Устройства ввода графических данных (сканеры)
Изучение принципа действия устройства ввода графической информации в компьютер. Характеристика ручных, настольных, рулонных, планшетных, проекционных и барабанных сканеров. Рассмотрение типов вводимого изображения и аппаратных интерфейсов сканеров.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 23.11.2014 |
Размер файла | 192,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВОСТОЧНО-СИБИРСКИЙ ИНСТИТУТ МИНИСТЕРСТВА ВНУТРЕННИХ ДЕЛ РОССИЙСКОЙ ФЕДЕРАЦИИ
Кафедра информационно-правовых дисциплин, иностранных языков и культуры речи
Реферат
по дисциплине "Информатика и информационные технологии в правоохранительной деятельности"
Тема "Устройства ввода графических данных (сканеры)"
Выполнил:
курсант 1курса ФПСиСЭ
рядовой полиции
Тогочиев Т.Ч.
Проверил:
кандидат технических наук,
доцент, полковник полиции
Голодков Юрий Эдуардович
Иркутск-2014
Оглавление
Введение
Оригиналы изображений
Механизм движения
Особенности настольных барабанных сканеров
Типы вводимого изображения
Аппаратные интерфейсы сканеров
Программные интерфейсы и TWAIN
Список использованной литературы
Введение
Устройства ввода графической информации находят широкое распространение благодаря компактности и наглядности способа представления информации для человека. По степени автоматизации поиска и выделения элементов изображения, устройства ввода графической информации делятся на 2 больших класса: автоматические и полуавтоматические. В полуавтоматических устройствах ввода графической информации функции поиска и выделения элементов изображения возлагаются на человека, а преобразование координат считываемых точек выполняется автоматически. В автоматических устройствах процесс поиска и выделения элементов изображения осуществляется без участия человека. Эти устройства строятся либо по принципу сканирования всего изображения с последующей его обработкой и переводом из растровой формы представления в векторную, либо по принципу слежения за линией, обеспечивающей считывание графической информации, представленной в виде графиков, диаграмм, контурных изображений. Основной областью применения устройств ввода графической информации являются системы автоматизированного проектирования, обработки изображений, обучения, управление процессами, мультипликации и др. К этим устройствам относятся сканеры, кодирующие планшеты (дигитайзеры), световое перо, сенсорные экраны, цифровые камеры, видеокамеры.
Сканером называется устройство, позволяющее вводить в компьютер образы изображений, представленных в виде текста, рисунков, слайдов, фотографий или другой графической информации. Кстати, несмотря на обилие различных моделей сканеров, в первом приближении их классификацию можно провести всего по нескольким признакам (или критериям):
- во-первых, по степени прозрачности вводимого оригинала изображения;
- во-вторых, по кинематическому механизму сканера (конструкции; механизма движения);
- в-третьих, по типу вводимого изображения;
- в-четвертых, по особенностям программного и аппаратного обеспечения сканера.
Оригиналы изображений
Вообще говоря, изображения (или оригиналы) можно условно разделить на две большие группы: непрозрачные и прозрачные оригиналы. К первой из них относятся называемые непрозрачные оригиналы: всевозможные фотографии, рисунки, страницы журналов и буклетов. Если вспомнить курс школьной физики, то известно, что изображения с подобных оригиналов мы видим в отраженном свете. Другое дело прозрачные оригиналы -- цветные и черно-белые слайды и негативы; в этом случае глаз (как оптическая система) обрабатывает свет, прошедший через оригинал. Таким образом, прежде всего, следует обратить внимание на то, с какими типами оригиналов сканер может работать. В частности, для работы со слайдами существуют специальные приставки.
Механизм движения
Определяющим фактором для данного параметра является способ перемещения считывающей головки сканера и бумаги относительно друг друга. В настоящее время все известные сканеры о этому критерию можно разбить на два основных типа: ручной (hand-held) и настольный (desktop). Тем не менее, существуют также комбинированные устройства, которые сочетают в себе возможности настольных и ручных сканеров. В качестве примера можно привести модель Niscan Page американской фирмы Nisca.
Ручные сканеры.
Это самый простой тип сканеров. Они перекладывают проблему перемещения устройства относительно бумаги на человека. Для того чтобы работа была наиболее удобной, ручные сканеры имеют небольшой размер и по характеру работы напоминают чем-то мышь. Основные достоинства сканеров этого типа - малые габариты и низкая цена (так как отсутствует двигатель для перемещения головки или протяжки бумаги), а недостатки вытекают из принципа конструкции. При помощи таких сканеров невозможно ввести изображения больших форматов за один проход, поскольку считывающая головка имеет малые габариты (стандартная ширина - 4 дюйма , 105 мм). Но современные ручные сканеры могут обеспечивать автоматическую "склейку" изображения, то есть формирует целое изображение из отдельно вводимых его частей. От того насколько равномерно пользователь перемещает сканер, зависит степень искажения передаваемого в компьютер изображения. В связи с перечисленными выше недостатками, добиться высокого качества изображения с их помощью очень трудно, поэтому ручные сканеры можно использовать только для ограниченного круга задач. Кроме того, они совершенно лишены "интеллектуальности", свойственной другим типам сканеров.
Одним из параметров, влияющих на работу ручных сканеров, является скорость сканирования.
Для настольных сканеров этот параметр влияет только на производительность и во многом определяется способом подключения к компьютеру. Для ручных сканеров данный параметр приобретает особую значимость. Чем выше допустимая скорость ввода, тем проще пользователю плавно перемещать ручной сканер, и тем самым избежать искажений изображения.
На лицевой панели ручных сканеров имеется светодиодный индикатор, сигнализирующий о превышении допустимой скорости сканирования. Более того, некоторые сканеры в дополнение индикатору снабжены звуковой сигнализацией. К сожалению, значение максимально допустимой скорости сканирования далеко не всегда приводится в технической документации. Искажение изображения вызывается тем, что сканер не успевает считывать и передавать вводимые строки в компьютер. Бороться с данным явлением раньше можно было только одним способом - пересканировать изображение. Также существуют сканеры, в которых применен механизм компенсации пропущенных строк.
Настольные сканеры.
Они в свою очередь делятся на рулонные (sheetfed), планшетные (flatbed) , проекционные (overhead) и барабанные устройства.
Рулонные сканеры.
Рулонные сканеры чем-то напоминают работу обыкновенных факс- машин. У рулонных сканеров головка стоит на месте, а бумага перемещается относительно нее с помощью протяжного механизма (как в принтере) Отдельные листы документов протягиваются через такое устройство, при этом и осуществляется их сканирование.
Таким образом, в данном случае сканирующая головка остается на месте, а уже относительно нее перемещается бумага. Понятно, что в этом случае копирование страниц книг и журналов просто невозможно. Рассматриваемые сканеры достаточно широко используются в областях, связанных с оптическим распознаванием символов ОСR (Optiсаl Character Recognition).
Для удобства работы рулонные сканеры обычно оснащаются устройствами для автоматической подачи страниц
Планшетные сканеры.
У планшетных сканеров сканирующая головка перемещается относительно бумаги с помощью шагового двигателя. Это уже серьезное и более дорогое устройство с большим набором команд и широким диапазоном возможностей. Планшетные сканеры чем-то напоминают копировальные аппараты - " ксероксы ", внешний вид которых известен многим. Для сканирования изображения (чего-нибудь) необходимо открыть крышку сканера, положить сканируемый лист на стеклянную пластину (изображением вниз), после чего закрыть крышку. В дальнейшее управление процессом сканирования осуществляется с клавиатуры компьютера - при работе с одной из специальных программ. Первоначально планшетные сканеры использовались только для сканирования непрозрачных оригиналов. Почти все модели имеют съёмную крышку, что позволяет сканировать " толстые " оригиналы (журналы, книги). Дополнительно некоторые модели могут оснащаться механизмом подачи отдельных листов, что очень удобно при работе в режиме пакетного сканирования (например, при работе с системами распознавания символов).
В последнее время многие фирмы - лидеры в производстве планшетных сканеров стали дополнительно предлагать слайд - модуль (для сканирования прозрачных оригиналов). Слайдмодуль имеет свой, расположенный сверху, источник света. Такой слайдмодуль устанавливается на планшетный сканер вместо простой крышки и превращает обычный планшетный сканер в универсальный.
Проекционные сканеры
Все проекционные сканеры можно разделить на несколько подгрупп (подтипов).
У проекционных сканеров первого типа, считывающая часть перемещается при помощи микромеханизма. Этот тип сканеров внешне напоминает проектор. Вводимый документ кладется на поверхность сканирования изображением вверх. Блок сканирования при этом находится сверху. Некоторые сканеры такого типа не используют специальных источников света, им достаточно естественного освещения. Хотя данные устройства обеспечивают ввод как документов, так и книг, добавляя возможность вводить в компьютер проекции трехмерных предметов, они обладают существенным недостатком - низкой скоростью сканирования.
Проекционные сканеры второго типа применяются для сканирования с высоким разрешением и качеством слайдов небольшого формата, как правило, размером не более 4х5 дюймов.
Существует две модификации: с горизонтальным и вертикальным расположением оптической оси считывания. Наиболее популярным в России, как, впрочем, и на Западе, является вертикальный проекционный сканер.
Барабанные сканеры
Не все барабанные сканеры можно отнести к настольным, так как профессиональные барабанные сканеры имеют достаточно внушительные размеры, хотя существуют современные модификации сканеров барабанного типа настольного исполнения. Их минусом, исходя из уменьшения габаритов, является небольшой формат сканируемого изображения (незначительно превышающий формат А4) Основное отличие барабанных сканеров состоит в том, что оригинал закрепляется на прозрачном барабане, который вращается с большой скоростью. Считывающий элемент располагается максимально близко от оригинала. Данная конструкция обеспечивает наибольшее качество сканирования. Обычно в барабанные сканеры устанавливают три фотоумножителя и сканирование осуществляется за один проход. "Младшие" модели у некоторых, фирм с целью удешевления, используют вместо фотоумножителя фотодиод, в качестве считывающего элемента. Барабанные сканеры способны сканировать любые типы оригиналов. В отличие от планшетных сканеров со слайд - модулем, барабанные сканеры могут сканировать прозрачные и непрозрачные оригиналы одновременно.
Особенности настольных барабанных сканеров
Пакетное сканирование - Все настольные модели могут обрабатывать отражающие и прозрачные оригиналы различной плотности на одном барабане, а несколько моделей могут автоматически корректировать апертуру и освещенность в соответствии с плотностью каждого оригинала. Для многих моделей поставляется факультативное программное обеспечение, позволяющее вводить отдельные параметры установки для каждого оригинала на барабане. Это дает возможность автоматизировать сканирование множественных оригиналов и значительно повышает производительность.
Сменные барабаны - другое новшество, увеличивающее производительность, использование сменных барабанов для всех настольных моделей, кроме самых простых. Для экономии времени можно устанавливать второй набор оригиналов на запасной барабан, пока производится сканирование оригиналов с первого. Если модель сканера включает автоматизированное программное обеспечение управления заданиями, то можно даже прерывать работу, удалять барабан, чтобы вставить "горящий" проект, и автоматически продолжать прерванное сканирование, как только производственное напряжение спадет.
Факультативное программное обеспечение - если с высококачественными барабанными сканерами поставляется автономное программное обеспечение, то большинство настольных моделей обычно включают только расширения для Photoshop версии Macintosh или Windows. Для реализации большинства возможностей повышения производительности -- автоматизированного увеличения контраста переходов на границах областей в ходе сканирования, преобразования из RGB в CMYK, улучшения цветов и демаскирования -- во многих случаях придется приобрести дорогое дополнительные программное обеспечение.
Существуют и комбинированные устройства. Благодаря использованию комбинированных датчиков, они обладают компактной конструкцией. Комбинированный сканер Niscan Page обеспечивает работу в двух режимах: протягивания листов (сканирование оригиналов форматом от визитной карточки до21,6 см) и самодвижущегося сканера. Для реализации последнего режима сканера необходимо снять нижнюю крышку. При этом валики, которые обычно протягивают бумагу, служат своеобразными ко-дами, на которых сканер и движется по сканируемой поверхности. Хотя понятно, что ширина вводимого сканером изображения в обоих режимах не изменяется (чуть больше формата А4), однако в самодвижущемся режиме можно сканировать изображение с листа бумаги, превышающего этот формат, или вводить формацию со страниц книги.
Типы вводимого изображения
По данному критерию все существующие сканеры можно подразделить на черно-белые и цветные. Черно-белые сканеры в свою очередь могут подразделяться на штриховые и полутоновые («серые»). Однако, как мы увидим в дальнейшем, полутона изображения могут также эмулироваться. Итак, первые модели черно-белых сканеров могли работать только в двухуровневом (bilevel) режиме, воспринимая или черный, или белый цвет. Таким образом, сканироваться могли либо штриховые рисунки (например, чертежи), либо двух тоновые изображения. Хотя эти сканеры и не могли работать с действительными оттенками серого цвета, выход для сканирования полутоновых изображений такими сканерами был найден. Псевдополутоновой режим, или режим растрирования (dithering), сканера имитирует оттенки серого цвета, группируя, несколько точек вводимого изображения в так называемые gray-scale-пиксели. Такие пиксели могут иметь размеры 2х2 (4 точки), 3х3 (9 точек) или 4х4 (16 точек) и т.д. Отношение количества черных точек к белым и выделяет уровень серого цвета. Например, gray-scale-пиксель размером 4х4 позволяет воспроизводить 17 уровней серого цвета (включая и полностью белый цвет). Не следует, правда, забывать, что разрешающая способность сканера при использовании gray-scale-пикселя снижается (в последнем случае в 4 раза).
Полутоновые сканеры используют максимальную разрешающую способность, как правило, только в двухуровневом режиме. Обычно они поддерживают 16, 64 или 256 оттенков серого цвета для 4-, 6- и 8-разрядного кода, который ставится при этом в соответствие каждой точке изображения. Разрешающая способность сканера измеряется в количестве различаемых точек на дюйм изображения -- dpi (dot per inch). Если в первых моделях сканеров разрешающая способность была 200--300 dpi, то в современных моделях это, как правило, 400, а то и 800 dpi. Некоторые сканеры обеспечивают аппаратное разрешение 600х1200 dpi. В ряде случаев разрешение сканера может устанавливаться программным путем в процессе работы из ряда значений: 75, 1 150, 200, 300 и 400 dpi.
Надо сказать, что благодаря операции интерполяции, выполняемой, как правило, программно, современные сканеры могут иметь разрешение 800 и даже 1600 dpi. В результате интерполяции на получаемом при сканировании изображении сглаживаются кривые линии и исчезают неровности диагональных линий. Напомним, что интерполяция позволяет отыскивать значения промежуточных величин по уже известным значениям. Например, в результате сканирования один из пикселов имеет значение уровня серого цвета 48, а соседний с ним -- 76. Использование простейшей линейной интерполяции позволяет сделать предположение о том, что значение уровня серого цвета для промежуточного пикселя могло бы быть равно 62. Если вставить все оценочные значения пикселов в файл отсканированного изображения, то разрешающая способность сканера как бы удвоится, то есть вместо обычных 400 dpi станет равной 800 dpi.
Черно-белые сканеры.
Попробуем объяснить принцип работы черно-белого сканера. Сканируемое изображение освещается белым светом, получаемым, как правило, от флуоресцентной лампы. Отраженный свет через редуцирующую (уменьшающую) линзу попадает на фоточувствительный полупроводниковый элемент, называемый прибором с зарядовой связью ПЗС (Change- Coupled Device, CCD), в основу которого положена чувствительность проводимости p-n-перехода обыкновенного полупроводникового диода к степени его освещенности. На p-n-переходе создается заряд, который рассасывается со скоростью, зависящей от освещенности. Чем выше скорость рассасывания, тем больший ток проходит через диод.
Каждая строка сканирования изображения соответствует определенным значениям напряжения на ПЗС. Эти значения напряжения преобразуются в цифровую форму либо через аналого-цифровой преобразователь АЦП (для полутоновых сканеров), либо через компаратор (для двухуровневых сканеров). Компаратор сравнивает два значения (напряжение или ток) от ПЗС и опорное (рис. 1), причем в зависимости от результата сравнения на его выходе формируется сигнал 0 (черный цвет) или 1 (белый). Разрядность АЦП для полутоновых сканеров зависит от количества поддерживаемых уровней серого цвета. Например, сканер, поддерживающий 64 уровня серого, должен иметь 6-разрядный АЦП. Каким образом сканируется каждая следующая строка изображения, целиком зависит от типа используемого сканера. Напом-ним, что у планшетных сканеров движется сканирующая голов-ка, а в рулонных сканерах она остается неподвижной, потому что движется носитель с изображением -- бумага.
Цветные сканеры.
В настоящее время существует несколько технологий для получения цветных сканируемых изображений. Один из наиболее общих принципов работы цветного сканера заключается в следующем. Сканируемое изображение освещается уже не белым цветом, а через вращающийся RGB-светофильтр (рис. 2). Для каждого из основных цветов (красного, зеленого и синего) последовательность операций практически не отличается от последовательности действий при сканировании черно-белого изображения. Исключение составляет, пожалуй, только этап предварительной обработки и гамма-коррекции цветов, перед тем как информация передается в компьютер. Понятно, что этот этап является общим для всех цветных сканеров.
В результате трех проходов сканирования получается файл, содержащий образ изображения в трех основных цветах -- RGB (образ композитного сигнала). Если используется восьмиразрядный АЦП, который поддерживает 256 оттенков для одного цвета, то каждой точке изображения ставится в соответствие один из 16,7 миллиона возможных цветов (24 разряда). Сканеры, использующие подобный принцип действия, выпускаются, например, фирмой Microtek.
Надо отметить, что наиболее существенным недостатком описанного выше метода является увеличение времени сканирования в три раза. Проблему может представлять также «выравнивание» пикселов при каждом из трех проходов, так как в противном случае возможно размывание оттенков и «смазывание» цветов.
В сканерах известных японских фирм Epson и Sharp, как правило, вместо одного источника света используется три, для каждого цвета отдельно. Это позволяет сканировать изображение всего за один проход и исключает неверное «выравнивание» пикселов. Сложности этого метода заключаются обычно в подборе источников света со стабильными характеристиками.
Другая японская фирма -- Seiko Instruments -- разработала Цветной планшетный сканер SpectraPoint, в котором элементы ПЗС были заменены фототранзисторами. На ширине 8,5 дюйма размещено 10200 фототранзисторов, расположенных в три колонки по 3400 в каждой. Три цветных фильтра (RGB) устроены так, что каждая колонка фототранзисторов воспринимает только один основной цвет. Высокая плотность интегральных фототранзисторов позволяет достигать хорошей разрешающей способности -- 400 dpi (3400/8,5) -- без использования редуцирующей линзы.
Принцип действия цветного сканера ScanJet Iic фирмы Hewlett Packard несколько иной. Источник белого света освещает сканируемое изображение, а отраженный свет через редуцирующую линзу попадает на трех полосную ПЗС через систему специальных фильтров, которые и разделяют белый свет на три компонента: красный, зеленый и синий (рис. 3). Физика работы подобных фильтров связана с явлением дихроизма, заключающегося в различной окраске одноосных кристаллов в проходящем белом свете в зависимости от положения оптической оси. В рассматриваемом случае фильтрация осуществляется парой таких фильтров, каждый из которых представляет собой «сэндвич» из двух тонких и одного более толстого слоя кристаллов. Первый слой первого фильтра отражает синий свет, но пропускает зеленый и красный. Второй слой отражает зеленый свет и пропускает красный, который отражается только от третьего слоя. Во втором фильтре, наоборот, от первого слоя отражается красный свет, от второго -- зеленый, а от третьего -- синий. После системы фильтров разделенный красный, зеленый и синий свет попадает на собственную полосу ПЗС, каждый элемент которого имеет размер около 8 мкм. Дальнейшая обработка сигналов цветности практически не отличается от обычной. Заметим, что подобный принцип работы (с некоторыми отличиями, разумеется) используется и в цветных сканерах фирмы Ricoh.
Рис.1. Блок-схема сканера с dichroic-фильтрами.
Аппаратные интерфейсы сканеров
Для связи с компьютером сканеры могут использовать специальную 8- или 16-разрядную интерфейсную плату, вставляемую в соответствующий слот расширения. Для портативных компьютеров подходит устройство PC Card. Кроме того, в настоящее время достаточно широкое распространение получили стандартные интерфейсы, применяемые в IBM PC-совместимых компьютерах (последовательный и параллельный порты, а также интерфейс SCSI). Стоит отметить, что в случае стандартного интерфейса у пользователя не возникает проблем с разделением системных ресурсов: портов ввода-вывода, прерываний IRQ и каналов прямого доступа DMA.
По понятным причинам наиболее медленно передача данных осуществляется через последовательный порт (RS-232C). Именно поэтому в ряде последних ручных или комбинированных моделей сканеров для связи с компьютером применяется стандартный параллельный порт. Это очень удобно, например, при работе с портативным компьютером.
Программные интерфейсы и TWAIN
графический сканер барабанный изображение
Для управления работой сканера (впрочем, как и иного устройства) необходима соответствующая программа -- драйвер. В этом случае управление идет не на уровне "железа" (портов ввода-вывода), а через функции или точки входа драйвера. До недавнего времени каждый драйвер для сканера имел свой собственный интерфейс. Это было достаточно неудобно, поскольку для каждой модели сканера требовалась своя прикладная программа. Логичнее было бы наоборот, если бы с одной прикладной программой могли работать несколько моделей сканеров. Это стало возможным благодаря TWAIN.
TWAIN -- это стандарт, согласно которому осуществляется обмен данными между прикладной программой и внешним устройством (читай -- его драйвером). Напомним, что консорциум TWAIN был организован с участием представителей компаний Aldus, Caere, Eastman Kodak, Hewlett Packard & Logitech. Основной целью создания TWAIN-спецификации было решение проблемы совместимости, то есть легкого объединения различных устройств ввода с любым программным обеспечением. Конкретизируя, можно выделить несколько основных вопросов: во-первых, поддержку различных платформ компьютеров; во-вторых, поддержку различных устройств, включая разнообразные сканеры и устройства ввода видео; в-третьих, возможность работы с различными формата данных. Благодаря использованию TWAIN-интерфейса можно вводить изображение одновременно с работой в прикладной программе, поддерживающей TWAIN, например CorelDraw, Picture Publisher, PhotoFinish. Таким образом, любая TWAIN -совместимая программа будет работать с TWAIN-совместимым сканером.
В заключение стоит отметить, что образы изображений в компьютере могут храниться в графических файлах различных форматов, например TIFF, РСХ, ВМР, GIF и других. Надо иметь в ввиду, что при сканировании изображений файлы получаются достаточно громоздкими и могут достигать десятков и сотен мегабайт. Для уменьшения объема хранимой информации используется обычно процесс компрессии (сжатия) таких файлов.
Список использованной литературы
А.Борзенко «IBM PC: устройство, ремонт, модернизация»
Документация из сети Internet.
Гохберг Г.С. Информационные технологии: Учебник для сред. проф. образования/ Г.С. Гохберг, А.В. Зафиевский, А.А. Короткин. - М.: Издательский центр «Академия», 2004.
Размещено на Allbest.ru
Подобные документы
Строение и принцип работы ручных, планшетных, барабанных, роликовых, проекционных сканеров - устройств ввода в ЭВМ информации. Основные характеристики сканеров: оптическое и интерполированное разрешение; глубина цвета; динамический диапазон плотности.
презентация [418,3 K], добавлен 15.04.2013Характеристика функциональных возможностей настольных и портативных сканеров как устройств, создающих цифровую копию изображения объекта. Описание устройства и принципа действия планшетных сканеров: источник света, приемный элемент и оптическая система.
реферат [20,0 K], добавлен 15.03.2011Полуавтоматические и автоматические устройства ввода графической информации. Устройство указания, сенсорные панели, экраны, графические планшеты. Цифровые камеры и ТВ-тюнеры. Основные виды сканеров. Автоматизация поиска и выделения элементов изображения.
презентация [1,6 M], добавлен 22.04.2015Устройства ввода графической информации. Настольные барабанные сканеры. Планшетные сканеры. Технологии планшетного сканирования. Сканеры для обработки пленок и диапозитивов. Листовые и многоцелевые сканеры. Ручные сканеры. Беспленочные камеры.
реферат [26,9 K], добавлен 02.10.2008Сканеры - устройства ввода текстовой или графической информации в компьютер путем преобразования ее в цифровой вид для последующего использования, обработки, хранения или вывода: основные виды, особенности конструкции, принцип работы, области применения.
реферат [1,0 M], добавлен 27.11.2010Клавиатура как основное устройство ввода данных. Устройства манипуляторного типа, их виды и характеристики. Принципы действия сканеров. Предназначение графических планшетов. Устройства вывода информации, виды мониторов. Внешние хранители информации.
реферат [1,2 M], добавлен 27.05.2012Изучение видов и функций периферийных устройств, с помощью которых компьютер обменивается информацией с внешним миром. Классификация устройств ввода-вывода информации. Приборы местоуказания (манипуляторы), сканеры, мониторы, принтеры, микрофоны, наушники.
контрольная работа [359,1 K], добавлен 10.03.2011Разнообразие выпускаемых устройств ввода. Основные устройствами ввода информации в компьютер: клавиатуры, мыши, трекболы, графические планшеты, сканеры и джойстики. Основные параметры клавиатур. Подключение мыши к компьютеру. Оптическая система сканера.
курсовая работа [4,5 M], добавлен 17.03.2011Процесс работы сканирующего устройства. Схема устройства сканера. Контактные оптические сенсоры. Достоинства CIS-моделей. Преимущества и недостатки барабанных сканеров. Глубина цвета. Оптическая плотность. Аппаратный интерфейс. Программы распознавания.
презентация [486,2 K], добавлен 10.08.2013Назначение и применение основных устройств ввода информации в компьютер. Клавиатура, манипулятор "мышь" и трэкбол, графические планшеты, сканеры, джойстик и трэкпойнт, микрофон и цифровые камеры, звуковая карта. Разновидности устройств ввода информации.
реферат [13,2 K], добавлен 27.03.2010