Компьютерная графика
История возникновения и развития технологий компьютерной графики, сферы их применения. Особенности и виды двумерной и трехмерной графики. Способы хранения и обработки цвета в компьютере. Назначение и основные возможности программной системы 3ds Max.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 02.11.2015 |
Размер файла | 19,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Компьютерная графика (также машимнная грамфика) -- область деятельности, в которой компьютеры используются как инструмент для синтеза (создания) изображений, так и для обработки визуальной информации, полученной из реального мира. Также компьютерной графикой называют результат такой деятельности.
В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину. В 1964 году General Motors представила систему автоматизированного проектирования DAC-1, разработанную совместно с IBM.
В 1968 году группой под руководством Н. Н. Константинова была создана компьютерная математическая модель движения кошки. Машина БЭСМ-4, выполняя написанную программу решения дифференциальных уравнений, рисовала мультфильм «Кошечка», который для своего времени являлся прорывом. Для визуализации использовался алфавитно-цифровой принтер.
Существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее, электронно-лучевой трубке.
Разработки в области компьютерной графики сначала двигались лишь академическим интересом и шли в научных учреждениях. Постепенно компьютерная графика прочно вошла в повседневную жизнь, стало возможным вести коммерчески успешные проекты в этой области. К основным сферам применения технологий компьютерной графики относятся:
· Графический интерфейс пользователя;
· Спецэффекты, Визуальные эффекты (VFX), цифровая кинематография;
· Цифровое телевидение, Всемирная паутина, видеоконференции;
· Цифровая фотография и существенно возросшие возможности по обработке фотографий;
· Цифровая живопись;
· Визуализация научных и деловых данных;
· Компьютерные игры, системы виртуальной реальности (например, тренажёры управления самолётом);
· Системы автоматизированного проектирования;
· Компьютерная томография;
· Компьютерная графика для кино и телевидения;
· Лазерная графика.
Компьютерная графика является также одной из областей научной деятельности. В области компьютерной графики защищаются диссертации, а также проводятся различные конференции:
· конференция Siggraph, проводится в США
· конференция Графикон, проводится в России
· CG-событие, проводится в России
· CG Wave, проводится в России
По способам задания изображений графику можно разделить на категории.
компьютерный графика двумерный трехмерный
Двумерная графика (2D)
Двумерная компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую, хотя обособляют ещё и фрактальный тип представления изображений.
Векторная графика
Векторная графика представляет изображение как набор геометрических примитивов. Обычно в качестве них выбираются точки, прямые, окружности, прямоугольники, а также как общий случай, сплайны некоторого порядка. Объектам присваиваются некоторые атрибуты, например, толщина линий, цвет заполнения. Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов. При воспроизведении перекрывающихся объектов имеет значение их порядок.
Изображение в векторном формате даёт простор для редактирования. Изображение может без потерь масштабироваться, поворачиваться, деформироваться, также имитация трёхмерности в векторной графике проще, чем в растровой. Дело в том, что каждое такое преобразование фактически выполняется так: старое изображение (или фрагмент) стирается, и вместо него строится новое. Математическое описание векторного рисунка остаётся прежним, изменяются только значения некоторых переменных, например, коэффициентов. При преобразовании растровой картинки исходными данными является только описание набора пикселей, поэтому возникает проблема замены меньшего числа пикселей на большее (при увеличении), или большего на меньшее (при уменьшении). Простейшим способом является замена одного пикселя несколькими того же цвета (метод копирования ближайшего пикселя: Nearest Neighbour). Более совершенные методы используют алгоритмы интерполяции, при которых новые пиксели получают некоторый цвет, код которого вычисляется на основе кодов цветов соседних пикселей. Подобным образом выполняется масштабирование в программе Adobe Photoshop (билинейная и бикубическая интерполяция).
Вместе с тем, не всякое изображение можно представить как набор из примитивов. Такой способ представления хорош для схем, используется для масштабируемых шрифтов, деловой графики, очень широко используется для создания мультфильмов и просто роликов разного содержания.
Растровая графика
Растровая графика всегда оперирует двумерным массивом (матрицей) пикселей. Каждому пикселю сопоставляется значение -- яркости, цвета, прозрачности -- или комбинация этих значений. Растровый образ имеет некоторое число строк и столбцов.
Без особых потерь растровые изображения можно только лишь уменьшать, хотя некоторые детали изображения тогда исчезнут навсегда, что иначе в векторном представлении. Увеличение же растровых изображений оборачивается «красивым» видом на увеличенные квадраты того или иного цвета, которые раньше были пикселями.
В растровом виде представимо любое изображение, однако этот способ хранения имеет свои недостатки: больший объём памяти, необходимый для работы с изображениями, потери при редактировании.
Фрактальная графика
Фрактал -- объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.
Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти. С другой стороны, фракталы слабо применимы к изображениям вне этих классов.
Трёхмерная графика (3D)
Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.
В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.
Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:
· матрица поворота;
· матрица сдвига;
· матрица масштабирования.
Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/масштабированный относительно исходного.
Представление цветов в компьютере
Система цветопередачи RGB
Для передачи и хранения цвета в компьютерной графике используются различные формы его представления. В общем случае цвет представляет собой набор чисел, координат в некоторой цветовой системе.
Стандартные способы хранения и обработки цвета в компьютере обусловлены свойствами человеческого зрения. Наиболее распространены системы RGB для дисплеев и CMYK для работы в типографском деле.
Иногда используется система с большим, чем три, числом компонент. Кодируется спектр отражения или испускания источника, что позволяет более точно описать физические свойства цвета. Такие схемы используются в фотореалистичном трёхмерном рендеринге.
Реальная сторона графики
Любое изображение на мониторе, в силу его плоскости, становится растровым, так как монитор это матрица, он состоит из столбцов и строк Трёхмерная графика существует лишь в нашем воображении, так как то, что мы видим на мониторе -- это проекция трёхмерной фигуры, а уже создаём пространство мы сами. Таким образом визуализация графики бывает только растровая и векторная, а способ визуализации это только растр (набор пикселей), а от количества этих пикселей зависит способ задания изображения.
3ds Max -- полнофункциональная профессиональная программная система для работы с трёхмерной графикой, разработанная компанией Autodesk. Работает в операционных системах Microsoft Windows и Windows NT (как в 32?битных, так и в 64?битных). Весной 2009 года выпущена двенадцатая версия этого продукта под названием «3ds Max 2010».
3ds Max располагает обширными средствами по созданию разнообразных по форме и сложности трёхмерных компьютерных моделей реальных или фантастических объектов окружающего мира с использованием разнообразных техник и механизмов, включающих следующие:
· полигональное моделирование в которое входят Editable mesh (редактируемая поверхность) и Editable poly (редактируемый полигон) -- это самый распространённый метод моделирования, используется для создания сложных моделей и моделей для игр;
· моделирование на основе неоднородных рациональных B-сплайнов (NURBS);
· моделирование на основе порций поверхностей Безье (Editable patch) -- подходит для моделирования тел вращения;
· моделирование с использованием встроенных библиотек стандартных параметрических объектов (примитивов) и модификаторов.
Методы моделирования могут сочетаться друг с другом.
Моделирование на основе стандартных объектов, как правило, является основным методом моделирования и служит отправной точкой для создания объектов сложной структуры, что связано с использованием примитивов в сочетании друг с другом как элементарных частей составных объектов.
3ds Max располагает библиотекой следующих объектов:
· Прямоугольный параллелепипед (Box)
· Сфера (Sphere)
· Цилиндр (Cylinder)
· Тор (Torus)
· Чайник (Teapot)
· Конус (Cone)
· Труба (Tube)
· Пирамида (Pyramid)
· Плоскость (Plane)
· Геосфера (GeoSphere)
· Список дополнительных встроенных объектов
· Многогранник (Hedra)
· Прямоугольный параллелепипед с фаской (ChamferBox)
· Цистерна (OilTank)
· Веретено (Spindle)
· Многогранная призма (Gengon)
· Призма (Prism)
· Тороидальный узел (Torus knot)
· Цилиндр с фаской (ChamferCyl)
· Капсула (Capsule)
· L-образное тело выдавливания (L-Ext)
· C-образное тело выдавливания (C-Ext)
Каждый из них обладает набором параметров, однозначно определяющих форму трёхмерного тела. Например, объект «Труба» определяется такими основными параметрами как внутренний и наружный радиусы, высота; кроме того существует ряд параметров, позволяющих управлять точностью построения. После создания объекта каждый из параметров может быть изменён так, что это моментально отразится на внешнем виде объекта в окне редактирования. Подавляющее большинство параметров также могут быть впоследствии подвергнуты анимации. Стандартный объект «Чайник» входит в этот набор в силу исторических причин: он используется для тестов материалов и освещения в сцене, и, кроме того, давно стал своеобразным символом трёхмерной графики.
В 3ds Max реализована возможность создания нескольких основных источников частиц. Начиная с 8 версии имеется 6 основных источников частиц (не включая Particle Flow), демонстрирующих различное поведение. Традиционными источниками частиц в 3ds Max являются Spray (Брызги), Snow (Снег), Blizzard (Метель), PArray (Массив частиц), PCloud (Облако частиц) и Super Sprays (Супербрызги).
Particle Flow -- это изощрённая нелинейная событийно-управляемая система частиц, разработанная Олегом Байбородиным, одна из семи систем частиц 3ds Max. Подобно большинству систем частиц, доступных в современных пакетах трёхмерной графики Particle Flow позволяет пользователю моделировать поведение частиц на основании серий предопределённых процедур (событий) средствами удобного наглядного интерфейса.
3ds Max также включает механизм расчёта физики reactor, изначально разработанный Havok. Reactor позволяет моделировать поведение твёрдых тел, мягких тел, ткани с учётом силы тяжести и других воздействий. Так же как и в других программах имитации динамики в reactor'е используются упрощённые выпуклые оболочки объектов, которые могут быть настроены на использование всех вершин объекта, ценою времени обработки. Однако, полноценного модуля динамики и симуляции в 3dsmax нет. Тем не менее, это компенсируется большим количеством сторонних разработок. Начиная с версии 8, в среду встроены модули Cloth и Hair&Fur.
Визуализация
Собственный рендер (ScanLine) постоянно критикуется за его «пластмассовые» изображения. Хотя при грамотной настройке можно получить достаточно качественные изображения. Для 3dsmax существует огромное множество сторонних визуализаторов в виде встраиваемых модулей или в виде трансляторов для Stand Alone визуализаторов.
Scanline (Сканирующая визуализация)
Исходным методом визуализации в 3DS Max является сканирующий построчный алгоритм. Некоторые расширенные возможности были добавлены в сканирующий визуализатор спустя годы, такие как расчёт всеобщего освещения, анализ излучательности и трассировка лучей, однако большинство функций перешло к нему от других визуализаторов (Например -- RadioRay).
Mental ray
Mental ray является пригодной для производственного применения высококачественной системой визуализации, разработанной компанией Mental Images. mental ray встроен в последние версии 3DS Max, это мощный инструмент визуализации, поддерживающий сегментную визуализацию (подобно механизму сопровождающей визуализации, реализованному в Maya), а также технологию распределённой визуализации, позволяющую рационально разделять вычислительную нагрузку между несколькими компьютерами. Включаемая в 3ds Max версия mental ray поставляется с набором инструментария, позволяющим относительно просто создавать множество различных эффектов.
V-Ray
Популярнейший в русскоязычном пространстве внешний визуализатор компании Chaos Group.
RenderMan
Стороннее средство подключения к конвейеру RenderMan, также полезно в тех случаях, когда требуется интеграция 3DS Max с системой визуализации Renderman. Конект с 3DS Max происходит с помощью DoberMan.
Final Render
Внешний визуализатор компании Cebas. Является наиболее полным фотон-основанным визуализатором, уступая по своим возможностям только MentalRay. Преимущество заключается в плотной интеграции с другими решениями Cebas, обеспечивающими широкий спектр разнообразных атмосферных, линзовых эффектов и пр., чего нет у других визуализаторов.
История пакета
Первая версия пакета под названием 3D Studio DOS была выпущена в 1990 году. Разработками пакета занималась независимая студия Yost Group, созданная программистом Гари Йостом; Autodesk на первых порах занимался только изданием пакета. Существуют сведения, что Гари Йост покинул прежнее место работы после переговоров с Эриком Лайонсом (Eric Lyons), в то время директором по новым проектам Autodesk.
Первые четыре релиза носили наименование 3D Studio DOS (1990--1994 годы). Затем пакет был переписан заново под Windows NT и переименован в 3D Studio MAX (1996--1999 годы). Нумерация версий началась заново.
В 2000--2004 годах пакет выпускается под маркой Discreet 3dsmax, а с 2005 года -- Autodesk 3ds MAX. Актуальная версия носит название Autodesk 3ds MAX 2010 (индекс 12.0).
В последние годы Autodesk по экономическим соображениям выпускает новые релизы пакета не реже раза в год.
Таким образом, создание трехмерных моделей оказывается наиболее эффектным и экономичным способом наглядного иллюстрирования конструкций, машин, механизмов и всего процесса в целом. Оно позволяет избежать чрезмерных финансовых затрат, сэкономить массу человеко-часов и тем самым способствовать повышению экономической эффективности технологического процесса производства объектов. Возможности 3D-графики на порядок превосходят двухмерные изображения - схемы, чертежи и рисунки, используемые для графического отображения технологического процесса.
Размещено на Allbest.ru
Подобные документы
Сферы применения машинной графики. Виды компьютерной графики. Цветовое разрешение и цветовые модели. Программное обеспечение для создания, просмотра и обработки графической информации. Графические возможности текстовых процессоров, графические редакторы.
контрольная работа [21,9 K], добавлен 07.06.2010Компьютерная графика как область информатики, занимающаяся проблемами получения различных изображений на компьютере. Области применения компьютерной графики. Двумерная графика: фрактальная, растровая и векторная. Особенности трёхмерной графики.
реферат [756,4 K], добавлен 05.12.2010Понятие и виды компьютерной графики. Применение спецэффектов в кинематографе. История развития компьютерной графики. Изменение частоты киносъемки с помощью спецэффектов. Виды компьютерной графики как способ хранения изображения на плоскости монитора.
реферат [34,8 K], добавлен 16.01.2013История развития компьютерной графики. Возникновение компьютерной (машинной) графики: научной, деловой, конструкторской, иллюстративной, художественной и рекламной. Компьютерная анимация. Графика для Интернета. Векторная графика и художественные эффекты.
курсовая работа [692,0 K], добавлен 12.11.2014Виды и способы представления компьютерной информации в графическом виде. Отличительные особенности растровой и векторной графики. Масштабирование и сжатие изображений. Форматы графических файлов. Основные понятия трехмерной графики. Цветовые модели.
контрольная работа [343,5 K], добавлен 11.11.2010Методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов. Основные понятия компьютерной графики. Особенности применения растровой, векторной и фрактальной графики. Обзор форматов графических данных.
реферат [49,1 K], добавлен 24.01.2017Рассмотрение областей применения компьютерной графики. Изучение основ получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. Ознакомление с особенностями растровой и векторной графики. Обзор программ фрактальной графики.
реферат [192,9 K], добавлен 15.04.2015Основные виды компьютерной графики. Достоинства и недостатки векторной графики. Сущность понятия "коэффициент прямоугольности пикселей". Математическая основа фрактальной графики. Сущность понятий "фрактал", "фрактальная геометрия", "фрактальная графика".
контрольная работа [20,6 K], добавлен 13.07.2010Компьютерная графика - область информатики, занимающаяся проблемами получения различных изображений. Виды компьютерной графики: растровая, векторная, фрактальная. Программы для создания компьютерной анимации, область применения, форматы хранения.
реферат [29,1 K], добавлен 16.03.2010Теоретический анализ сущности и видов компьютерной графики - специальной области информатики, занимающейся методами и средствами создания, преобразования, обработки, хранения и вывода на печать изображений с помощью цифровых вычислительных комплексов.
презентация [641,9 K], добавлен 29.05.2010