Моделі інтелектуального управління процесом навчання за допомогою мультиагентних систем
Розробка програмних систем адаптивного навчання, які використовують методи штучного інтелекту. Дослідження методів і засобів, які застосовуються в інтелектуальних системах обробки інформації і управління. Розроблення моделі процесу прийняття рішень.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 29.09.2014 |
Размер файла | 39,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРСИТЕТ
УДК 004.89:378.147
Моделі інтелектуального управління процесом навчання за допомогою мультиагентних систем
05.13.23 -- Системи та засоби штучного інтелекту
Автореферат
дисертації на здобуття наукового ступеня
кандидата технічних наук
Нарожний Олександр Васильович
Одеса 2007
Дисертацією є рукопис.
Робота виконана в Одеському національному політехнічному університеті Міністерства освіти і науки України.
Захист відбудеться “19” червня 2007 р. о 1000 годині на засіданні спеціалізованої вченої ради К 41.052.08 Одеського національного політехнічного університету за адресою: 65044, м. Одеса, проспект Шевченка, 1, ауд. 400А.
З дисертацією можна ознайомитися в бібліотеці Одеського національного політехнічного університету за адресою: м. Одеса, проспект Шевченка, 1.
Автореферат розісланий “18” травня 2007 р.
Вчений секретар спеціалізованої вченої ради Савєльєва О.С.
програмний навчання інтелект
1. Загальна характеристика роботи
Комп'ютеризація освіти дозволяє інтенсифікувати процес навчання за рахунок ефективного використання наукового потенціалу і передового досвіду провідних учених країни, завдяки розширеному використанню результатів їх праці у формі комп'ютерних навчальних і контролюючих програм. Інтелектуальні системи навчання змінюють характер діяльності викладача в сучасному навчальному процесі, в якому основна роль відводиться самостійній роботі студентів.
Актуальність теми. Покликання людини полягає в прагненні до майстерності завдяки "освіті крізь усе життя" і постійному вдосконаленню знань, умінь і навиків відповідно до нового змісту праці, що змінюється, і нових технологій. Сучасна соціально-економічна ситуація в Україні і в системі освіти така, що традиційні методи здобування освіти і моделі навчання можуть задовольнити не всі потреби в освітніх послугах.
В даний час створені технічні передумови для впровадження і використання комп'ютерного навчання. Якість такого навчання визначатиметься рівнем інтелектуальності навчальних систем, кваліфікацією викладачів і ефективністю управління учбовим процесом.
Відомі комп'ютерні навчальні і контролюючі системи орієнтовані, як правило, на рішення окремих наукових і практичних задач, не є комплексними системами інформаційного забезпечення і управління процесом навчання з урахуванням особливостей модульної структури навчальних дисциплін. Більшість з них не мають засобів зворотного зв'язку, або не адаптують процес навчання до рівня знань і умінь студентів. Такі системи, які є зліпком традиційної системи очного навчання, не можуть привести до якісного поліпшення освіти. Розвиток мультиагентних систем, що реалізують інтелектуальне управління, дозволить істотно розширити клас вирішуваних задач процесу навчання і таким чином вирішити цю проблему.
В Україні з кожним роком змінюються стандарти освіти, навчатися стає все складніше. Розв'язання протиріч між високими стандартами навчання і можливостями тих, кого навчають, можливо за рахунок автоматизації процесу навчання. Тому створення інтелектуальної системи управління процесом навчання (ІСУ ПН), як програмного інструменту, для організації контролю знань і прийняття рішень за результатами контролю в контексті комплексного управління процесом навчання є актуальним.
Зв'язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконана відповідно до комплексу нормативних документів для розробки складових системи стандартів вищої освіти (додаток № 1 до наказу Міносвіти України від 31.07.98 р. № 285 із змінами і доповненнями від 05.03.2001 р. № 28-р); наказу Міністерства освіти і науки України № 48 від 23.01.2004 р.; “Про затвердження Програми дій щодо реалізації положень Болонської декларації в системі вищої освіти і науки України на 2004 - 2005 роки”; НДР ОНПУ № 537 - 32 „Прогресивні інформаційні технології в охороні праці: Удосконалення автоматизованих систем тестування.”
Мета і завдання дослідження. Метою дисертаційної роботи є підвищення якості процесів навчання і прийняття рішень в умовах адаптивного навчання шляхом удосконалення моделей і методів організації ІСУ ПН і розробки загальних принципів їх побудови на основі засобів штучного інтелекту.
Для досягнення даної мети в роботі вирішені наступні завдання:
виконаний аналіз в області розробки програмних систем адаптивного навчання, які використовують методи штучного інтелекту;
проведено дослідження методів і засобів, які застосовуються в інтелектуальних системах обробки інформації і управління для прийняття рішень;
узагальнено і уніфіковано підходи до рішення основних задач інтелектуальної обробки інформації на базі дослідження процесу прийняття рішень при управлінні складними об'єктами, внаслідок чого розроблена модель процесу прийняття рішень в умовах адаптивного навчання;
виконана формалізація вимог до ІСУ ПН, як до спеціалізованого програмного забезпечення, орієнтованого на функціонування в локальній і глобальній комп'ютерних мережах;
розроблено модель навчальної системи на основі мультиагентних технологій;
створено математичне, алгоритмічне і програмне забезпечення компонентів ІСУ ПН;
виконано експериментальне підтвердження ефективності застосування мультиагентних технологій в системах навчання і контролю знань.
Об'єктом дослідження є процес навчання і прийняття рішень в умовах адаптивного навчання під управлінням ІСУ ПН.
Предметом дослідження є моделі інтелектуального управління процесом навчання і методи контролю знань при адаптивному навчанні в ІСУ ПН для комплексного управління процесом навчання.
Методи дослідження. Методи системного аналізу використані при декомпозиції процесів функціонування ІСУ ПН для реалізації алгоритмів мультиагентної системи. Використання теорії вірогідності, теорії інформації, теорії педагогічних тестів, теорії нечітких множин і нечіткої логіки, дозволило удосконалити алгоритми тестування і відновлення знань. Методи оцінки складних об'єктів і методи штучного інтелекту використані при побудові інформаційної моделі ІСУ ПН. При розробці програмного забезпечення ІСУ ПН використовувалася технологія об'єктно-орієнтованого програмування. Організація структури ІСУ ПН виконана на основі теорії комп'ютерних мереж.
Наукова новизна дисертаційної роботи:
отримав подальший розвиток декомпозиційний метод побудови і функціонування ІСУ ПН за рахунок формування алгоритмів окремих інформаційних процесів навчальної системи, що реалізуються інтелектуальними рефлекторними агентами, які реагують на події створювані користувачами або програмними підсистемами;
удосконалена модель навчальної системи шляхом використання мультиагентних технологій, що дозволило реалізувати інтелектуальне управління процесом навчання в ІСУ ПН;
вперше розроблена інформаційна модель системи управління процесом навчання на основі мультиагентного підходу, що дозволяє за допомогою інтелектуальних агентів визначити міру інтелектуальності систем при рішенні множини класів завдань навчальних систем;
досліджені класи завдань, що вирішуються інтелектуальними агентами, найважливішими з яких є: організація та управління процесом навчання, взаємодія інтелектуальних агентів і виявлена залежність, що із збільшенням інтелектуальних агентів зростає міра інтелектуальності системи і підвищується якість рішення задач, проте практична реалізація системи показала, що при досягненні критичного значення числа інтелектуальних агентів середній час реакції системи на події створювані агентами починає зростати, що призводить до зниження інтелектуальності системи.
Практична цінність. Дисертаційні дослідження завершені створенням математичного, алгоритмічного і програмного забезпечення ІСУ ПН. Розроблена модель системи управління процесом навчання, заснована на мультиагентних системах (МАС). Побудована інформаційна модель системи, яка включає організаційну структуру навчальних курсів, сценарії навчання, логіку і динаміку оцінювання знань, що забезпечує отримання і відображення інформації, необхідної для прийняття рішень. Розроблені алгоритми проведення контролю знань, методи і алгоритми оцінювання відповідей студента. Створена інтелектуальна система управління College, яка реалізує розроблені методи і алгоритми. Програмна реалізація компонентів інтелектуальної системи управління процесом навчання дозволила експериментально підтвердити ефективність застосування мультиагентних технологій в системах навчання і контролю знань. Використання такої системи в учбовому процесі дозволяє підвищити рівень засвоєння знань студентів. Результати дисертаційної роботи впроваджені в Херсонському політехнічному коледжі Одеського національного політехнічного університету, на кафедрі „Управління системами безпеки життєдіяльності” Одеського національного політехнічного університету, ВАТ „Херсонагропроменерго”.
Особистий внесок здобувача. У роботі [1] виконаний аналіз систем комп'ютерного тестування і запропонована структура ІСУ ПН, в [12, 17] сформульовані наукові основи контролю знань студентів при реалізації кредитно-модульної системи. Проблеми підвищення якості тестів досліджені в статті [16]. У роботі [5] запропонована стратегія прийняття рішень в умовах адаптивного навчання, а в [4] певні критерії прийняття рішень. У [10] розглянуті основні напрями комп'ютерного тестування. У публікації [6] виконана формалізація вимог до ІСУ ПН, як до спеціалізованого програмного забезпечення, орієнтованого на функціонування в комп'ютерній мережі, а в [15] досліджені методи прийняття рішень в умовах Болонского процесу. У статті [9] визначені програмно - інструментальні засоби, а в [3] запропонована структура програмної і алгоритмічної реалізації ІСУ ПН. У роботі [2] розглянуті особливості програмної реалізації і роботи системи в Linux. У [7] розглянуті особливості використання практичних завдань в системах комп'ютерного навчання. У роботах [8, 11] описана конструктивна модель знань в умовах адаптивного навчання, а в [13, 14] розглянуті особливості роботи ІСУ ПН в умовах адаптивного навчання.
Апробація роботи. Основні результати роботи обговорювались на: МНК ISDMIT'2005” (м. Евпаторія, 2005); МК по автоматизованому управлінню „Автоматика-2005” ( м. Харків, ХНТУ, 2005); МНПК „Інформаційні технології: наука, техніка, технологія, освіта, здоров'я” (м. Харків, ХНТУ, 2005); VII МНПК „САІТ-2005” (м. Київ ІПСА НТУУ „КПІ”, 2005); VIIІ МНПК ”Динаміка наукових досліджень '2005” (м. Дніпропетровськ, 2005); МНПК „Інформаційні технології в наукових дослідженнях і в учбовому процесі” (Луганськ-Алчевськ, 2005); XII семінарі „Моделювання у прикладних наукових дослідженнях” (м. Одеса, ОНПУ, 2005); Міжнародному семінарі з індуктивного моделювання МСІМ-2005 (м. Київ, 2005); на семінарі “Шляхи реалізації кредитно-модульної системи організації навчального процесу і тестових форм контролю знань студентів” (ОНПУ, 2006).
Публікації. Результати дисертаційної роботи опубліковані в 17 наукових роботах, зокрема, в 8 виданнях із списку спеціалізованих видань ВАК України.
Структура дисертації. Дисертаційна робота складається зі вступу, 4 розділів, висновків, 4 додатків. Об'єм дисертації - 175 стор., додатків - 30 стор. Дисертація містить 32 рисунки, 16 таблиць і посилання на 127 літературних джерел.
2. Основний зміст роботи
У вступі обґрунтована важливість і актуальність теми дисертаційної роботи. Викладені мета і завдання роботи, об'єкт і методи дослідження. Сформульовані основні положення і практичні результати, досягнуті в роботі, їх наукова новизна.
У першому розділі виконаний аналіз сучасних навчальних систем, проведено дослідження методів і засобів, які застосовуються в системах управління процесом навчання. Виявлено, що в більшості цих систем відсутні або слабо розвинені елементи штучного інтелекту, вони не містять засобів зворотного зв'язку і елементів експертних систем для адаптації процесу навчання до рівня знань і умінь студентів.
Загальне завдання дослідження формулюється як підвищення якості процесів навчання і прийняття рішень в умовах адаптивного навчання за рахунок удосконалення моделей і методів організації ІСУ ПН і розробки загальних принципів їх побудови на основі моделей штучного інтелекту із застосуванням мультиагентної технології. Такий підхід дозволить створити мультиагентну навчальну систему, яка має певний рівень інтелекту і здатна удосконалюватися еволюційним шляхом.
У другому розділі виконано аналіз типових видів тестових завдань і обґрунтовано вибір тестів з декількома варіантами вибору, як способу контролю знань, а також доведена ефективність використання тестів з декількома варіантами вибору і запропоновані правила їх побудови. При визначенні оцінки відповіді студента, при такому тестуванні необхідно враховувати ймовірність вгадування правильних відповідей. Студент навмисно може вибрати з N запропонованих варіантів N - 1. При цьому результуюча оцінка за тест буде відмінною від 0. Тому необхідно знати PN - величину ймовірності вгадування як правильної, так і частково правильної (неповної) відповіді.
Показник, який характеризує програми тестування щодо можливості отримання позитивної оцінки при вгадуванні можна визначити за допомогою формули Бернуллі (біноміального розподілу незалежних випадкових подій) і теореми складання ймовірності:
(1)
де n - число питань в тесті;
m - число вірних відповідей, при якому виставляється позитивна оцінка;
P - ймовірність вгадування правильної відповіді на одне питання;
С - число можливих варіантів введення результативної відповіді;
Рnr - ймовірність отримання r правильних відповідей.
З (1) слідує, що при збільшенні числа питань, що ставляться, і можливих варіантів відповіді, а також при виборі жорсткіших критеріїв виставляння оцінки (збільшенні числа m) ймовірність вгадування правильної відповіді істотно зменшується і стає нехтовно малою.
Остаточна ймовірність випадкового вгадування правильної відповіді може бути розрахована за формулою:
(2)
У результаті розрахунків, виконаних за (2), залежно від кількості варіантів відповіді були отримані дані, наведені в табл. 1.
Таблиця 1 Ймовірність випадкового вгадування правильної відповіді
Кількість варіантів відповіді, N |
2 |
3 |
4 |
5 |
6 |
|
PN |
0,5 |
0,167 |
0,071 |
0,033 |
0,016 |
Запропонована математична модель оцінки знань заснована на принципах нечіткої логіки і оцінюванні результатів шляхом використання системи критерійно-орієнтованого тестування. Для аналізу тестових завдань запропоновано використання методу математичної статистики. При цьому аналізується ряд критеріїв, які аналізують індивідуальні завдання тесту і показники, призначені для оцінки тесту в цілому.
Складність Pj тестового завдання j дорівнює частці випробовуваних, що правильно відповіли на це завдання (частці правильних відповідей):
(3)
де nj - число випробовуваних, що відповіли правильно на j-е завдання;
N - загальне число випробовуваних, що відповідали на j-е завдання.
Оскільки складність тестового завдання є випадковою величиною, то має сенс говорити не тільки про оцінку її значення Pj , але і про довірчий інтервал, відповідний заданій довірчій вірогідності Рдов. Межі довірчого інтервалу складності (Pj min, Рj max) тестового завдання розраховуються за формулою:
(4, 5)
де Pj - оцінка довірчої вірогідності з (3);
Sj - оцінка стандартного відхилення j-го завдання;
t1- /2 - квантиль розподілу Стьюдента;
а = 1- Рдов - рівень значущості.
У розрахунках надійності застосовується формула Кудера-Річардсона (Kuder Richardson, Kr20), яка є окремим випадком альфа Кронбаха дихотомічної оцінки (“вірно-невірно”):
(6)
де m - число завдань тесту;
Рj - складність j-ого завдання;
qj = 1- Рj ;
Sx - дисперсія.
Значущість (валідність) Kbj тестового завдання j відображає зв'язок відповідей на завдання групи випробовуваних з індивідуальними балами випробовуваних в групі. Якщо прийняти до уваги той факт, що результат на j-е завдання є дихотомічна змінна, то можна отримати наступний вираз для Kbj :
(7)
де Bсрj - середнє значення оцінки випробовуваних, які відповіли на j-е завдання вірно;
Вср - середнє значення індивідуальних балів всієї вибірки випробовуваних;
Рj - складність j-ого завдання;
qj = 1- Рj.
Як і звичайний коефіцієнт кореляції, значущість Kbj змінюється в межах від -1,00 до +1,00. Прийнятними вважаються завдання, у яких значущість більше або рівна 0,3.
Запропонована модель ІСУ ПН, яка створена на основі методології побудови мультиагентних систем. Суть підходу полягає в перенесенні акценту розробки на стадію концептуального проектування і покладанні завдання логічного та фізичного проектування моделей і структур знань та даних на інструментальні засоби (рис. 1).
Основні концептуальні установки, покладені в основу ІСУ ПН:
прагнення до повної автоматизації управління процесом навчання (рис. 2);
організація механізму зворотного зв'язку і адаптації процесу навчання до рівня знань і умінь студентів;
автоматичне виділення інтелектуальних складових системи в ході декомпозиції концептуальної моделі предметної області (КМПО);
автоматична трансляція КМПО в логічну модель системи з подальшим переходом до структур баз знань (БЗ);
використання розширюваних бібліотек моделей поведінки інтелектуальних агентів (ІА).
Інтелектуальна система управління процесом навчання спрямована на структуру управління за напрямами: технології навчання, предметна область, ресурси, моніторинг процесів (рис. 2).
У третьому розділі розглянута апаратно-програмна реалізація ІСУ ПН і запропонована модель навчальної системи (рис. 3) на основі мультиагентних техно-логій, яка включає: бази знань, клієнтів і мультиагентну систему. Центральною ланкою навчальної системи є бази знань, які виступають по відношенню до інших компонентів як змістовна підсистема, що складає основну цінність системи.
Визначені класи завдань, які вирішують інтелектуальні агенти в процесі організації і роботи підсистем ІСУ ПН щодо організації процесу тестування, організації процесу прийняття рішень та організація роботи з БД і БЗ.
Вперше розроблена інформаційна модель системи управління процесом навчання, заснована на муль-тиагентному підході і теорії комп'ютерних мереж, яка відрізняється від відомих під-ходів тим, що рішення які приймаються системою є множиною сукупних рішень (рис. 4) інтелектуальних реф-лекторних агентів, що вико-ристовують інформаційну технологію прийняття рішень в умовах адаптивного навчан-ня. Агент реалізує процедуру пошуку рішення для підсистеми за певними критеріями (швидкість і точність рішення), яка визначає якість пропонованого рішення:
(8)
де - вага швидкості рішення; - вага точності рішення;
- множина швидкостей прийняття рішень;
- множина точності прийняття рішень.
У розділі досліджена робота ІСУ ПН в локальній мережі під управлінням системи управління та розподілу даних інтелектуальних агентів, і показано що при реалізації даної технології мінімізується об'єм даних, який передається по мережі, оскільки основні втрати і збої відбуваються із-за малої пропускної спроможності мережі.
У четвертому розділі представлена практична реалізація ІСУ ПН. Приведений порядок настройки і адміністрування системи, а також розроблений загальний алгоритм функціонування ІСУ ПН (рис. 5), структура бази даних навчальних курсів.
Описаний процес зміни міри інтелекту мультиагентної системи (L(X)), яка визначається як сума мір інтелекту кожної підсистеми:
(9)
де X(t), Y(t) - зміна системи X і підсистеми Y у момент часу t; n - кількість агентів;
Lint - здатність до навчання системи за інтенсивним шляху розвитку;
kij - коефіцієнт якості рішення задачі (kij <1 );
- частота включення агентів; N - кількість підсистем.
Коефіцієнт якості (kij) визначається ймовірністю засвоєння рівня складності даного класу завдань (кожен клас завдань включає чотири рівні складності - за рівнем засвоєння знань: упізнавання, відтворення, уміння, творчість). При цьому за рішення кожного рівня відповідають певні агенти підсистеми.
Аналіз залежності рівня складності від числа агентів підсистеми показав, що для завдань першого рівня складності характерне одне певне рішення, що позначається на їх коефіцієнті якості. Тобто із збільшенням числа агентів, покликаних вирішити таке завдання, коефіцієнт якості зменшується. А із збільшенням рівня складності завдання (рис. 6) спостерігається різке зростання коефіцієнта якості рішення задачі, при одній і тій же кількості агентів.
В результаті експерименту була показана ефективність використання математичної моделі тестування для аналізу тестів на складність і надійність, яка дає можливість аналізу тестових завдань по різних дисциплінах і прийняття рішень відносно їх валідності (рис. 7а) і складності (рис. 7б).
Конструктивно і швидко перевірити рівень підготовки студента по заданому модулю дозволяє застосування в ІСУ ПН способу автоматичної генерації номерів питань тесту, а також створення спеціалізованих баз даних тестових завдань окремо по кожному модульному контролю. Запропонована організація баз даних питань дає можливість ОПР - викладачеві формувати тести різного рівня.
Аналіз результатів, отриманих у процесі визначення рівня інтелектуальності системи, показав що із збільшенням часу рівень інтелекту мультиагентної системи зростає, а із збільшенням кількості підсистем, покликаних вирішити свій клас завдань, система стає більш інтелектуальною. Це наочно відображають результати, що показані на рис. 8, при порівнянні таких систем із системою, спрямованою на розв'язання тільки одного класа завдань.
Проте практична реалізація системи показала, що при досягненні критичного значення числа інтелектуальних агентів (рис. 9б) середній час реакції системи на події створювані агентами починає зростати, що призводить до зниження інтелектуальності системи (рис. 9а).
Аналіз результатів тестування для 10 студентських груп упродовж одного навчального року, показав ефективність використання ІСУ ПН в навчальному процесі і підвищення якості процесу навчання. На рис. 10 показано, що з впровад-женням системи велика частина студентів набула більш високий рівень засвоєння знань (для 2-го рівня приріст склав 10-11%, а для 4-го рівня - 1-5%). Реалізація інтелектуальної системи управління процесом навчання дозволила експериментально підтвердити ефективність застосування мультиагентних технологій в системах навчання і контролю знань. Підвищення якості процесів навчання досягається завдяки тому, що пропоновані системою рішення є результатом множини сукупних рішень інтелектуальних рефлекторних агентів.
Висновки
У дисертаційній роботі отримані наукові і практичні результати, які у сукупності вирішують проблему дослідження, створення і впровадження інтелектуальної системи управління процесом навчання (ІСУ ПН), як програмного інструменту, для організації процесу навчання і прийняття рішень, що ґрунтується на результатах роботи мультиагентної системи.
1. Виконаний аналіз відомих систем управління процесом навчання і тенденцій їх розвитку показав, що в більшості навчальних систем відсутні або слабо розвинені елементи штучного інтелекту. Ці системи не передбачають процедур адаптації процесу навчання на основі зворотного зв'язку до рівня знань і умінь студентів. Застосування в системах навчання і управління навчальним процесом мультиагентних технологій формує умови для адаптації сценаріїв процесу навчання.
2. Запропонована математична модель оцінки знань, заснована на принципах нечіткої логіки і оцінюванні результатів шляхом використання системи критерійно-орієнтованого тестування. Для аналізу тестових завдань запропоновано використання методів математичної статистики.
3. Визначені основні вимоги до тестових завдань і виконаний аналіз типових тестових завдань. Обґрунтовано застосування тестів з декількома варіантами вибору, як способу контролю знань, і використанням методів штучного інтелекту, як невід'ємної частині процесу контролю і оцінки знань.
4. Запропонована модель навчальної системи на основі мультиагентних технологій, яка включає бази знань, клієнтів і мультиагентну систему, що складається з програмного інтерфейсу і інтелектуальних агентів. Ключовою ланкою навчальної системи є бази знань, які виступають по відношенню до інших компонентів як змістовна підсистема, яка складає основну цінність.
5. Вперше запропонована інформаційна модель системи управління процесом навчання на мультиагентному підході, яка відрізняється від відомих підходів тим, що пропоновані системою рішення є множиною сукупних рішень інтелектуальних рефлекторних агентів, які використовують інформаційну технологію прийняття рішень в умовах адаптивного навчання. Концептуальні установки, покладені в основу ІСУ ПН, створюють умови для повної автоматизації етапу управління процесом навчання.
6. За результатами комп'ютерної реалізації створено математичне, алгоритмічне і програмне забезпечення компонентів ІСУ ПН. Розроблена інформаційна технологія прийняття рішень в умовах адаптивного навчання з використанням кількісного оцінювання рівня засвоєння знань студентів про предметну область. Запропонований підхід відрізняється від відомих рішень тим, що оцінка формується в перетвореному 3D -- просторі, в якому відображаються рівень засвоєння знань, час рішення тестових завдань, інтенсивність оновлення знань, що дозволяє адаптувати процес навчання до здібностей кожного студента.
7. Виконаний автоматизований аналіз експериментальних результатів управління процесом навчання показав, що застосування інтелектуальної системи підтверджує ефективність використання мультиагентних технологій в системах навчання і контролю знань. Отримані результати впроваджені в навчальний процес Херсонського політехнічного коледжу Одеського національного політехнічного університету, на кафедрі „Управління системами безпеки життєдіяльності” Одеського національного політехнічного університету, а також у відділі практичного навчання ВАТ ”Херсонський завод карданних валів”.
Список опублікованих робіт за темою дисертації
1. Нарожный А.В. Проектирование и реализация автоматизированных систем контроля знаний // „Автоматика. Автоматизация. Электротехнические комплексы и системы.” -- Херсон: ХНТУ, 2004. -- №2 (14). -- C. 146-154.
2. Нарожный А.В. Особенности реализации Linux-программ при проектировании автоматизированных систем управления обучением // Тр. Одес. политехн. ун-та. -- Спецвыпуск. -- Одесса: ОНПУ, 2005. -- С. 44 - 46.
3. Нарожный А.В. Программно-инструментальные средства для системы принятия решений в условиях дистанционного обучения // Тр. Одес. политехн. ун-та. -- Спецвыпуск. -- Одесса: ОНПУ, 2006. -- С. 53 - 57.
4. Носов П.С., Нарожний О.В., Яковенко О.Є. Підвищення якості навчання при проектуванні автоматизованих систем ухвалення рішень // Нові технології навчання: Наук. - метод. зб. -- К.: Наук. - метод. центр вищої освіти, 2005. -- Вип. 41. -- С. 89 - 99.
5. Яковенко А.Е., Нарожный А.В., Гогунский В.Д. Стратегия принятия решений в условиях адаптивного обучения // Східно - Європ. журн. передових технологій. -- Харків: Технол. центр, 2005. -- № 2/2 (14).-- С. 105 - 110.
6. Яковенко О.Є., Гогунський В.Д., Нарожний О.В. Моделювання знань студента та його оцінка в системах адаптивної діагностики. // Информационные технологии в научных исследованиях и в учебном процессе: Сб. науч. тр. -- Спецвыпуск. -- Алчевск: ДонГТУ, 2005. -- С. 196 - 200.
7. Носов П.С., Яковенко О.Є., Нарожний О.В. Особливості впровадження практичних завдань як вид контролю в автоматизованих навчальних системах // Информационные технологии в научных исследованиях и в учебном процессе: Сб. науч. тр. -- Спецвыпуск. -- Алчевск: ДонГТУ, 2005. -- С. 192 - 195.
8. Яковенко А.Е., Нарожный А.В., Гогунский В.Д. Проектирование конструктивной модели знаний для автоматизированной системы адаптивного обучения // Вісн. Черкаського держ. технол. ун-ту. -- Черкаси: ЧДТУ, 2005. -- № 4.-- С. 246 - 251.
9. Нарожний А.В., Яковенко А.Е., Гогунский В.Д. Проектирование структуры автоматизированной системы в условиях дистанционного обучения // Вестник ХНТУ „ХПИ”-- Харьков: ХНТУ „ХПИ”, 2005. -- № 54.-- С. 62 - 67.
10. Яковенко А.Е., Нарожный А.В.,Гогунский В.Д. Формализация требований стандартов обучения при реализации автоматизированных систем принятия решений // Матер.VII МНТК ”Системний аналіз та інформаційні технології”-- К.: НТУУ „КПІ” .-- С. 227 - 233.
11. Яковенко А.Е., Нарожный А.В., Гогунский В.Д. Методы принятия решений в условиях адаптивного обучения // Зб. наук. пр.: у 5 т. Матеріали міжнар. наук. конф. ”Інтелектуальні системи прийняття рішень та прикладні аспекти інформаційних технологій”-- Херсон: ХМI, 2005. -- Т.4. -- С. 95 - 97.
12. Нарожный А.В., Яковенко А.Е., Гогунский В.Д. Создание программно- инструментальных средств для автоматизированной системы принятия решений в условиях дистанционного обучения // Материалы МНПК ”MicroCAD”.-- Харьков: ХНТУ „ХПИ”, 2005 -- С. 447 - 452.
13. Нарожний О.В., Яковенко О.Є., Гогунський В.Д. Проектування структури автоматизованої системи в умовах дистанційного навчання // Материалы 12 - ой МНТК „Автоматика-2005”. -- Харьков: ХНТУ „ХПИ”, 2005 -- Т.1.-- С. 157 - 161.
14. Яковенко А.Е., Нарожный А.В., Крутина С.А. Реализация сетевой адаптивной технологи // Матеріали VIIІ МНТК” Динаміка наукових досліджень 2005”. -- Дніпропетровськ: Наука і освіта, 2005. -- Т.50 „Сучасні інформаційні технології”. -- С.31 - 34.
15. Яковенко О.Є., Нарожный А.В., Гогунский В.Д. Методы принятия решений в условиях Болонского процесса. // Збірка наукових праць у п'яти томах. Т.4. Матеріали міжн. наук. конф.”Інтел. системи прийняття рішень та прикладні аспекти інф.техн”. -- Євпаторія, 18-21 травня 2005. -- С. 95 - 97.
16. Яковенко А.Е., Нарожный А.В., Крутина С.А.. Реализация сетевой адаптивной технологии // Зб. пр. міжнар. семінар. з індуктивного моделювання. -- К.: Міжнар. наук.- навч. центр інформ. технологій та систем НАН та МОНУ, 2005. -- С. 365 - 367.
17. Нарожний А.В., Крутіна С.А., Яковенко А.Е.. Проектування інтелектуальної програмної оболонки для навчання з урахуванням специфіки кредитно-модульної системи // Матеріали наук.-метод. семінару “Шляхи реалізації кредитно-модульної системи організації навчального процесу і тестових форм контролю знань студентів”. -- Одеса: Наука і техніка, 2006 -- С. 11 - 16.
Размещено на Allbest.ru
Подобные документы
Проблеми при розробленні автоматизованих систем управління в банку. Сутність, загальні риси та відмінності серії стандартів MRP та MRPII. Види технологічного процесу автоматизованої обробки економічної інформації. Системи підтримки прийняття рішень.
контрольная работа [32,8 K], добавлен 26.07.2009Розгляд засобів конфіденційності інформації, яка міститься в документованому середовищі систем дистанційного навчання. Запропоновані способи поліпшення надійності та захищеності документованої інформації, які базуються на захисті доступу до інформації.
статья [197,4 K], добавлен 22.02.2018Теоретичне дослідження особливостей проектування систем дистанційного навчання. Створення програмного забезпечення процедури статистичної обробки результатів тестування знань і оцінки якості тесту. Економічне обґрунтування доцільності розробки програми.
дипломная работа [3,6 M], добавлен 22.10.2012Аспекти вирішення методологічної та теоретичної проблеми проектування інтелектуальних систем керування. Базовий алгоритм навчання СПР за методом функціонально-статистичних випробувань. Критерій оптимізації та алгоритм екзамену системи за цим методом.
курсовая работа [1,6 M], добавлен 22.09.2011Етапи та принципи проектування інформаційно-технічної моделі системи, що сприяє активізації та ефективності керування структурного підрозділу вищого навчального закладу. Особливості використання методу поетапної деталізації, його зміст та значення.
статья [18,9 K], добавлен 18.05.2015Використання комп'ютерного моделювання. Особливості проектування моделі автоматичної системи управління технологічним процесом. Визначення кількості пропущених через відмову даних та часу знаходження системи в загальмованому стані. Опис алгоритму моделі.
контрольная работа [501,7 K], добавлен 13.01.2014Автоматизація процесу зберігання та обробки інформації про перелік собак на виставці. Аналіз предметної області. Створення концептуальної моделі даних, її перетворення в логічну і реалізація. Розробка механізмів управління даними за допомогою тригерів.
курсовая работа [3,0 M], добавлен 25.08.2014Програмне забезпечення та шляхи автоматизації інформаційної системи управління школи. Побудова імітаційної моделі управлінських процесів за допомогою ППЗ MS Project. Розробка бази даних "Школа". Дослідження автоматизованого робочого місця секретаря.
курсовая работа [210,9 K], добавлен 10.11.2012Розробка майбутніх програмних продуктів, управління їх вихідним кодом. Концепція та моделі надання послуг хмарних обчислень. Особливості використання системи управління версіями Git. Технологія командної роботи над проектом конфігураційного управління.
курсовая работа [1,9 M], добавлен 24.07.2014Живучість в комплексі властивостей складних систем. Моделі для аналізу живучості. Аналіз електромагнітної сумісності. Характер пошкоджень елементної бази інформаційно-обчислювальних систем. Розробка алгоритму, баз даних та модулів програми, її тестування.
дипломная работа [151,5 K], добавлен 11.03.2012