Объектно-ориентированная модель данных
Общие понятия объектно-ориентированного подхода и их преломление в объектно-ориентированных базах данных (ООБД): достоинства, недостатки и примеры реализации. Логическая и физическая структура модели. Языки программирования систем ООБД и языки запросов.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 31.07.2014 |
Размер файла | 31,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Государственное бюджетное образовательное учреждение Среднего профессионального образования свердловской области
«Каменск-Уральский политехнический колледж»
Специальность 230401 Информационные системы (по отраслям)
Группа ИС-31
РЕФЕРАТ
по учебной дисциплине «АВТОМАТИЗИРОВАННЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ»
тема: «ОБЪЕКТНО-ОРИЕНТИРОВАННАЯ МОДЕЛЬ ДАННЫХ»
Проверил:
В.Ф. Ашмарина
Выполнил:
Е.В. Коцюба
2013
Содержание
Введение
Общие понятия объектно-ориентированного подхода и их преломление в ООБД
Достоинства и недостатки модели
Пример реализации модели
Логическая и физическая структура модели
Языки программирования систем ООБД и языки запросов
Заключение
Список использованной литературы
Введение
Возникновение направления объектно-ориентированных баз данных (ООБД) определялось, прежде всего, потребностями практики: необходимостью разработки сложных информационных прикладных систем, для которых технология предшествующих систем баз данных не была вполне удовлетворительной. программирование ООБД объектный ориентированный
Конечно, ООБД возникли не на пустом месте. Соответствующий базис обеспечивался как предыдущими работами в области баз данных, так и давно развивающимися направлениями языков программирования с абстрактными типами данных и объектно-ориентированных языков программирования.
Что касается связи с предыдущими работами в области баз данных, то наиболее сильное влияние на работы в области ООБД оказали проработки реляционных СУБД и следующего хронологически за ними семейства БД, в которых поддерживалось управление сложными объектами. Эти работы обеспечили структурную основу организации OOБД.
Общие понятия объектно-ориентированного подхода и их преломление в ООБД
Принципиальное различие между структурным и объектно-ориентированным подходом заключается в способе декомпозиции системы. Объектно-ориентированный подход использует объектную декомпозицию, при этом статическая структура системы описывается в терминах объектов и связей между ними, а поведение системы описывается в терминах обмена сообщениями между объектами. Каждый объект системы обладает своим собственным поведением, моделирующим поведение объекта реального мира.
В наиболее общей и классической постановке объектно-ориентированный подход базируется на концепциях:
· объекта и идентификатора объекта;
· атрибутов и методов;
· классов;
· иерархии и наследования классов.
Любая сущность реального мира в объектно-ориентированных языках и системах моделируется в виде объекта. Любой объект при своем создании получает генерируемый системой уникальный идентификатор, который связан с объектом во все время его существования и не меняется при изменении состояния объекта. Каждый объект имеет состояние и поведение. Состояние объекта - набор значений его атрибутов. Поведение объекта - набор методов (программный код), оперирующих над состоянием объекта. Значение атрибута объекта - это тоже некоторый объект или множество объектов. Состояние и поведение объекта инкапсулированы в объекте; взаимодействие между объектами производится на основе передачи сообщений и выполнении соответствующих методов.
Множество объектов с одним и тем же набором атрибутов и методов образует класс объектов. Объект должен принадлежать только одному классу (если не учитывать возможности наследования, см. следующий абзац). Допускается наличие примитивных предопределенных классов, объекты-экземляры которых не имеют атрибутов: целые, строки и т.д. Класс, объекты которого могут служить значениями атрибута объектов другого класса, называется доменом этого атрибута.
Специфика применения объектно-ориентированного подхода для организации и управления БД потребовала уточненного толкования классических концепций и некоторого их расширения. Это определяется потребностями долговременного хранения объектов во внешней памяти, ассоциативного доступа к объектам, обеспечения согласованного состояния ООБД в условиях мультидоступа и тому подобных возможностей, свойственных базам данных. Выделяются три аспекта, отсутствующие в традиционной парадигме, но требующиеся в ООБД.
Первый аспект касается потребности в средствах спецификации знаний при определении класса (ограничений целостности, правил дедукции и т.п.) Второй аспект - потребность в механизме определения разного рода семантических связей между объектами вообще говоря разных классов. Фактически это означает требование полного распространения на ООБД средств семантического моделирования данных. Потребность в использовании абстракции ассоциирования отмечается и в связи с использовании ООБД в сфере автоматизированного проектирования и инженерии. Наконец, третий аспект связан с пересмотром понятия класса. В контексте ООБД оказывается более удобным рассматривать класс как множество объектов данного типа, т.е. одновременно поддерживать понятия и типа и класса объектов.
Достоинства и недостатки модели
Главный недостаток структурного подхода заключается в следующем: процессы и данные существуют отдельно друг от друга (как в модели деятельности организации, так и в модели программной системы), причем проектирование ведется от процессов к данным. Таким образом, помимо функциональной декомпозиции, существует также структура данных, находящаяся на втором плане.
В объектно-ориентированном подходе основная категория объектной модели - класс - объединяет в себе на элементарном уровне как данные, так и операции, которые над ними выполняются (методы). Именно с этой точки зрения изменения, связанные с переходом от структурного к объектно-ориентированному подходу, являются наиболее заметными. Разделение процессов и данных преодолено, однако остается проблема преодоления сложности системы, которая решается путем использования механизма компонентов.
Данные по сравнению с процессами являются более стабильной и относительно редко изменяющейся частью системы. Отсюда следует главное достоинство объектно-ориентированного подхода, которое Гради Буч сформулировал следующим образом: объектно-ориентированные системы более открыты и легче поддаются внесению изменений, поскольку их конструкция базируется на устойчивых формах. Это дает возможность системе развиваться постепенно и не приводит к полной ее переработке даже в случае существенных изменений исходных требований.
Буч отмечает также ряд следующих преимуществ объектно- ориентированного подхода:
1. Объектная декомпозиция дает возможность создавать программные системы меньшего размера путем использования общих механизмов, обеспечивающих необходимую экономию выразительных средств. Использование объектного подхода существенно повышает уровень унификации разработки и пригодность для повторного использования не только программ, но и проектов, что в конце концов ведет к созданию среды разработки и переходу к сборочному созданию ПО. Системы зачастую получаются более компактными, чем их структурные эквиваленты, что означает не только уменьшение объема программного кода, но и удешевление проекта за счет использования предыдущих разработок.
2. Объектная декомпозиция уменьшает риск создания сложных систем ПО, так как она предполагает эволюционный путь развития системы на базе относительно небольших подсистем. Процесс интеграции системы растягивается на все время разработки, а не превращается в единовременное событие.
3. Объектная модель вполне естественна, поскольку в первую очередь ориентирована на человеческое восприятие мира, а не на компьютерную реализацию.
4. Объектная модель позволяет в полной мере использовать выразительные возможности объектных и объектно-ориентированных языков программирования.
К недостаткам объектно-ориентированного подхода относятся некоторое снижение производительности функционирования ПО и высокие начальные затраты. Объектная декомпозиция существенно отличается от функциональной, поэтому переход на новую технологию связан как с преодолением психологических трудностей, так и дополнительными финансовыми затратами. Безусловно, объектно-ориентированная модель наиболее адекватно отражает реальный мир, представляющий собой совокупность взаимодействующих (посредством обмена сообщениями) объектов. Но на практике в настоящий момент продолжается формирование стандарта языка объектно-ориентированного моделирования UML, и количество CASE-средств, поддерживающих объектно-ориентированный подход, невелико по сравнению с поддерживающими структурный подход. Кроме того, диаграммы, отражающие специфику объектного подхода (диаграммы классов и т.п.), гораздо менее наглядны и плохо понимаемы непрофессионалами. Поэтому одна из главных целей внедрения CASE-технологии, а именно снабжение всех участников проекта (в том числе и заказчика) общим языком "для передачи понимания", обеспечивается на сегодняшний день только структурными методами.
При переходе от структурного подхода к объектному, как при всякой смене технологии, необходимо вкладывать деньги в приобретение новых инструментальных средств. Здесь следует учесть и расходы на обучение (овладение методом, инструментальными средствами и языком программирования). Для некоторых организаций эти обстоятельства могут стать серьезными препятствиями.
Объектно-ориентированный подход не дает немедленной отдачи. Эффект от его применения начинает сказываться после разработки двух-трех проектов и накопления повторно используемых компонентов, отражающих типовые проектные решения в данной области. Переход организации на объектно-ориентированную технологию - это смена мировоззрения, а не просто изучение новых CASE-средств и языков программирования.
Пример реализации модели
Проект ORION осуществлялся с 1985 по 1989 г. фирмой MCC под руководством известного еще по работам в проекте System R Вона Кима. Под названием ORION на самом деле скрывается семейство трех СУБД: ORION-1 - однопользовательская система; ORION-1SX, предназначенная для использования в качестве сервера в локальной сети рабочих станций; ORION-2 - полностью распределенная объектно-ориентированная СУБД. Реализация всех систем производилась с использованием языка Common Lisp на рабочих станциях (и их локальных сетях) Symbolics 3600 с ОС Genera 7.0 и SUN-3 в среде ОС UNIX. Описание реализации ORION-2 пока не опубликовано, поэтому мы рассмотрим только ORION-1 и ORION-1SX.
Основными функциональными компонентами системы являются подсистемы управления памятью, объектами и транзакциями. В ORION-1 все компоненты, естественно, располагаются в одной рабочей станции; в ORION-1SX - разнесены между разными рабочими станциями (в частности, управление объектами производится в рабочей станции-клиенте). Применение в ORION-1SX для взаимодействия клиент-сервер механизма удаленного вызова процедур позволило использовать в этой системе практически без переделки многие модули ORION-1. Сетевые взаимодействия основывались на стандартных средствах операционных систем.
В число функций подсистемы управления памятью входит распределение внешней памяти, перемещение страниц из буферов оперативной памяти во внешнюю память и наоборот, поиск и размещение объектов в буферах оперативной памяти (как принято в объектно-ориентированных системах, поддерживаются два представления объектов - дисковое и в оперативной памяти; при перемещении объекта из буфера страниц в буфер объектов и обратно представление объекта изменяется). Кроме того, эта подсистема ответственна за поддержание вспомогательных индексных структур, предназначенных для ускорения выполнения запросов.
Подсистема управления объектами включает подкомпоненты обработки запросов, управления схемой и версиями объектов. Версии поддерживаются только для объектов, при создании которых такая необходимость была явно указана. Для схемы БД версии не поддерживаются; при изменении схемы отслеживается влияние этого изменения на другие компоненты схемы и на существующие объекты. При обработке запросов используется техника оптимизации, аналогичная применяемой в реляционных системах (т.е. формируется набор возможных планов выполнения запроса, оценивается стоимость каждого из них и выбирается для выполнения наиболее дешевый).
Подсистема управления транзакциями обеспечивает традиционную сериализуемость транзакций, а также поддерживает средства журнализации изменений и восстановления БД после сбоев. Для сериализации транзакций применяется разновидность двухфазного протокола синхронизационных захватов с различной степенью гранулированности. Конечно, при синхронизации учитывается специфика ООБД, в частности, наличие иерархии классов. Журнал изменений обеспечивает откаты индивидуальных транзакций и восстановление БД после мягких сбоев (архивные копии БД для восстановления после поломки дисков не поддерживаются).
Так же к объектно-ориентированным СУБД относятся POET, Jasmine, Versant, O2, ODB - Jupiter , Iris, Postgres .
Логическая и физическая структура модели
По мнению Майерса "Разделение программы на модули до некоторой степени позволяет уменьшить ее сложность... Однако гораздо важнее тот факт, что внутри модульной программы создаются множества хорошо определенных и документированных интерфейсов. Эти интерфейсы неоценимы для исчерпывающего понимания программы в целом". В некоторых языках программирования, например в Smalltalk, модулей нет, и классы составляют единственную физическую основу декомпозиции. В других языках, включая Object Pascal, C++, Ada, CLOS, модуль - это самостоятельная языковая конструкция. В этих языках классы и объекты составляют логическую структуру системы, они помещаются в модули, образующие физическую структуру системы. Это свойство становится особенно полезным, когда система состоит из многих сотен классов.
Согласно Барбаре Лисков "модульность - это разделение программы на фрагменты, которые компилируются по отдельности, но могут устанавливать связи с другими модулями". Мы будем пользоваться определением Парнаса: "Связи между модулями - это их представления друг о друге". В большинстве языков, поддерживающих принцип модульности как самостоятельную концепцию, интерфейс модуля отделен от его реализации. Таким образом, модульность и инкапсуляция ходят рука об руку. В разных языках программирования модульность поддерживается по-разному. Например, в C++ модулями являются раздельно компилируемые файлы. Для C/C++ традиционным является помещение интерфейсной части модулей в отдельные файлы с расширением .h (так называемые файлы-заголовки). Реализация, то есть текст модуля, хранится в файлах с расширением .с (в программах на C++ часто используются расширения .ее, .ср и .срр). Связь между файлами объявляется директивой макропроцессора #include. Такой подход строится исключительно на соглашении и не является строгим требованием самого языка. В языке Object Pascal принцип модульности формализован несколько строже. В этом языке определен особый синтаксис для интерфейсной части и реализации модуля (unit). Язык Ada идет еще на шаг дальше: модуль (называемый package) также имеет две части - спецификацию и тело. Но, в отличие от Object Pascal, допускается раздельное определение связей с модулями для спецификации и тела пакета. Таким образом, допускается, чтобы тело модуля имело связи с модулями, невидимыми для его спецификации.
Правильное разделение программы на модули является почти такой же сложной задачей, как выбор правильного набора абстракций. Абсолютно прав Зельковиц, утверждая: "поскольку в начале работы над проектом решения могут быть неясными, декомпозиция на модули может вызвать затруднения. Для хорошо известных приложений (например, создание компиляторов) этот процесс можно стандартизовать, но для новых задач (военные системы или управление космическими аппаратами) задача может быть очень трудной".
Модули выполняют роль физических контейнеров, в которые помещаются определения классов и объектов при логическом проектировании системы. Такая же ситуация возникает у проектировщиков бортовых компьютеров. Логика электронного оборудования может быть построена на основе элементарных схем типа НЕ, И-НЕ, ИЛИ-НЕ, но можно объединить такие схемы в стандартные интегральные схемы (модули), например, серий 7400, 7402 или 7404.
Для небольших задач допустимо описание всех классов и объектов в одном модуле. Однако для большинства программ (кроме самых тривиальных) лучшим решением будет сгруппировать в отдельный модуль логически связанные классы и объекты, оставив открытыми те элементы, которые совершенно необходимо видеть другим модулям. Такой способ разбиения на модули хорош, но его можно довести до абсурда. Рассмотрим, например, задачу, которая выполняется на многопроцессорном оборудовании и требует для координации своей работы механизм передачи сообщений. В больших системах, подобных описываемым в главе 12, вполне обычным является наличие нескольких сотен и даже тысяч видов сообщений. Было бы наивным определять каждый класс сообщения в отдельном модуле. При этом не только возникает кошмар с документированием, но даже просто поиск нужных фрагментов описания становится чрезвычайно труден для пользователя. При внесении в проект изменений потребуется модифицировать и перекомпилировать сотни модулей. Этот пример показывает, что скрытие информации имеет и обратную сторону. Деление программы на модули бессистемным образом иногда гораздо хуже, чем отсутствие модульности вообще.
В традиционном структурном проектировании модульность - это искусство раскладывать подпрограммы по кучкам так, чтобы в одну кучку попадали подпрограммы, использующие друг друга или изменяемые вместе. В объектно-ориентированном программировании ситуация несколько иная: необходимо физически разделить классы и объекты, составляющие логическую структуру проекта.
Языки программирования систем ООБД и языки запросов
Как отмечают многие исследователи и разработчики, объектно-ориентированная система БД представляет собой объединение системы программирования и СУБД (альтернативная, но не более проясняющая суть дела точка зрения состоит в том, что объектно-ориентированная СУБД - это СУБД, основанная на объектно-ориентированной модели данных).
Языковая среда ООБД - это объектно-ориентированная система программирования, включающая средства работы с долговременными объектами. "Естественность" включения средств работы с БД в язык программирования означает, что работа с долговременными (хранимыми во внешней БД) объектами должна происходить на основе тех же синтаксических конструкций (и с той же семантикой), что и работа со временными, существующими только во время работы программы объектами.
Эта сторона ООБД наиболее близка родственному направлению языков программирования БД. Языки программирования ООБД и БД во многих своих чертах различаются только терминологически; существенным отличием является лишь поддержание в языках первого класса подхода к наследованию классов. Кроме того, языки второго класса, как правило, более развиты как в отношении системы типов, так и в отношении управляющих конструкций.
Другим аспектом языкового окружения ООБД является потребность в языках запросов, которые можно было бы использовать в интерактивном режиме. Если доступ к объектам внешней БД в языках программирования ООБД носит в основном навигационный характер, то для языков запросов более удобен декларативный стиль. Декларативные языки запросов к ООБД менее развиты, чем языки программирования ООБД, и при их реализации возникают существенные проблемы. Ниже мы рассмотрим имеющиеся подходы и их ограничения более подробно. Но начнем с языков программирования ООБД.
Начало расцвета направления ООБД совпало с пиком популярности языка Smalltalk-80. Этот язык оказал большое влияние на разработку первых систем ООБД, и, в частности, использовался в качестве языка программирования. Во многом опирается на Smalltalk и известная коммерчески доступная система GemStone.
Трудности с эффективной практической реализацией языка Smalltalk побудили разработчиков систем ООБД к поиску альтернативных базовых языков. Известная близость объектно-ориентированного и функционального подходов к программированию позволяет достаточно успешно опираться на функциональные языки программирования. В частности, язык Лисп (Common Lisp) является основой проекта ORION. В этом проекте Лисп является и инструментальным языком, и базой объектно-ориентированного языка программирования в среде ORION.
Потребности в еще более эффективной реализации заставляют использовать в качестве основы объектно-ориентированного языка языки более низкого уровня. Например, в системе VBASE наряду со специально разработанным языком TDL, предназначенным для определения типов, используется объектно-ориентированное расширение языка Си - COP (C Object Processor). В уже упоминавшемся проекте O2 наряду с функциональным объектно-ориентированным языком программирования используются два объектно-ориентированных расширения языков Бейсик и Си. При этом, насколько можно судить по публикациям, наибольшее распространение среди пользователей этой системы (она уже коммерчески доступна) получил язык CO2, являющийся расширением языка Си. Возможно это связано лишь с широкой (и все более возрастающей) популярностью языка Си (и его объектно-ориентированного потомка Си++), ставшего поистине девизом "настоящих программистов". Может быть, причины более глубинны (например, языки более высокого уровня слишком ограничительны для программистов-профессионалов; недаром большинство современных реализаций языков более высокого уровня выполняются именно на языке Си). Тем не менее, современная ситуация именно такова, и мы считаем полезным привести краткое описание основных особенностей языка CO2.
Прежде всего, CO2 не является полностью самостоятельным языком. Этот язык входит во многоязыковую среду O2 и предназначен для программирования методов ранее определенных классов. Определение классов, сигнатур методов (фактически, прототипов функций в терминологии языка Си) и имен постоянно хранимых значений и объектов производится с использованием отдельного языка определения схемы БД.
Основой манипулирования объектами, хранимыми в БД, является расширенное по сравнению с языком Си средство итерации. Итератор применим к значениям-множествам или спискам. Фактически он означает последовательное применение оператора-тела цикла ко всем элементам множества или списка.
Потребность в поддержании в объектно-ориентированной СУБД не только языка (или семейства языков) программирования ООБД, но и развитого языка запросов в настоящее время осознается практически всеми разработчиками. Система должна поддерживать легко осваиваемый интерфейс, прямо доступный конечному пользователю в интерактивном режиме. Один из подходов основывается на поддержании обходчиков. В этом случае конечный интерфейс обычно является графическим. На экране отображается схема (или подсхема) ООБД, и пользователь осуществляет доступ к объектам в навигационном стиле. По мнению Бансилона в этом случае разумно игнорировать принцип инкапсуляции объектов и предъявлять пользователю внутренность объектов. В большинстве существующих систем ООБД подобный интерфейс существует, но всем понятно, что навигационный язык запросов - это в некотором смысле шаг назад по сравнению с языками запросов даже реляционных систем. Ведутся активные поиски подходов к организации декларативных языков запросов к ООБД.
Беери отмечает существование трех подходов. Первый подход - языки, являющиеся объектно-ориентированными расширениями языков запросов реляционных систем. Наиболее распространены языки с синтаксисом, близким к известному языку SQL.
Второй подход основывается на построении полного логического объектно-ориентированного исчисления. По поводу построения такого исчисления имеются теоретические работы, но законченный и практически реализованный язык запросов нам неизвестен
Наконец, третий подход основывается на применении дедуктивного подхода. В основном это отражает стремление разработчиков к сближению направлений дедуктивных и объектно-ориентированных БД. Примером простого дедуктивного объектно-ориентированного языка запросов может служить.
Независимо от применяемого для разработки языка запросов подхода перед разработчиками встает одна концептуальная проблема, решение которой не укладывается в традиционное русло объектно-ориентированного подхода. Понятно, что основой для формулирования запроса должен служить класс, представляющий в ООБД множество однотипных объектов. Но что может представлять собой результат запроса? Набор основных понятий объектно-ориентированного подхода не содержит подходящего к данному случаю понятия. Обычно из положения выходят, расширяя базовый набор концепций концепцией множества объектов и полагая, что результатом запроса является некоторое подмножество объектов-экземпляров класса. Это довольно ограничительный подход, поскольку автоматически исключает возможность наличия в языке запросов средств, аналогичных реляционному оператору соединения. В конце этого раздела мы коротко изложим собственные (в достаточной степени предварительные) соображения по этому поводу, но сначала кратко рассмотрим особенности нескольких конкретных декларативных языков запросов к ООБД.
В языке запросов объектно-ориентированной СУБД ORION полностью поддерживается принцип инкапсуляции объектов. В реализованном варианте языка запросы могут основываться только на одном классе (хотя в описывается подход к определению запроса на нескольких классах в стиле расширения семантики реляционного оператора соединения). Синтаксис языка ориентирован на SQL. Очень развит набор допустимых предикатов селекции. В частности, для атрибута, доменом которого является суперкласс, можно указать имя интересующего пользователя подкласса.
Язык запросов системы Iris находится в значительной степени под влиянием реляционной парадигмы. Даже название этого языка OSQL отражает его тесную связь с реляционным языком SQL. По сути дела, OSQL - это реляционный язык, рассчитанный на работу с ненормализованными отношениями. Естественно, при таком подходе в OSQL нарушается инкапсуляция объектов.
На наш взгляд, особый интерес представляет декларативный язык запросов системы O2 RELOOP. В общих словах, это декларативный язык запросов с SQL-ориентированным синтаксисом, основанный на специально разработанной для модели O2 алгебре объектов и значений. (Кстати, это не единственная работа в направлении построения алгебры для объектно-ориентированных моделей данных. На наш взгляд, особенно впечатляющим качеством языка RELOOP является естественность его построения в общем контексте модели O2. Запрос задается всегда на значении-множестве или списке. Если мы вспомним, что долговременному классу в O2 соответствует одноименное значение-множество, то тем самым можно определить запрос на любом хранимом классе. Результатом запроса может являться объект, значение-множество или значение-список. При этом элементами значений-множеств могут являться объекты (простая выборка), либо значения-кортежи с элементами-объектами разных классов (например). В совокупности эти особенности языка позволяют формулировать запросы над несколькими классами (специфическое соединение, порождающее не новые объекты, а кортежи из существующих объектов), а также употреблять вложенные подзапросы.
Заключение
Объектно-ориентированные БД в ближайшее время смогут занять достойное место на рынке ПО. В последнее десятилетие объектно-ориентированная технология нашла свое место в языках программирования, пользовательских интерфейсах, базах данных, операционных системах... Продукты, помеченные как объектно-ориентированные системы баз данных, появились на рынке, а производители реляционных систем баз данных объявляют, что они расширяют свои продукты объектно-ориентированными возможностями.
По мере укрепления рынка ООБД, будут создаваться группы поддержки, которые будут заниматься только продажей и поддержкой настроек. В этой области важно создать простой механизм импорта / экспорта настроек. Поэтому возрастет актуальность повсеместного применения UML как средства хранения описаний объектов, интерфейсов и программных комплексов в целом. Эти же средства можно будет применять для оценки качества ПО.
Список использованной литературы
1. Объектно-ориентированные базы данных: [Электронный ресурс] http://www.p-stone.ru/libr/db/teoretic/data/public3/
2. Технология объектно-ориентированных баз данных: [Электронный ресурс] http://db.snipetz.com/oobd.htm#VVVOOBD
3. Модели представления данных. Постреляционная, многомерная, объектно-ориентированная модели данных. [Электронный ресурс] http://www.dmtsoft.ru/bn/106/as/oneaticleshablon
4. Базы данных. Вводный курс. Современные модели данных [Электронный ресурс] http://citforum.ru/database/advanced_intro/8.shtml
Размещено на Allbest.ru
Подобные документы
Использование объектно-ориентированного программирования - хорошее решение при разработке крупных программных проектов. Объект и класс как основа объектно-ориентированного языка. Понятие объектно-ориентированных языков. Языки и программное окружение.
контрольная работа [60,1 K], добавлен 17.01.2011Концепция объектно-ориентированного программирования. Объектно-ориентированные языки программирования: Smalltalk, Object Pascal, CLOS и C++. Понятие "Объект" и "Класс". Управление доступом к элементам данных классов. Определение функций-членов класса.
реферат [24,5 K], добавлен 28.10.2011Основные сведения о языках программирования и их состав. Программа для компьютера. Использование компилятора и операторы. Языки программирования высокого уровня. Концепции объектно-ориентированного программирования. Языки искусственного интеллекта.
презентация [6,3 M], добавлен 14.08.2013Характеристики и свойства языков программирования. Исследование эволюции объектно-ориентированных языков программирования. Построение эволюционной карты механизмов ООП. Разработка концептуальной модели функционирования пользовательского интерфейса.
курсовая работа [2,6 M], добавлен 17.11.2014Сущность и функциональные особенности баз данных, их классификация и типы, внутренняя структура и элементы. Модели данных, хранящихся в базах: иерархическая, сетевая, реляционная, многомерная, объектно-ориентированная. Виды запросов и типы таблиц.
дипломная работа [66,7 K], добавлен 06.01.2014Особенности исследования методик объектно-ориентированного проектирования программ с помощью языка UML по формализации, решению поставленной задачи, технологических приемов разработки объектно-ориентированных программ на языке Си++. Разработка программы.
контрольная работа [188,9 K], добавлен 22.10.2014Анализ предметной области объектно-ориентированного программирования. Языки Delphi, Object Pascal - объектно-ориентированная среда программирования. Основные алгоритмические решения. Решение дифференциального уравнения методом Рунге-Кутта в среде Excel.
курсовая работа [1,5 M], добавлен 02.04.2011Общая характеристика объектно-ориентированного подхода в программировании, его основные свойства и принципы. Разработка программы для автоматизация деятельности кафе на основе объектно-ориентированного подхода, проектирования и реализации схемы данных.
курсовая работа [1,2 M], добавлен 22.01.2012Основные элементы объектной модели. Сущность и преимущества объектно-ориентированного подхода, понятие объекта и класса. Унифицированный язык моделирования UML. Диаграммы классов и взаимодействия: назначение, построение и примеры использования.
реферат [273,2 K], добавлен 09.06.2009Анализ проблематики построения объектно-ориентированного канала связи. Основные понятия протокола Modbus. Возможности CodeSys для реализации объектно-ориентированного подхода. Разработка методики кроссплатформенной библиотеки для интеграции устройств.
курсовая работа [38,6 K], добавлен 15.06.2013