Искусственные нейронные сети
Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.11.2014 |
Размер файла | 62,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
контрольная работа [1,4 M], добавлен 28.01.2011Базовые архитектуры компьютеров: последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам. Искусственные нейронные сети. Прототип для создания нейрона. Поведение искусственной нейронной сети.
контрольная работа [229,5 K], добавлен 28.05.2010Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа [814,6 K], добавлен 29.09.2014Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.
реферат [270,4 K], добавлен 07.03.2009Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.
реферат [1,2 M], добавлен 24.05.2015Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Искусственные нейронные сети, строящиеся по принципам организации и функционирования их биологических аналогов. Элементарный преобразователь в сетях. Экспериментальный автопилотируемый гиперзвуковой самолет-разведчик LoFLYTE, использующий нейронные сети.
презентация [1,3 M], добавлен 23.09.2015Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.
презентация [1,4 M], добавлен 14.10.2013Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа [1,1 M], добавлен 06.12.2010Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация [98,6 K], добавлен 16.10.2013Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа [2,3 M], добавлен 13.10.2015Разработка нейронной сети, ее применение в алгоритме выбора оружия ботом в трехмерном шутере от первого лица, тестирование алгоритма и выявление достоинств и недостатков данного подхода. Обучение с подкреплением. Описание проекта в Unreal Engine 4.
контрольная работа [611,0 K], добавлен 30.11.2016Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа [2,4 M], добавлен 07.02.2013Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.
реферат [1,8 M], добавлен 03.02.2009Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.
курсовая работа [36,0 K], добавлен 18.10.2008Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.
курсовая работа [1,3 M], добавлен 26.03.2016Классификация компьютерных сетей. Назначение и особенности организации локальных вычислительных сетей. Назначение и структура глобальной сети Интернет. Работа с общими ресурсами в локальной сети. Вход и работа в Интернете. Поиск заданной информации.
методичка [378,6 K], добавлен 05.10.2008