Особенность персонального компьютера
Основные принципы работы компьютера. Сетевой адаптер и флэш-память. Справочная система Windows. Программы для работы с информацией и графическими файлами. Ввод и редактирование текста. Особенность режимов структуры для произведений планов документа.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.11.2014 |
Размер файла | 45,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа
по дисциплине «Информатика»
Оглавление
- 1. Принципы работы компьютера (Дж. фон Неймана)
- 2. Модем, факс-модем. Сетевой адаптер. Флэш-память. (Назначение, принцип действия, виды)
- 3. Сетевой адаптер
- 4. Флэш-память
- 5. Справочная система Windows
- 6. Программы для работы с текстовыми и графическими документами
Литература
1. Принципы работы компьютера (Дж. фон Неймана)
В основу построения подавляющего большинства ЭВМ положены следующие общие принципы, сформулированные в 1945 году американским ученым венгерского происхождения ДЖОНОМ фон НЕЙМАНОМ.
Принцип однородности памяти
Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Так, циклически изменяя адресную часть команды, можно обеспечить обращение к последовательным элементам массива данных. Такой прием носит название модификации команд и с позиций современного программирования не приветствуется. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции -- перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины.
Принцип адресности
Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек -- адреса.
Принцип программного управления
Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов -- команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо безусловно.
Принцип двоичного кодирования
Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды можно выделить два поля: поле кода операции и поле адресов.
Компьютеры, построенные на принципах фон Неймана
По плану, первым компьютером, построенным по архитектуре фон Неймана, должен был стать EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, ознакомившись с ЭНИАКом и проектом EDVAC, сумели решить эти проблемы гораздо раньше.
2. Модем, факс-модем. Сетевой адаптер. Флэш-память. (Назначение, принцип действия, виды)
Модем, факс-модем.
Очень часто в компьютерной литературе мы сталкиваемся с таким понятием, как модем.В мире существует огромное количество персональных компьютеров. Логично подумать и о быстром и удобном способе соединения между ними. Такой способ стал возможен благодаря модему. Он позволяет передавать информацию от одного компьютера к другому в закодированном виде через телефонную линию. Компьютеры обмениваются сигналами определённой частоты и громкости. Что же возможно благодаря модему? Можно связаться с другим пользователем модема, и обменяться с ним файлами, в независимости от его местоположения. Или сыграть с ним в компьютерную игру, поддерживающую модем. Если ваш модем - факс-модем, то можно обмениваться факсимильными сообщениями. Вы можете пользоваться услугами BBS - Bulletin Board System (Англ. - Электронная доска объявлений), получить и принимать файла, пообщаться с другими пользователями, и сыграть в on-line игры, т.е. в игры по модему в режиме реального времени. Вы можете подключиться к глобальным сетям. Например FidoNet, или Internet/Relcom. Подключившись к ним вы сможете стать участником множества телеконференций, что дает возможность обмениваться информацией с людьми вашего круга интересов. Если вы бизнесмен, то с помощью модема вы всегда будете в курсе последних событий и новостей.
Как работает модем.
Немного общих сведений
-Так когда же придумали первую модемную плату?
-В 80-х годах американская фирма Hayes наконец-то выпустила первый модем для компьютера IBM PC.
Конечно же телефонные линии разрабатывались для передачи на расстояние только звуков человеческого голоса. Вообще говоря, естественные звуки характеризуются переменной высотой тона и непрерывно изменяющейся интенсивностью. Для передачи по телефонной они преобразовываются в электрический сигнал с непрерывно и соответственно изменяющейся частотой и силой тока. Такой сигнал называется аналоговым.
Компьютер же в отличие от модема понимает только цифрой сигнал, т.е. ток только двух уровней. Каждый из них обозначает одно из двух понятных компьютеру значений - логические “0” и “1”. Чтобы передать цифровой сигнал по телефонной линии, ему нужно придать приемлемый для неё аналоговый вид.
Именно этой работой занимается модем. Так же он выполняет обратную процедуру, т.е. переводит аналоговый сигнал в понятный компьютеру цифровой. Слово модем” - происходит от сокращения двух терминов: МОдулятор/ДЕМодулятор. Модем организует мостик между выдаваемым компьютером цифровым сигналом и аналоговым сигналом, который, как было сказано выше понимает телефонная линия.
При передаче данных из компьютера в модем, первый выдает последовательность нулей и единиц, а последний преобразовывает их в аналоговый сигнал. Затем данные отсылаются в телефонную линию, и их принимает модем, стоящий на другом конце провода. Когда модем принимает данные, то он отфильтровывает полезную информацию от шумов в линии. Для этого существуют специальные протоколы коррекции ошибок. Самый продвинутый из них - MNP10. Кроме этого существуют MNP1, MNP2, MNP3, MNP4, MNP5, MNP7. В настоящее время более всего распространен MNP5, т.к. MNP7 и MNP10 устанавливаются на специальных модемах, которые работают по выделенным линиям. Например в глобальной сети Internet. После того, как модем отделил полезную информацию от шумов в линии он отбирает перекачиваемые данные от служебной информации. И уже прошедший такую многоступенчатую обработку перекачиваемый файл записывается на жесткий диск компьютера. Так происходит обмен данными при соединении на протоколе Zmodem, Sealink, Ymodem и многих других однонаправленных протоколах.
Конечно, оба компьютер может одновременно принимать и отсылать данные. Потому что они используют определённые соглашения о частотах, различных для входных и выходных сигналов.. Для этого существуют специальные двунаправленные протоколы. Например Bimodem, Puma, Janus, Zedzap.
Внутренние и внешние модемы
Модемы бывают внутренние и внешние(Существуют так же специальные типы модемов в виде PC- карт (PCMCIA), но они предназначены для компьютеров типа ноутбуков, и по этому они здесь не рассматриваются.). Внутренние модемы выполнены в виде платы расширения, вставляемый в специальный слот расширения на материнской плате компьютера. Внешний модем, в отличие от внутреннего, выполнен в виде отдельного устройства, т.е. в отдельном корпусе и со своим блоком питания, когда внутренний модем получает электричество от блока питания компьютера. Так какие же достоинства и недостатки у внешних и внутренних модемов?
Внутренний модем
Достоинства
Все внутренние модели без исключения(в отличие от внешних) имеют встроенное FIFO. (First Input First Output - первым пришел, первым принят). FIFO это микросхема, обеспечивающая буферизацию данных. Обычный модем при прохождении байта данных через порт каждый раз запрашивает прерывания у компьютера. Компьютер по специальным IRQ(Interrupt Request) линиям прерывает на некоторое время работу модема, а потом опять возобновляет её. Это замедляет работу компьютера в целом. FIFO же позволяет использовать прерывания в несколько раз реже. Это имеет большое значение при работе в многозадачных средах. Таких как Windows95, OS/2, Windows NT, UNIX и других.
При использовании внутреннего модема уменьшается количество проводов, натянутых в самых неожиданных местах. Так же внутренний модем не занимает драгоценное место на рабочем столе.
Внутренние модемы являются последовательным портом компьютера и не занимают существующих портов компьютера.
Внутренние модели модемов всегда дешевле внешних.
Недостатки
Занимают слот расширения на материнской плате компьютера. Это очень неудобно на мультимедийных машинах, на которых установлено большое количество дополнительных плат, а также на компьютерах, которые работают серверами в сетях.
Нет индикаторных лампочек, которые при имении определённого навыка позволяют следить за процессами происходящими в модеме.
Если модем завис, то восстановить работоспособность можно восстановить только клавишей перезагрузки компьютера “RESET”.
Внешние модемы
Достоинства
Они не занимают слот расширения, и при необходимости их можно легко отключить и перенести на другой компьютер.
На передней панели есть индикаторы, которые помогают понять, какую операцию сейчас производит модем.
При зависании модема не нужно перезагружать компьютер, достаточно выключить и включить питание компьютера.
Недостатки
Необходима мультикарта со встроенным FIFO. Без FIFO модем конечно будет работать, но при этом будет падать скорость передачи данных.
Внешний модем занимает драгоценное место на рабочем столе и ему требуются дополнительные провода для подключения. Это тоже создает некоторое неудобство.
Он занимает последовательный порт компьютера.
Внешний модем всегда дороже аналогичного внутреннего, т.к. включает корпус с индикаторными лампочками и блок питания.
3. Сетевой адаптер
Сетевая плата, также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер, NIC периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети. В настоящее время, особенно в персональных компьютерах, сетевые платы довольно часто интегрированы в материнские платы для удобства и удешевления всего компьютера в целом.
Типы
По конструктивной реализации сетевые платы делятся на:
внутренние -- отдельные платы, вставляющиеся в ISA, PCI или PCI-E слот;
внешние, подключающиеся через LPT[1], USB или PCMCIA интерфейс, преимущественно использующиеся в ноутбуках;
встроенные в материнскую плату.
На 10-мегабитных сетевых платах для подключения к локальной сети используются 4 типа разъёмов:
8P8C для витой пары;
BNC-коннектор для тонкого коаксиального кабеля;
15-контактный разъём AUI трансивера для толстого коаксиального кабеля.
оптический разъём (en:10BASE-FL и другие стандарты 10 Мбит Ethernet)
Эти разъёмы могут присутствовать в разных комбинациях, иногда даже все три сразу, но в любой данный момент работает только один из них.
На 100-мегабитных платах устанавливают либо разъём для витой пары (8P8C, ошибочно называемый RJ-45[2]), либо оптический разъем (SC, ST, MIC[3]).
Рядом с разъёмом для витой пары устанавливают один или несколько информационных светодиодов, сообщающих о наличии подключения и передаче информации.
Одной из первых массовых сетевых карт стала серия NE1000/NE2000 фирмы Novell с разъемом BNC.
Параметры сетевого адаптера
При конфигурировании карты сетевого адаптера могут быть доступны следующие параметры:
номер линии запроса на аппаратное прерывание IRQ
номер канала прямого доступа к памяти DMA (если поддерживается)
базовый адрес ввода-вывода
базовый адрес памяти ОЗУ (если используется)
поддержка стандартов автосогласования дуплекса/полудуплекса, скорости
поддержка тегированных пакетов VLAN (802.1q) с возможностью фильтрации пакетов заданного VLAN ID
параметры WOL (Wake-on-LAN)
функция Auto-MDI/MDI-X автоматический выбор режима работы по прямой либо перекрестной обжимке витой пары
MTU канального уровня
В зависимости от мощности и сложности сетевой карты она может реализовывать вычислительные функции (преимущественно подсчёт и генерацию контрольных сумм кадров) аппаратно либо программно (драйвером сетевой карты с использованием центрального процессора).
Серверные сетевые карты могут поставляться с двумя (и более) сетевыми разъёмами. Некоторые сетевые карты (встроенные в материнскую плату) также обеспечивают функции межсетевого экрана (например, nforce).
Функции и характеристики сетевых адаптеров
Сетевой адаптер (Network Interface Card (или Controller), NIC) вместе со своим драйвером реализует второй, канальный уровень модели открытых систем (OSI) в конечном узле сети -- компьютере. Более точно, в сетевой операционной системе пара адаптер и драйвер выполняет только функции физического и MAC-уровней, в то время как LLC-уровень обычно реализуется модулем операционной системы, единым для всех драйверов и сетевых адаптеров. Собственно так оно и должно быть в соответствии с моделью стека протоколов IEEE 802. Например, в ОС Windows NT уровень LLC реализуется в модуле NDIS, общем для всех драйверов сетевых адаптеров, независимо от того, какую технологию поддерживает драйвер.
Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра. Передача кадра из компьютера в кабель состоит из перечисленных ниже этапов (некоторые могут отсутствовать, в зависимости от принятых методов кодирования):
Прием кадра данных LLC через межуровневый интерфейс вместе с адресной информацией MAC-уровня. Обычно взаимодействие между протоколами внутри компьютера происходит через буферы, расположенные в оперативной памяти. Данные для передачи в сеть помещаются в эти буферы протоколами верхних уровней, которые извлекают их из дисковой памяти либо из файлового кэша с помощью подсистемы ввода-вывода операционной системы.
Оформление кадра данных MAC-уровня, в который инкапсулируется кадр LLC (с отброшенными флагами 01111110). Заполнение адресов назначения и источника, вычисление контрольной суммы.
Формирование символов кодов при использовании избыточных кодов типа 4В/5В. Скремблирование кодов для получения более равномерного спектра сигналов. Этот этап используется не во всех протоколах -- например, технология Ethernet 10 Мбит/с обходится без него.
Выдача сигналов в кабель в соответствии с принятым линейным кодом -- манчестерским, NRZI, MLT-3 и т. п.
Прием кадра из кабеля в компьютер включает следующие действия:
Прием из кабеля сигналов, кодирующих битовый поток.
Выделение сигналов на фоне шума. Эту операцию могут выполнять различные специализированные микросхемы или сигнальные процессоры DSP. В результате в приемнике адаптера образуется некоторая битовая последовательность, с большой степенью вероятности совпадающая с той, которая была послана передатчиком.
Если данные перед отправкой в кабель подвергались скремблированию, то они пропускаются через дескремблер, после чего в адаптере восстанавливаются символы кода, посланные передатчиком.
Проверка контрольной суммы кадра. Если она неверна, то кадр отбрасывается, а через межуровневый интерфейс наверх, протоколу LLC передается соответствующий код ошибки. Если контрольная сумма верна, то из MAC-кадра извлекается кадр LLC и передается через межуровневый интерфейс наверх, протоколу LLC. Кадр LLC помещается в буфер оперативной памяти.
Распределение обязанностей между сетевым адаптером и его драйвером стандартами не определяется, поэтому каждый производитель решает этот вопрос самостоятельно. Обычно сетевые адаптеры делятся на адаптеры для клиентских компьютеров и адаптеры для серверов.
В адаптерах для клиентских компьютеров значительная часть работы перекладывается на драйвер, тем самым адаптер оказывается проще и дешевле. Недостатком такого подхода является высокая степень загрузки центрального процессора компьютера рутинными работами по передаче кадров из оперативной памяти компьютера в сеть. Центральный процессор вынужден заниматься этой работой вместо выполнения прикладных задач пользователя.
Поэтому адаптеры, предназначенные для серверов, обычно снабжаются собственными процессорами, которые самостоятельно выполняют большую часть работы по передаче кадров из оперативной памяти в сеть и в обратном направлении. Примером такого адаптера может служить сетевой адаптер SMC EtherPower со встроенным процессором Intel i960.
В зависимости от того, какой протокол реализует адаптер, адаптеры делятся на Ethernet-адаптеры, Token Ring-адаптеры, FDDI-адаптеры и т. д. Так как протокол Fast Ethernet позволяет за счет процедуры автопереговоров автоматически выбрать скорость работы сетевого адаптера в зависимости от возможностей концентратора, то многие адаптеры Ethernet сегодня поддерживают две скорости работы и имеют в своем названии приставку 10/100. Это свойство некоторые производители называют авточувствительностью.
Сетевой адаптер перед установкой в компьютер необходимо конфигурировать. При конфигурировании адаптера обычно задаются номер прерывания IRQ, используемого адаптером, номер канала прямого доступа к памяти DMA (если адаптер поддерживает режим DMA) и базовый адрес портов ввода-вывода.
Если сетевой адаптер, аппаратура компьютера и операционная система поддерживают стандарт Plug-and-Play, то конфигурирование адаптера и его драйвера осуществляется автоматически. В противном случае нужно сначала сконфигурировать сетевой адаптер, а затем повторить параметры его конфигурации для драйвера. В общем случае, детали процедуры конфигурирования сетевого адаптера и его драйвера во многом зависят от производителя адаптера, а также от возможностей шины, для которой разработан адаптер.
Если сетевой адаптер работает некорректно, может происходить флаппинг его порта.
4. Флэш-память
Флеш-память -- разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.
Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей, а также чувствительность к электростатическому разряду.
Принцип действия
Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры.
Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора (эффект Hot carrier injection).
Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения.
Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.
Аудиопамять
Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.
Многокристальные микросхемы
Часто в одну микросхему флеш-памяти упаковывается несколько полупроводниковых пластин (кристаллов), до 8-16 штук.
Технологические ограничения
Запись и чтение ячеек различаются в энергопотреблении: устройства флеш-памяти потребляют большой ток при записи для формирования высоких напряжений, тогда как при чтении затраты энергии относительно малы.
Ресурс записи
Изменение заряда сопряжено с накоплением необратимых изменений в структуре и потому количество записей для ячейки флеш-памяти ограничено (обычно до 10 тыс. раз для MLC-устройств и до 100 тыс. раз для SLC-устройств).
Одна из причин деградации -- невозможность индивидуально контролировать заряд плавающего затвора в каждой ячейке. Дело в том, что запись и стирание производятся над множеством ячеек одновременно -- это неотъемлемое свойство технологии флеш-памяти. Автомат записи контролирует достаточность инжекции заряда по референсной ячейке или по средней величине. Постепенно заряд отдельных ячеек рассогласовывается и в некоторый момент выходит за допустимые границы, которые может скомпенсировать инжекцией автомат записи и воспринять устройство чтения. Понятно, что на ресурс влияет степень идентичности ячеек. Одно из следствий этого -- с уменьшением топологических норм полупроводниковой технологии создавать идентичные элементы все труднее, поэтому вопрос ресурса записи становится все острее.
Другая причина -- взаимная диффузия атомов изолирующих и проводящих областей полупроводниковой структуры, ускоренная градиентом электрического поля в области кармана и периодическими электрическими пробоями изолятора при записи и стирании. Это приводит к размыванию границ и ухудшению качества изолятора, уменьшению времени хранения заряда.
Идут исследования технологии восстановления ячейки флеш-памяти путём локального нагрева изолятора затвора до 800°С в течение нескольких миллисекунд.
Срок хранения данных
Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10--20 лет,[источник не указан 369 дней] хотя гарантия на носители дается не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.
Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.
У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.
По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3-6 месяцев.
Скорость чтения и записи
Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи -- десятки-сотни микросекунд.
Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.
Особенности применения
Стремление достичь предельных значений емкости для NAND-устройств привело к «стандартизации брака» -- праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии непоявления новых «bad-блоков» в процессе эксплуатации. Чтобы минимизировать потери данных, каждая страница памяти снабжается небольшим дополнительным блоком, в котором записывается контрольная сумма, информация для восстановления при одиночных битовых ошибках, информация о сбойных элементах на этой странице и количестве записей на эту страницу. компьютер адаптер графический файл
Сложность алгоритмов чтения и допустимость наличия некоторого количества бракованных ячеек вынудило разработчиков оснастить NAND-микросхемы памяти специфическим командным интерфейсом. Это означает, что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных и, при необходимости, попытаться восстановить их.
Слабое место флеш-памяти -- количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартные файловые системы -- то есть стандартные системы управления файлами для широко распространенных файловых систем -- часто записывают данные в одно и то же место. Часто обновляется корневой каталог файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти.
Специальные файловые системы
Зачастую флеш-память подключается в устройстве напрямую -- без контроллера. В этом случае задачи контроллера должен выполнять программный NAND-драйвер в операционной системе. Чтобы не выполнять избыточную работу по равномерному распределению записи по страницам, стараются эксплуатировать такие носители со специальными файловыми системами: JFFS2 и YAFFS для Linux и др.
Применение
Существует два основных применения флеш-памяти: как мобильный носитель информации и как хранилище программного обеспечения («прошивки») цифровых устройств. Зачастую эти два применения совмещаются в одном устройстве. Флеш-память позволяет обновлять прошивку устройств в процессе эксплуатации.
5. Справочная система Windows
Справочная система Windows представляет собой хорошо структурированную, с очень удобным интерфейсом службу выдачи пользователю справок по большинству вопросов, связанных с работой операционной системы.
Обратиться к справочной системе Windows можно несколькими способами:
· с помощью сочетания клавиш < Windows >+<F/>;
· выбор строки Справка и поддержка (в Windows XP) или Справка (востальных версиях Windows) Главного меню;
· выбор команды Справка - Центр справки и поддержки или Справка - Вызов справки из меню окна какого-либо компонента операционной системы.
· В приложениях Windows вызов справочной системы осуществляется похожими способами: - нажать клавишу <F1>;
· - выбрать команду Справка - Справка: имя программы или Справка
· Вызов справки из меню программы (иногда вместо пункта Справка меню включает имеющий те же самые смысл и назначение пункт <
· Т>). Способы обращения к контекстной справке в приложениях Windows:
· использовать сочетание клавиш <ShifO±<Fl>;
· выбрать команду Справка - Что это такое! из меню окна приложения.
Способ обращения к контекстной справке в диалоговых окнах: щёлкнуть в заголовке окна по кнопке вызова справки . Во время выполнения этой команды указатель мыши принимает форму знака < ?>. Его нужно переместить к тому месту окна, в котором находится объект, вызвавший вопрос, и щёлкнуть кнопкой мыши. Окно Центр справки и поддержки операционной системы Windows ХР по своей структуре и способам получения справки отличается от классической формы окна справочной системы предшествующих версий Windows. а панели инструментов находятся кнопки управления справочной системой.
Для быстрого поиска необходимой справочной информации в окне имеется поле ввода Найти, куда следует ввести интересующий Вас термин. После щелчка по зелёной кнопке со стрелкой система выведет результаты поиска в списке схожих тем. При поиске точного названия или термина также удобно воспользоваться пунктом Указатель на панели инструментов, предоставляет быстрый и простой способ перехода к нужному разделу или ресурсам.
6. Программы для работы с текстовыми и графическими документами
Текстовые редакторы - программы, предназначенные для создания простых сообщений и текстов, позволяющие автоматически находить в тексте заданное слово, заменять во всем тексте одно слово другим. Блокнот помогает создавать небольшие тексты, состоящие из букв, знаков препинания и специальных символов, которые можно вводить с помощью клавиатуры. Текстовые процессоры -это программы для работы с текстами, позволяющие изменять начертание и размер шрифта, включать в документ таблицы, рисунки, схемы, звуковые фрагменты. WordPad помогает создавать и оформлять рассказы, доклады, статьи для школьной газеты, содержащие надписи, таблицы, схемы, рисунки, фотографии. Для перемещения по всему документу предназначены специальные комбинации клавиш. HomeEndCtrl + Ctrl + Page UpPage DownCtrl + HomeCtrl + End
Обработка текстовой информации в автоматизированных системах.
Ввод, редактирование и форматирование текстов.
Большинство документов, предназначенных к печати на бумаге, а также многие электронные документы являются текстовыми, т.е. представляют собой блоки текста, состоящие из обычных слов, Набранных обычными символами (буквами, цифрами, знаками препинания и др.). При работе с текстовыми документами компьютер превращается в подобие очень мощной и "интеллектуальной" пишущей машинки.
При подготовке текстовых документов на компьютере используются три основные группы операций: ввода, редактирование и форматирование. Операции ввода позволяют перевести исходный текст из его внешней формы в электронный вид, то есть в файл, хранящийся на компьютере. Под вводом не обязательно понимается машинописный набор с помощью клавиатуры. Существуют аппаратные средства, позволяющие выполнять ввод текста путем сканирования бумажного оригинала, и программы распознавания образов для перевода документа из формата графического изображения в текстовый формат.
Операции редактирования (правки) позволяют изменить уже существующий электронный документ путем добавления или удаления его фрагментов, перестановки частей документа, слияния нескольких файлов в один или, наоборот, разбиения единого документа на несколько более мелких. Ввод и редактирование при работе над текстом часто выполняют параллельно.
При вводе и редактировании формируется содержание текстового документа. Оформление документа задают операциями форматирования. Команды форматирования позволяют точно определить, как будет выглядеть текст на экране монитора или на бумаге после печати на принтере.
Текстовые редакторы и текстовые процессоры.
Все электронные текстовые документы требуют ввода и, обычно, редактирования, но форматирование документа не всегда является обязательным.
Более того, форматирование текстового документа в некоторых случаях вредит делу, поскольку информация о форматировании заносится в текст в виде невидимых кодов. Наличие подобных кодов может мешать определенным программам, работать с текстами. Так, например, текстовой редактор Блокнот не способен отразить на экране текстовой файл, созданный в текстовом процессоре WordPad, хотя обе программы принадлежат к одной группе стандартных программ Windows 9x и обе предназначены для работы с текстами.
Таким образом, имеются различные программы: одни из них используются только для ввода и редактирования текста, а другие позволяют также его форматировать. Первые программы называют текстовыми редакторами, а вторые - текстовыми процессорами.
Все текстовые редакторы сохраняют в файле "чистый" текст и благодаря этому совместимы друг с другом. Различные текстовые процессоры записывают в файл информацию о форматировании по - разному и по этому несовместимы друг с другом. Однако во многих текстовых процессорах есть возможность преобразования текста из одного формата в другой.
В состав системы Windows 9х входит стандартный текстовый редактор Блокнот и простой текстовой процессор WordPad. Неформатированные текстовые файлы в системе Windows имеют расширение .ТХТ, а файлы WordPad - расширение .DOC.
Текстовой редактор "Microsoft Word". Режим работы и команды.
Word является стандартной Windows - программой, его запуск и завершение осуществляется стандартно (двойным щелчком левой кнопки мыши по значку).
В верхней части окна располагаются панели команд, к которым относятся строка меню и панели инструментов - Стандартная и Форматирование.
Под панелями инструментов располагается линейка, проградуированная в сантиметрах.
Основную часть окна занимает рабочая область, содержащая окно редактируемого документа.
Вертикальная полоса прокрутки программы Word имеет особенность. Под ней расположены три дополнительные кнопки перехода: на страницу вверх и вниз или к избранному объекту, в качестве которого может выступать страница, раздел, таблица, сноска, заголовок, рисунок и т.д.
В самой нижней части окна располагается строка состояния. Она содержит справочную информацию о документе и индикаторы, указывающие на текущий режим работы.
Методы представления документа.
Слева от горизонтальной полосы прокрутки располагаются четыре кнопки, позволяющие выбрать вид отображения документа в рабочей области.
1. Первая кнопка включает обычный режим. Этот режим предназначен только для работы с текстом.
2. Режим электронного документа необходим для просмотра готового документа.
3. В режиме разметки документ представляется на экране точно так, как он будет выглядеть при печати на бумаге.
4. Режим структуры удобен для работ над планом документа.
Работа с несколькими документами.
В отличие от своего упрощенного аналога, процессора Wordpad, текстовой процессор Word позволяет работать одновременно с несколькими документами.
Активное окно документа имеет собственные кнопки:
1. сворачивающую
2. разворачивающую
3. закрывающую
После сворачивания окно документа отображается в виде небольшой панели в левом нижнем углу рабочей области.
Для переключения в окно нужного документа нужно щелкнуть кнопкой мыши в любом месте этого окна.
Ввод и редактирование текста.
Окно текущего документа всегда содержит мигающую вертикальную черту - курсор.
По достижении правого края страницы текст автоматически переносится на новую строку. Чтобы принудительно завершить строку и начать новый абзац, надо нажать клавишу Enter.
Графические редакторы
В настоящее время рынок программного обеспечения переполнен различными программами и редакторами, позволяющими обрабатывать и редактировать цифровые фото. Человеку, не слишком хорошо понимающему особенности тех или иных программных средств, порой очень сложно разобраться в этом многообразии софта. Однако, правильный выбор программных средств для решения конкретной задачи по обработке фотоснимков является одним из залогов успеха получения законченных фотографий. Говоря о графических редакторах, прежде всего, необходимо отметить, что все цифровые изображения подразделяются на векторные и точечные. В первом случае изображения построены из различных геометрических элементов или примитивов (отрезков, треугольников, прямоугольников или окружностей). Поэтому векторная графика позволяет легко манипулировать масштабом изображения без каких бы то ни было геометрических искажений, а потому широко используется для построения шрифтов, рисованных изображений, в оформительской и издательской работе. Например, очень популярным редактором для обработки векторных изображений является программа Adobe Illustrator, которая часто применяется в издательском деле для подготовки к печати рисованных иллюстраций для газет, журналов и книг. Но я не ограничусь обзором всего одной программы и опишу несколько их типов.
Графический редактор - программа (или пакет программ), позволяющая создавать и редактировать двумерные изображения с помощью компьютера
1. Растровые графические редакторы
Растровый графический редактор - специализированная программа, предназначенная для создания и обработки изображений. Подобные программные продукты нашли широкое применение в работе художников-иллюстраторов, при подготовке изображений к печати типографским способом или на фотобумаге, публикации в интернете.
Растровые графические редакторы позволяют пользователю рисовать и редактировать изображения на экране компьютера, а также сохранять их в различных растровых форматах, таких как, например, JPEG и TIFF, позволяющих сохранять растровую графику с незначительным снижением качества за счёт использования алгоритмов сжатия с потерями, PNG и GIF, поддерживающими хорошее сжатие без потерь, и BMP, также поддерживающем сжатие (RLE), но в общем случае представляющем собой несжатое «попиксельное» описание изображения.
В противоположность векторным редакторам, растровые используют для представления изображений матрицу точек (bitmap). Однако, большинство современных растровых редакторов содержат векторные инструменты редактирования в качестве вспомогательных.
Adobe Photoshop
Adobe Photoshop ([?d?ub? f?ut???p], Эдомуби Фотошомп) - растровый графический редактор, разработанный и распространяемый фирмой Adobe Systems. Этот продукт является лидером рынка в области коммерческих средств редактирования растровых изображений, и наиболее известным продуктом фирмы Adobe. Часто эту программу называют просто Photoshop (Фотошоп). В настоящее время Photoshop доступен на платформах Mac OS X/Mac OS и Microsoft Windows. Ранние версии редактора были портированы под SGI IRIX, но официальная поддержка была прекращена начиная с третьей версии продукта. Для версии CS 2 возможен запуск под Linux с помощью альтернативы Windows API - Wine 0.9.54 и выше.Несмотря на то, что изначально программа была разработана для редактирования изображений для печати на бумаге (прежде всего, для полиграфии), в данное время она широко используется в веб-дизайне. В более ранней версии была включена специальная программа для этих целей - Adobe ImageReady, которая была исключена из версии CS3 за счёт интеграции её функций в самом Photoshop.
Photoshop тесно связан с другими программами для обработки медиафайлов, анимации и другого творчества. Совместно с такими программами, как Adobe ImageReady (программа упразднена в версии CS3), Adobe Illustrator, Adobe Premiere, Adobe After Effects и Adobe Encore DVD, он может использоваться для создания профессиональных DVD, обеспечивает средства нелинейного монтажа и создания таких спецэффектов, как фоны, текстуры и т. д. для телевидения, кинематографа и всемирной паутины. Основной формат Photoshop, PSD, может быть экспортирован и импортирован во весь ряд этих программных продуктов. Photoshop CS поддерживает создание меню для DVD. Совместно с Adobe Encore DVD, Photoshop позволяет создавать меню или кнопки DVD. Photoshop CS3 в версии Extended поддерживает также работу с трёхмерными слоями.
Из-за высокой популярности Photoshop, поддержка его формата файлов, PSD, была реализована в его основных конкурентах, таких, как Macromedia Fireworks, Corel PhotoPaint, Pixel image editor, WinImages, GIMP, Jasc Paintshop Pro и т. д.
Photoshop поддерживает следующие цветовые модели:
RGB
LAB
CMYK
Grayscale
BitMap
Duotone
Photoshop v.10.0, датируемый апрелем 2007 года, имеет название «Photoshop CS3». Аббревиатура «CS3» означает, что продукт интегрирован в третью версию пакета программ «Adobe Creative Suite». В предыдущих продуктах - Photoshop CS и CS 2, c целью отличия от прежних версий и укрепления принадлежности к новой линейке продуктов, был изменён символ программы: вместо изображения глаза, которое присутствовало в версиях с 3-й по 7-ю, в стилевом решении использовалось изображение перьев. В Photoshop CS3 в иконке приложения и экране-заставке используются буквы из названия продукта «Ps» на синем градиентном фоне. Список нововведений включает в себя новый интерфейс, увеличенную скорость работы, новый Adobe Bridge, новые фильтры и инструменты, а также приложение Device Central, позволяющее осуществлять предварительный просмотр работы в шаблонах популярных устройств, например мобильных телефонов.
Последние версии включают в себя Adobe Camera RAW - плагин, разработанный Томасом Кноллом, который позволяет читать рядRAW-форматов различных цифровых камер и импортировать их напрямую в Photoshop. Предварительная версия плагина была также доступна для Photoshop 7.0.1 по цене 99 долл. США.
Хотя Photoshop практически монополизирует профессиональный рынок, его цена (999 долларов США на июль 2009 за полный пакет) привела к появлению конкурирующих программных продуктов, занимающих среднюю и низшую ценовую нишу рынка, некоторые из которых, к примеру GIMP, совершенно бесплатны. Для завоевания этой части рынка и для противостояния необычайно высоким показателям нелегального использования своих профессиональных продуктов без лицензии, Adobe представил программы среднего и низшего класса Photoshop Elements и Photoshop Album, первая из которых является урезанной версией Photoshop стоимостью менее 100 долл., а вторая распространяется бесплатно и служит для организации и элементарной обработки фотографий. Продукт нацелен на любительский рынок, так как ограниченная функциональность делает Photoshop Elements неподходящим для подготовки изображений к печати. Программа Adobe Photoshop Lightroom (стоимостью около 300 долл.) служит исключительно для «проявки» цифровых негативов, простой ретуши фотоснимков и организации их каталога.
Сравнительно недавно в продажу поступила последняя версия программы Adobe Photoshop CS4 Extended, которая является модифицированной CS4-версией программы. Официальный сайт не указывает дату выхода последней версии - это вызвано расхождением сроков выпуска различных конфигураций программы. Самая первая, официально-рабочая версия Adobe Photoshop CS4 Extended была выпущена в конце сентября 2008 года, но ввиду нестабильности рабочего процесса не была объявлена, хотя уже официально продавалась Adobe. Впоследствии были внесены незначительные изменения в код программы, а дата выпуска изменена на более позднюю. Техническая поддержка Adobe игнорирует вопросы, связанные с датой выпуска их последнего продукта.
GIMP
GNU Image Manipulation Program или GIMP (Гимп) - растровый графический редактор, программа для создания и обработки растровой графики. Частично поддерживается векторная графика. Проект основан в 1995 году Спенсером Кимбелломи Питером Маттисом как дипломный проект, в настоящий момент поддерживается группой добровольцев. Распространяется на условиях GNU General Public License.
Изначально сокращение «GIMP» означало англ. General Image Manipulation Program, а в 1997 году полное название было изменено на «GNU Image Manipulation Program», и программа официально стала частью проекта GNU.
Типичные задачи, которые можно решать при помощи GIMP, включают в себя создание графики и логотипов, масштабирование и кадрирование фотографий, раскраска, комбинирование изображений с использованием слоёв, ретуширование и преобразования изображений в различные форматы.
GIMP является одним из первых действительно пользовательских свободных приложений. Предыдущие проекты, такие каккомпиляторы GCC, ядро Linux и подобные им являются, в основном, инструментами, сделанными программистами для программистов. Некоторые считают GIMP первым подтверждением того, что в процессе разработки свободного ПО может появиться что-либо, чем смогут пользоваться не только хакеры. В этом смысле можно сказать, что GIMP подготовил психологическую почву для таких проектов, как KDE, GNOME, Mozilla Firefox, OpenOffice.org и множества других.
В течение продолжительного времени GIMP создавался с учётом пожеланий пользователей, но в основном согласно предпочтениям разработчиков и без привлечения экспертов по эргономике. Целостное видение проекта отсутствовало. Чтобы решить накопившиеся в результате этого проблемы, был принят ряд мер.
В 2005 году проект GIMP был зарегистрирован участником программы OpenUsability. На конференции Libre Graphics Meeting в марте2006 года состоялась первая встреча представителей OpenUsability и команды разработчиков GIMP, в ходе которой было определено видение GIMP как продукта для конечных пользователей:
GIMP является свободным ПО;
GIMP является высококачественным приложением для фоторетуши и позволяет создание оригинальных изображений;
GIMP является высококачественным приложением для создания экранной и веб-графики;
GIMP является платформой для создания мощных и современных алгоритмов обработки графики учёными и дизайнерами;
GIMP позволяет автоматизировать выполнение повторяющихся действий;
GIMP легко расширяем за счёт простой установки дополнений.
Эти тезисы определяют дальнейшее развитие GIMP.
Осенью 2006 года в рамках проекта OpenUsability было проведено исследование, результаты которого постепенно оформляются в виде рекомендаций и спецификаций и реализуются.
В отличии от коммерческого ПО, в GIMP реализованы только действительно полезные и часто используемые функции Разработчики GIMP не заинтересованы в постоянном наращивании функционала, в котором не нуждаются пользователи, и регулярном выпуске новых версий графического редактора.
Традиционно GIMP считается свободным аналогом ряда проприетарных редакторов (чаще всего называется Adobe Photoshop), хотя сами разработчики часто возражают против такой формулировки.
Литература
1. Комолова Н. В., Яковлева Е. С. 2007
2. Дик Мак-Клелланд, Лори Ульрих Фуллер. Библия пользователя 2007
3. Карла Роуз, Кейт Биндер. Освой самостоятельно. Вильямс 2007
4. Кэтрин Айсманн, Уэйн Палмер. Ретуширование и обработка изображений в Photoshop 3-е изд. М.: Вильямс 2007
5. Дэн Маргулис. Photoshop для профессионалов 2009
6. gimp.org - Официальный сайт GIMP
7. Бурлаков М. В. Самоучитель с электронным справочником. 2008
8. Смолина Марина Александровна Самоучитель 2010
9. Комолова Н.В. «БХВ-Петербург» 2008
Размещено на Allbest.ru
Подобные документы
Основные части персонального компьютера: системный блок, устройства ввода и вывода информации. Основные элементы системного блока: материнская плата, процессор, оперативная память, кэш-память, накопители. Операционная система, объекты Windows, окна.
реферат [135,0 K], добавлен 21.09.2009Состав вычислительной системы - конфигурация компьютера, его аппаратные и программные средства. Устройства и приборы, образующие аппаратную конфигурацию персонального компьютера. Основная память, порты ввода-вывода, адаптер периферийного устройства.
презентация [143,8 K], добавлен 15.04.2013Память персонального компьютера, виды и их характеристика. Классификация памяти компьютера. Кэш память как память с большей скоростью доступа, предназначенная для ускорения обращения к данным. Гибкие магнитные диски, CD-ROM, DVD-ROM и флэш-память.
презентация [1,8 M], добавлен 15.11.2011Роль компьютера в жизни человека. Критерии выбора компьютера для игр и для работы с документами: корпус системного блока, процессоры и их количество, тактовая частота ядра, оперативная память, видеокарта, жесткий диск. Исследование школьных компьютеров.
курсовая работа [37,3 K], добавлен 17.12.2014Архитектура персонального компьютера. Операционная сиcтема WINDOWS 9.x. Основные характеристики накопителей и носителей. Табличный процессор EXCEL. Объектно-ориентированная платформа WINDOWS: операции с окнами. Пути распространения компьютерных вирусов.
контрольная работа [1,1 M], добавлен 17.05.2010Архитектура персонального компьютера, функциональные и технические характеристики его устройств. Компоненты материнской платы, строение процессора, виды памяти. Принципы работы процессора и обращение к данным. Пути развития персонального компьютера.
курсовая работа [102,4 K], добавлен 11.02.2011Система BIOS как базовая система ввода и вывода и важнейший компонент персонального компьютера. Программное обеспечение, используемое в BIOS материнских плат. Основные функции BIOS, порядок загрузки системы. Проверка стабильности работы компьютера.
доклад [94,9 K], добавлен 15.09.2013Аппаратно-программные средства компьютера, позиционируемого в качестве учебного. Модернизация компонентов персонального компьютера, его потребляемая мощность. Исходная конфигурация компьютера. Установка дополнительных модуля памяти и жесткого диска.
курсовая работа [120,3 K], добавлен 21.01.2013Конструкция системного блока, монитора, клавиатуры и мыши персонального компьютера, как элементов его минимальной комплектации, а также их назначение, особенности работы и современные тенденции развития. Отрывки статей о новинках архитектуры компьютера.
реферат [43,4 K], добавлен 25.11.2009Внутренние и внешние устройства персонального компьютера. Классификация и характеристики ЭВМ, основы учения и структуры первых поколений. Основные принципы построения ПК. Функции центрального процессора и операционные устройства управления компьютера.
курсовая работа [109,7 K], добавлен 04.11.2010