционирование в неоднородной среде на нескольких аппаратных платформах;

разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;

существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.

Для успешной реализации проекта объект проектирования (ИС) должен быть прежде всего адекватно описан, должны быть построены полные и непротиворечивые функциональные и информационные модели ИС.

В 70-х и 80-х годах при разработке ИС достаточно широко применялась структурная методология, предоставляющая в распоряжение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Она основана на наглядной графической технике: для описания различного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений. Однако, широкое применение этой методологии и следование ее рекомендациям при разработке конкретных ИС встречалось достаточно редко, поскольку при неавтоматизированной (ручной) разработке это практически невозможно. Действительно, вручную очень трудно разработать и графически представить строгие формальные спецификации системы, проверить их на полноту и непротиворечивость, и тем более изменить. Если все же удается создать строгую систему проектных документов, то ее переработка при появлении серьезных изменений практически неосуществима. Ручная разработка обычно порождала следующие проблемы:

неадекватная спецификация требований;

неспособность обнаруживать ошибки в проектных решениях;

низкое качество документации, снижающее эксплуатационные качества;

затяжной цикл и неудовлетворительные результаты тестирования.

Перечисленные факторы способствовали появлению программно-технологических средств специального класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС. Первоначальное значение термина CASE, ограниченное вопросами автоматизации разработки только лишь программного обеспечения (ПО). Теперь под термином CASE-средства понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного ПО (приложений) и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т.д. Кроме того, появлению CASE-технологии способствовали и такие факторы, как:

подготовка аналитиков и программистов, восприимчивых к концепциям модульного и структурного программирования;

широкое внедрение и постоянный рост производительности компьютеров, позволившие использовать эффективные графические средства и автоматизировать большинство этапов проектирования;

внедрение сетевой технологии, предоставившей возможность объединения усилий отдельных исполнителей в единый процесс проектирования путем использования разделяемой базы данных, содержащей необходимую информацию о проекте.

CASE-технология представляет собой методологию проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств.

CASE-технология в настоящее время попала в разряд наиболее стабильных информационных технологий. Однако, несмотря на все потенциальные возможности CASE-средств, существует множество примеров их неудачного внедрения, в результате которых CASE-средства становятся "полочным" ПО (shelfware). В связи с этим необходимо отметить следующее:

CASE-средства не обязательно дают немедленный эффект; он может быть получен только спустя какое-то время;

реальные затраты на внедрение CASE-средств обычно намного превышают затраты на их приобретение;

CASE-средства обеспечивают возможности для получения существенной выгоды только после успешного завершения процесса их внедрения.

Для успешного внедрения CASE-средств организация должна обладать следующими качествами:

Технология. Понимание ограниченности существующих возможностей и способность принять новую технологию;

Культура. Готовность к внедрению новых процессов и взаимоотношений между разработчиками и пользователями;


Подобные документы

  • Корпоративные информационные системы и базы данных, их использование для совершенствования и отлаживания ведения бизнеса. Классификация корпоративных информационных систем. Информационные системы класса OLTP. Оперативная аналитическая обработка.

    курсовая работа [54,2 K], добавлен 19.01.2011

  • Жизненный цикл информационных систем, методологии и технологии их проектирования. Уровень целеполагания и задач организации, классификация информационных систем. Стандарты кодирования, ошибки программирования. Уровни тестирования информационных систем.

    презентация [490,2 K], добавлен 29.01.2023

  • Роль структуры управления в информационной системе. Примеры информационных систем. Структура и классификация информационных систем. Информационные технологии. Этапы развития информационных технологий. Виды информационных технологий.

    курсовая работа [578,4 K], добавлен 17.06.2003

  • Системы автоматического проектирования. Сравнительный анализ средств для проектирования автоматизированных информационных систем. Экспорт SQL-кода в физическую среду и наполнение базы данных содержимым. Этапы развития и характеристика Case-средств.

    курсовая работа [1,1 M], добавлен 14.11.2017

  • История развития информационных технологий. Классификация, виды программного обеспечения. Методологии и технологии проектирования информационных систем. Требования к методологии и технологии. Структурный подход к проектированию информационных систем.

    дипломная работа [1,3 M], добавлен 07.02.2009

  • Информационные системы - обычный программный продук, но они имеют ряд существенных отличий от стандартных прикладных программ и систем. Классификация, области применения и реализации информационных систем. Фазы проектирования информационных систем.

    реферат [22,9 K], добавлен 05.01.2010

  • Изучение понятия корпоративной информационной системы; требования к их разработке. Ознакомление с процессом проектирования и внедрения данных компьютерных технологий на производстве. Рассмотрение специфики работы корпоративных информационных систем.

    курсовая работа [33,1 K], добавлен 02.11.2014

  • Предмет и основные понятия информационных систем. Базовые стандарты корпоративных информационных систем. Характеристика входящих и исходящих потоков информации. Основные понятия искусственного интеллекта. Обеспечение безопасности информационных систем.

    курс лекций [295,6 K], добавлен 11.11.2014

  • Классификация автоматизированных информационных систем. Классические примеры систем класса А, B и С. Основные задачи и функции информационных систем (подсистем). Информационные технологии для управления предприятием: понятие, компоненты и их назначение.

    контрольная работа [22,9 K], добавлен 30.11.2010

  • Основные факторы, влияющие на историю развития корпоративных автоматизированных информационных систем. Их общая характеристика и классификация. Состав и структура интегрированных АИС. ERP-системы как современный вид корпоративной информационной системы.

    презентация [194,0 K], добавлен 14.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.