Кодирование звука

Звук как колебания, в частности, воздуха, представляющие собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Оценка информационного объема моно- и стереоаудиофайла. Распространенные способы сжатия звуковых файлов, их эффективность.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 27.09.2015
Размер файла 15,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Кодирование звука

звук кодирование колебание

Как известно, звук - это колебания, в частности, воздуха, представляющие собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем громче звук для человека; чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, такой непрерывный (аналоговый) звуковой сигнал должен быть преобразован в последовательность электрических импульсов (двоичных нулей и единиц). Для кодирования непрерывного звукового сигнала производится его дискретизация по времени (временная дискретизация, оцифровка). Непрерывная звуковая волна разбивается на отдельные короткие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Это выполняется устройством, называемым аналогово-цифровым преобразователем (АЦП), который измеряет напряжение поступающего с микрофона звукового сигнала через равные промежутки времени и записывает полученные значения (в виде многоразрядных двоичных чисел) в память компьютера. В результате, непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность значений уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек». Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование, для которого служит цифро-аналоговый преобразователь (ЦАП), а затем сгладить получившийся ступенчатый сигнал (через аналоговый фильтр).

Каждой «ступеньке» присваивается значение уровня громкости (амплитуды) звука, его код (1, 2, 3, и т.д.). Таким образом, при двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Уровни громкости звука можно рассматривать как набор возможных состояний. Соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание. Поэтому, как и в случае с графической информацией, при кодировании звука важное значение имеет «глубина» кодирования звука. Например, при 16-битной глубине кодирования (когда каждому значению амплитуды звукового сигнала присваивается 16-битный код) количество обеспечиваемых различных уровней сигнала (состояний) можно определить следующим образом: N = 216 = 65536.

Качество кодирования зависит также от количества измерений уровня сигнала в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования звуковой информации. Количество измерений в секунду может лежать в диапазоне от 8000 до 48000, т.е. частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц.

Оценить информационный объем моноаудиофайла (V) можно следующим образом:

V = Nfk,

где N - общая длительность звучания (секунд), f - частота дискретизации (Гц), k - глубина кодирования (бит). Например, при длительности звучания 1 минуту и среднем качестве звука (16 бит, 24 кГц).

V = 60*24000*16 бит = 23040000 бит = 2880000 байт = 2812,5 Кбайт = 2,75 Мбайт.

Оценить информационный объем стереоаудиофайла (V) можно следующим образом:

V = 2Nfk,

где N - общая длительность звучания (секунд), f - частота дискретизации (Гц), k - глубина кодирования (бит). Например, при длительности звучания 1 минуту и среднем качестве звука (32 бит, 48 кГц).

V = 60*48000*32 бит = 92160000 бит = 11520000 байт = 1250 Кбайт = 10,99 Мбайт.

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объем звукового файла в два раза по сравнению с монозвуком.

Наиболее распространенным форматом закодированных описанным способом звуковых файлов является Wave-формат (расширение файлов - .wav). Такой способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но существуют и другие способы кодирования звука. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов для кодирования инструментальной музыки разработали стандарт (систему кодов), получивший название MIDI (Musical Instrument Digital Interface - цифровой интерфейс для музыкальных инструментов). В основе этой системы кодирования лежит принцип нотной записи музыкальных произведений.

Нотная запись, прежде всего, описывает следующие свойства музыкальных звуков:

· высоту звучания (в физическом смысле - частоту колебаний звука), которая кодируется положением нотного значка на нотных линейках;

(MIDI - клавиатура)

· длительность звучания, которая кодируется видом ноты (пустая / закрашенная, без штиля/со штилем, без флажка/с флажками и т.п.).

Система кодирования MIDI представляет собой набор всевозможных команд для различных музыкальных инструментов. Таким образом, запись музыкального произведения в формате MIDI - это программа игры на воображаемом музыкальном инструменте-синтезаторе, состоящая из последовательности закодированных сообщений, разделенных закодированными паузами. При таком кодировании нельзя записать вокальное произведение, так как звуки, издаваемые певцом или хором, не входят в систему команд исполнителя-синтезатора. Но имеются и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии. В исходном звуковом файле (например, в.wav-файле) хранится полная информация об оцифрованном звуке. При высоком качестве звука объем таких файлов чрезвычайно велик (около 15Мб на 1 минуту звучания). Поэтому разработаны различные способы сжатия звуковых файлов. Наиболее популярным форматом, обеспечивающим высокую степень сжатия звуковых файлов при сохранении высокого качества звучания является формат MP3 (MPEG Layer-3) (расширение файлов - .mp3), разработанный учеными из немецкого университета им. Фраугофера. Принципы сжатия основаны на удалении невоспринимаемых или плохо воспринимаемых человеком звуков. При использовании этого формата одна песня занимает в среднем 3,5 Мб и, например, на стандартный компакт-диск (CD-ROM) помещается около 200 музыкальных композиций.

Размещено на Allbest.ru


Подобные документы

  • Формат звукового файла wav, способ его кодирования. Реализация возможностей воспроизведения звука в среде программирования MATLAB. Составление функциональной схемы программы. Апробирование информационной технологии воспроизведения звуковых файлов.

    курсовая работа [1,2 M], добавлен 13.02.2016

  • Основные сведения о звуковых волнах, их характеристики и спектральное представление звука. Виды искажений, помехи и шумы. Состав звуковых плат. Назначение и стандарты midi-систем. Запись и передача звука, формат mp3. Основные программные интерфейсы.

    курс лекций [811,6 K], добавлен 08.07.2010

  • Восприятие звуковых раздражений. Частота, амплитуда, фаза как характеристики звука. Представление и способы передачи цифровой информации. Особенности дискретизации звука. Способы записи информации: бит в бит; сжатие; структура болванки CD-R; запись CD-R.

    реферат [23,4 K], добавлен 10.11.2009

  • Понятие звука, физиологические и психологические основы его восприятия человеком. Основные критерии и параметры звука: громкость, частота, пространственное положение источника, гармонические колебания. Система пространственной обработки звука EAX.

    презентация [952,3 K], добавлен 10.08.2013

  • Архивация и компрессия как методы сжатия изображений. Алгоритмы сжатия данных. Вспомогательные средства, которые используются для понижения объемов файлов: изменение цветовой модели изображения, изменение разрешения растрового файла, ресемплирование.

    презентация [45,3 K], добавлен 06.01.2014

  • Понятие звуковой информации как кодирования звука, в основе которого лежит процесс колебания воздуха и электрического тока. Величина слухового ощущения (громкость). Временная дискретизация звука, ее частота. Глубина и качество звуковой информации.

    презентация [545,6 K], добавлен 13.05.2015

  • Понятие процесса архивации файлов. Программы, осуществляющие упаковку и распаковку файлов. Защита информации от несанкционированного доступа. Самораспаковывающиеся архивы. Основные характеристики программ-архиваторов. Распространенные алгоритмы сжатия.

    презентация [801,6 K], добавлен 23.10.2013

  • Критерий разработки кодирующих устройств. Международный стандарт кодирования для передачи речи в телефонном канале PCM. Оценка качества сигнала. Задача спектрального оценивания. Гармонический алгоритм Берга. Системы синтеза речи. Форматы звуковых файлов.

    дипломная работа [905,3 K], добавлен 17.10.2012

  • Модели звуковых карт, их возможности, качество звука и размеры. Устройство звуковых карт и принципы их функционирования. Методы генерации звука, применяющиеся в звуковых платах. Особенности системы пространственного звуковоспроизведения Dolby Digital.

    реферат [34,8 K], добавлен 13.03.2011

  • Способы оцифровки звука. Процесс дискретизации и квантования. Аналогово-цифровые и цифро-аналоговые преобразователи. Классификация и характеристика компьютерных вирусов, механизмы и каналы их распространения. Противодействие обнаружению вирусов.

    контрольная работа [178,7 K], добавлен 15.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.