Система с использованием шагового двигателя

Характеристика биполярных и униполярных шаговых двигателей. Анализ функционирования драйверов, которые реализуют модифицированный полушаговый режим. Изучение особенностей аппаратной платформы Arduino. Рассмотрение блок-схемы алгоритма программы.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 21.04.2015
Размер файла 349,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ Государственное БЮДЖЕТНОЕ образовательное учреждение

высшего профессионального образования

«ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧСЕКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ПГТУ»)

ВЫСШИЙ КОЛЛЕДЖ ПГТУ «ПОЛИТЕХНИК»

Специальность 230113.51 «Компьютерные системы и комплексы»

Контрольная работа

По дисциплине: «Микропроцессорные системы»

На тему: «Система с использованием шагового двигателя»

Автор работы:

Студент группы КС-31 Николаев В.С.

Руководитель:

Преподаватель: Морохин Д.В.

2015

Оглавление

Введение

1. Аналитическая часть

2. Разработка схемы устройства

3. Разработка программы

Вывод

Литература

Введение

Шаговый двигатель - это электромеханичское устройство, которое преобразует электрические импульсы в дискретные механические перемещения. Так, пожалуй, можно дать строгое определение. Наверное, каждый видел, как выглядит шаговый двигатель внешне: он практически ничем не отличается от двигателей других типов. Чаще всего это круглый корпус, вал, несколько выводов.

Шаговые двигатели уже давно и успешно применяются в самых разнообразных устройствах. Их можно встретить в дисководах, принтерах, плоттерах, сканерах, факсах, а также в разнообразном промышленном и специальном оборудовании. В настоящее время выпускается множество различных типов шаговых двигателей на все случаи жизни. Однако правильно выбрать тип двигателя - это еще полдела. Не менее важно правильно выбрать схему драйвера и алгоритм его работы, который зачастую определяется программой микроконтроллера.

Преимущества шагового двигателя:

· угол поворота ротора определяется числом импульсов, которые поданы на двигатель

· двигатель обеспечивает полный момент в режиме

· прецизионное позиционирование и повторяемость. Хорошие шаговые двигатели имеют точность 3-5% от величины шага. Эта ошибка не накапливается от шага к шагу

· возможность быстрого старта/остановки/реверсирования

· высокая надежность, связанная с отсутствием щеток, срок службы шагового двигателя фактически определяется сроком службы подшипников

· однозначная зависимость положения от входных импульсов обеспечивает позиционирование без обратной связи

· возможность получения очень низких скоростей вращения для нагрузки, присоединенной непосредственно к валу двигателя без промежуточного редуктора

· может быть перекрыт довольно большой диапазон скоростей, скорость пропорциональна частоте входных импульсов

Недостатки шагового двигателя

· шаговым двигателем присуще явление резонанса

· возможна потеря контроля положения ввиду работы без обратной связи

· потребление энергии не уменьшается даже без нагрузки

· затруднена работа на высоких скоростях

· невысокая удельная мощность

· относительно сложная схема управления

1. Аналитическая часть

Шаговые двигатели относятся к классу бесколлекторных двигателей постоянного тока. Как и любые бесколлекторные двигатели, они имеют высокую надежность и большой срок службы, что позволяет использовать их в критичных, например, индустриальных применениях. По сравнению с обычными двигателями постоянного тока, шаговые двигатели требуют значительно более сложных схем управления, которые должны выполнять все коммутации обмоток при работе двигателя. Кроме того, сам шаговый двигатель - дорогостоящее устройство, поэтому там, где точное позиционирование не требуется, обычные коллекторные двигатели имеют заметное преимущество. Следует отметить, что в последнее время для управления коллекторными двигателями все чаще применяют контроллеры, которые по сложности практически не уступают контроллерам шаговых двигателей.

Виды шаговых двигателей.

Существуют три основных типа шаговых двигателей:

· двигатели с переменным магнитным сопротивлением

· двигатели с постоянными магнитами

· гибридные двигатели

Определить тип двигателя можно даже на ощупь: при вращении вала обесточенного двигателя с постоянными магнитами (или гибридного) чувствуется переменное сопротивление вращению, двигатель вращается как бы щелчками. В то же время вал обесточенного двигателя с переменным магнитным сопротивлением вращается свободно. Гибридные двигатели являются дальнейшим усовершенствованием двигателей с постоянными магнитами и по способу управления ничем от них не отличаются. Определить тип двигателя можно также по конфигурации обмоток. Двигатели с переменным магнитным сопротивлением обычно имеют три (реже четыре) обмотки с одним общим выводом. Двигатели с постоянными магнитами чаще всего имеют две независимые обмотки. Эти обмотки могут иметь отводы от середины. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки.

В шаговом двигателе вращающий момент создается магнитными потоками статора и ротора, которые соответствующим образом ориентированы друг относительно друга. Статор изготовлен из материала с высокой магнитной проницаемостью и имеет несколько полюсов. Полюс можно определить, как некоторую область намагниченного тела, где магнитное поле сконцентрировано. Полюса имеют как статор, так и ротор. Для уменьшения потерь на вихревые токи магнитопроводы собраны из отдельных пластин, подобно сердечнику трансформатора. Вращающий момент пропорционален величине магнитного поля, которая пропорциональна току в обмотке и количеству витков. Таким образом, момент зависит от параметров обмоток. Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Он будет находится в этом положении до тех пор, пока внешний приложенный момент не превысит некоторого значения, называемого моментом удержания. После этого ротор повернется и будет стараться принять одно из следующих положений равновесия.

Биполярные и униполярные шаговые двигатели.

В зависимости от конфигурации обмоток двигатели делятся на биполярные и униполярные. Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовывается драйвером. Для такого типа двигателя требуется мостовой драйвер, или полумостовой с двухполярным питанием. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода (рис. а).

Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен иметь только 4 простых ключа. Таким образом, в униполярном двигателе используется другой способ изменения направления магнитного поля. Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов (рис. б). Иногда униполярные двигатели имеют раздельные 4 обмотки, по этой причине их ошибочно называют 4-х фазными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8 (рис. в). При соответствующем соединении обмоток такой двигатель можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмоткими и отводами тоже можно использовать в биполярном режиме, если отводы оставить неподключенными. В любом случае ток обмоток следует выбирать так, чтобы не превысить максимальной рассеиваемой мощности.

Двигатели с переменным магнитным сопротивлением

Шаговые двигатели с переменным магнитным сопротивлением имеют несколько полюсов на статоре и ротор зубчатой формы из магнитомягкого материала. Намагниченность ротора отсутствует. Для простоты на рисунке ротор имеет 4 зубца, а статор имеет 6 полюсов. Двигатель имеет 3 независимые обмотки, каждая из которых намотана на двух противоположных полюсах статора. Такой двигатель имеет шаг 30 град.

Двигатели с постоянными магнитами.

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением.

Гибридные двигатели.

Гибридные двигатели являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3.6 - 0.9 град.). Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами. Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении.

Существует несколько способов управления фазами шагового двигателя.

Первый способ обеспечивается попеременной коммутации фаз, при этом они не перекрываются, в один момент времени включена только одна фаза (рис. а). Этот способ называют ”one phase on” full step или wave drive mode. Точки равновесия ротора для каждого шага совпадают с «естественными» точками равновесия ротора у незапитанного двигателя. Недостатком этого способа управления является то, что для биполярного двигателя в один и тот же момент времени иcпользуется 50% обмоток, а для униполярного - только 25%. Это означает, что в таком режиме не может быть получен полный момент.

Второй способ - управление фазами с перекрытием: две фазы включены в одно и то же время. Его называют ”two-phase-on” full step или просто full step mode. При этом способе управления ротор фиксируется в промежуточных позициях между полюсами статора (рис. б) и обеспечивается примерно на 40% больший момент, чем в случае одной включенной фазы. Этот способ управления обеспечивает такой же угол шага, как и первый способ, но положение точек равновесия ротора смещено на полшага.

Третий способ является комбинацией первых двух и называется полушаговым режимом, ”one and two-phase-on” half step или просто half step mode, когда двигатель делает шаг в половину основного. Этот метод управления достаточно распространен, так как двигатель с меньшим шагом стоит дороже и очень заманчиво получить от 100-шагового двигателя 200 шагов на оборот. Каждый второй шаг запитана лишь одна фаза, а в остальных случаях запитаны две (рис. в). В результате угловое перемещение ротора составляет половину угла шага для первых двух способов управления. Кроме уменьшения размера шага этот способ управления позволяет частично избавиться от явления резонанса. Полушаговый режим обычно не позволяет получить полный момент, хотя наиболее совершенные драйверы реализуют модифицированный полушаговый режим, в котором двигатель обеспечивает практически полный момент, при этом рассеиваемая мощность не превышает номинальной.

Еще один способ управления называется микрошаговым режимом или micro stepping mode. При этом способе управления ток в фазах нужно менять небольшими шагами, обеспечивая таким образом дробление половинного шага на еще меньшие микрошаги. Когда одновременно включены две фазы, но их токи не равны, то положение равновесия ротора будет лежать не в середине шага, а в другом месте, определяемом соотношением токов фаз. Меняя это соотношение, можно обеспечить некоторое количество микрошагов внутри одного шага. Кроме увеличения разрешающей способности, микрошаговый режим имеет и другие преимущества, которые будут описаны ниже. Вместе с тем, для реализации микрошагового режима требуются значительно более сложные драйверы, позволяющие задавать ток в обмотках с необходимой дискретностью. Полушаговый режим является частным случаем микрошагового режима, но он не требует формирования ступенчатого тока питания катушек, поэтому часто реализуется.

Питание шагового двигателя.

Для питания обычного двигателя постоянного тока требуется лишь источник постоянного напряжения, а необходимые коммутации обмоток выполняются коллектором. С шаговым двигателем всё сложнее. Все комутации должен выполнять внешний контроллер. В настоящее время примерно в 95% случаев для управления шаговыми двигателями используются микроконтроллеры. В простейшем случае для управления шаговым двигателем в полношаговом режиме требуются всего два сигнала, сдвинутые по фазе на 90 градусов. Направление вращения зависит от того, какая фаза опережает. Скорость определяется часотой следования импульсов. В полушаговом режиме всё несколько сложнее и требуется уже минимум 4 сигнала. Все сигналы управления шаговым двигателем можно сформировать программно, однако это вызовет большую загрузку микроконтроллера. Поэтому чаще применяют специальные микросхемы драйверов шагового двигателя, которые уменьшают количество требуемых от процессора динамических сигналов. Типично эти микросхемы требуют тактовую частоту, которая является частотой повторения шагов и статический сигнал, который задает направление. Иногда еще присутствует сигнал включения полушагового режима. Для микросхем драйверов, которые работают в микрошаговом режиме, требуется большее количество сигналов. Распространенным является случай, когда необходимые последовательности сигналов управления фазами формируются с помощью одной микросхемы, а необходимые токи фаз обеспечивает другая микросхема. Хотя в последнее время появляется все больше драйверов, реализующих все функции в одной микросхеме.

Мощность, которая требуется от драйвера, зависит от размеров двигателя и составляет доли ватта для маленьких двигателей и до 10-20 ватт для больших двигателей. Максимальный уровень рассеиваемой мощности ограничен нагревом двигателя. Максимальная рабочая температура обычно указывается производителем, но можно приблизительно считать, что нормальной является температура корпуса 90 градусов. Поэтому при конструировании устройств с шаговыми двигателями, непрерывно работающими на максимальном токе, необходимо принимать меры, исключающие касание корпуса двигателя. В отдельных случаях возможно применение охлаждающего радиатора. Иногда это позволяет применить двигатель меньших размеров и добиться лучшего отношения мощность/стоимость.

2. Разработка схемы устройства

В данном проекте создается система управления шаговым двигателем. Данная система управления вместе с шаговым двигателем может использоваться как электропривод для перемещения малогабаритных грузов. Использование данного электропривода в учебных целях позволяет улучшить навыки в программировании микроконтроллеров, программировании работы шагового двигателя, ознакомиться с работой каждого элемента системы в отдельности. Двигатель будет управляться с помощью аппаратной платформы Arduino.

Основные цели работы:

· Разработка системы управления

· Выбор технических средств для создания системы

· Запуск шагового двигателя

· Разработка программы для управления шаговым двигателем.

Выбор технических средств для системы.

1. Arduino Uno

Для управления двигателем необходим микроконтроллер. В последнее время активно развивается производство и использование микроконтроллеров на базе плат Arduino. Это итальянская компания разрабатывает различные виды мкроконтроллеров и плат расширения для них. Одной из последних и самых современных плат данной фирмы является аппаратная платформа Arduino Uno. Контроллер построен на Atmega328. Платформа имеет 14 цифровых входов/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кврацевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP, и кнопку перезагрузки. Для работы необходимо подключить платформу к компьютеру посредством кабеля USB, либо подать питание при помощи адаптера AC/DC или батареи. программа драйвер arduino

2. Шаговый двигатель 36HT20-0504MA

Описание и характеристики шагового двигателя 36HT20-0504MA:

· Шаг: 0,9°±5% (400 на оборот)

· Номинальное напряжение питания: 6,5 В

· Номинальный ток фазы: 500 мА

· Крутящий момент: не менее 0,95 кгЧсм

· Крутящий момент покоя: 0,05 кгЧсм

· Максимальная скорость старта: 1500 шагов/сек

· Диаметр вала: 5 мм

· Длина вала: 20 мм

· Габариты корпуса: 51Ч36Ч20 мм

· Вес: 0,16 кг

· Микросхема L298N

3. Motor Shield -- плата расширения для Arduino на базе чипа L298P, позволяющая управлять моторами с напряжением 5-24 В в режиме раздельного питания и 7-12 В в режиме объединённого питания. Плата имеет 2 независимых канала. Используя их, можно подключить на выбор:

· Пару DC-моторов

· Один двухфазный шаговый мотор.

· Один DC-мотор с током до 4 А, если объединить каналы

Клеммники под винт для подключения питания на плате обозначены как PWR. К ним подключается источник питания, который будет использоваться для питания моторов. Напряжение питания должно быть в пределах 5-24 В постоянного тока. На Motor Shield два контура питания.

· Первый -- силовой, напряжение на который приходит с клеммника PWR. От этого контура запитана микросхема H-моста L298P и нагрузка.

· Второй контур используется для питания вспомогательной цифровой логики управления микросхемой L298P и светодиодов индикации.

Принципиальная схема такого модуля выглядит следующим образом

Для коммуникации с микроконтроллером используются цифровые контакты Arduino:

4 -- направление, правый

5 -- скорость (ШИМ), правый

6 -- скорость (ШИМ), левый

7 -- направление, левый

Блок-схема алгоритма программы

3. Разработка программы

#include <Stepper.h>

Stepper motor = Stepper(400, 4, 6, 5, 7);

void setup()

{

motor.setSpeed(20);

}

void loop()

{

motor.step(200);

delay(5000);

}

Вывод

В результате исследований была разработана система, полностью готовая для использования на практике. Так как система управления должна быть максимально комфортной и удобной в использовании, были выдержаны следующие требования к работе системы:

1. Возможность вращения по часовой и против часовой стрелки;

2. Остановка и закрепление в определенных позициях без применения датчиков угла;

3. Изменение скорости вращения двигателя;

4. Изменение вращающего момента двигателя;

5. Выбор кратчайшего пути для достижения позиции;

6. Возможность работы в составе робототехнического комплекса;

Литература

1. Контроллер шагового двигателя [электронный ресурс]: http://amperka.ru/product/arduino-motor-shield , режим доступа-свободный.

2. Фергусон Дж., Макри Л., Уилльямз П. Обслуживание микропроцессорных систем - Пер. с англ.-М.: Мир, 2013.

3. Каранкевич А. Г. Курс лекция по Электропривод, - Томск, 2014

4. Шаговый двигатель 36HT20-0504MA [электронный ресурс]: http://amperka.ru/product/stepper-motor-ldo-36ht20-0504ma , режим доступа-свободный.

5. Arduino [электронный ресурс]: arduino.cc , режим доступа-свободный.

Размещено на Allbest.ru


Подобные документы

  • Представление о системе Arduino. Структура платформы Android. Выбор средств разработки. Разработка структур данных и алгоритмов. Характеристика Bluetooth модуля, блок реле, резисторов, диодов. Графический интерфейс приложения. Написание кода программы.

    дипломная работа [4,0 M], добавлен 19.01.2017

  • Знакомство с особенностями и этапами разработки приложения для платформы Android. Рассмотрение функций персонажа: бег, прыжок, взаимодействие с объектами. Анализ блок-схемы алгоритма генерации платформ. Способы настройки функционала рабочей области.

    дипломная работа [3,4 M], добавлен 19.01.2017

  • Языки программирования для промышленного контроллера WinCon W-8737. Использование редактора потоковых диаграмм. Технические характеристики и виды шаговых двигателей. Блок-схемы алгоритмов программ управления. Разработка структурной схемы устройства.

    дипломная работа [1,7 M], добавлен 20.12.2015

  • Изучение характеристик и режимов работы ВТА 2000-30. Составление блок-схемы алгоритма программы. Рассмотрение особенностей интерфейса вычислительных систем. Описание кодов символьных и функциональных клавиш, полученных при выполнении практической работы.

    отчет по практике [26,6 K], добавлен 04.04.2015

  • Анализ решений и выбор платформы виртуализации. Обоснование выбора VMwareESXi в качестве платформы для создания учебного класса. Системные требования к аппаратной части для выбранной платформы. Создание макета на основе сервера виртуализации VMwareESXi.

    дипломная работа [4,1 M], добавлен 12.04.2017

  • Символьные типы данных, работа со строками, составление блок-схемы алгоритма и программы для работы с массивами. Организация программы с использованием процедур и функций. Процедуры и функции, использующиеся при обработке файлов; компонентные файлы.

    контрольная работа [52,9 K], добавлен 03.10.2010

  • Разновидности конструктивных решений реализации весового оборудования. Разработка блок-схемы предустановок, блок-схемы измерения веса, блок-схемы вывода информации о весе в компьютер, блок-схемы устройства и программы работы микропроцессорного блока.

    курсовая работа [525,4 K], добавлен 13.02.2023

  • Элементы и переменные, используемые для составления записи в Паскале. Основные числовые типы языка Turbo Pascal. Составление блок-схемы приложения, программирование по ней программы для вычисления функции. Последовательность выполнения алгоритма.

    лабораторная работа [256,9 K], добавлен 10.11.2015

  • Cтpyктypнaя модель функционирования пapикмaxepcкoй: описание временной диаграммы и Q-схемы системы. Разработка машинной имитационной модели на специализированном языке GPSS: составление блок-схемы, детализированного алгоритма и листинга программы.

    курсовая работа [425,1 K], добавлен 02.07.2011

  • Особенности dirent как входной структуры каталога, независимой от файловой системы. Получение содержимого каталога и информации о файле. Разработка блок-схемы алгоритма программы. Изучение программного обеспечения для реализации поставленной задачи.

    курсовая работа [1,1 M], добавлен 22.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.