Квантовые компьютеры

Принципиальная схема квантового компьютера. Требования к элементной базе квантового компьютера. Направления в развитии элементной базы квантовых компьютеров. Нерешенные проблемы на пути построения квантовых компьютеров. Квантовая связь и криптография.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.04.2014
Размер файла 64,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Саратовский государственный технический университет

Кафедра информационных систем и технологий

Квантовые компьютеры

Курсовая работа

Руководитель:

к.ф.-м. н., доцент Богомолов А.С.

Саратов

2012

Содержание

Введение

Глава 1. Архитектура квантовых компьютеров

1.1 Принципиальная схема квантового компьютера

1.2 Общие требования к элементной базе квантового компьютера

1.3 Основные направления в развитии элементной базы квантовых компьютеров

Глава 2. Перспективы развития квантовых компьютеров

2.1 Нерешенные проблемы на пути построения квантовых компьютеров

2.2 Квантовая связь и криптография

2.3 Будущее квантовых компьютеров

Заключение

Список использованной литературы

Введение

Актуальность темы. Сегодня можно назвать два направления научно-технического прогресса, связанные с вычислительными системами: создание искусственного интеллекта и квантовых компьютеров.

Обе эти задачи, пусть и медленно, решаются, и у ученых и исследователей есть целый ряд наработок, в особенности, в том, что касается теоретических и конструкционных основ квантовых компьютеров.

Основные работы над аппаратным обеспечением (hardware) квантового компьютера продвигаются в следующих направлениях:

Ш создание квантового процессора;

Ш создание устройств для хранения квантовой информации (квантовая память);

Ш разработка квантовой шины для обмена информацией.

Сразу стоит отметить, что это лишь аналоги соответствующих устройств классического компьютера, которые будут существенно от них отличаться.

Наибольшие усилия и средства в настоящее время направлены на решение первого вопроса, и здесь достигнуты значительные успехи.

Прототипы квантовых компьютеров существуют уже сегодня. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов.

Среди важных задач, не доступных современным классическим компьютерам и решения которых можно было бы ожидать от квантового компьютера, отмечу задачи тонкого моделирования многочастичных квантовых систем, к которым можно отнести сложные молекулы, биологические объекты, а также элементы современной наноэлектроники. Это могут быть и такие квантовые системы, где наряду с другими квантовыми свойствами существенную роль играют суперпозиция, запутанность состояний, особенности квантовой динамики.

Следовательно, уже сейчас потребность в квантовых компьютерах существует и с появлением новых задач она, несомненно, будет возрастать.

Целью данной работы является анализ состояния исследований в области квантовых компьютеров и квантовых вычислений.

Достижение поставленной цели предполагало решение следующих основных задач:

1. Теоретическое исследование архитектуры квантовых компьютеров.

2. Основные направления в развитии элементной базы квантовых компьютеров.

3. Принципы построения квантовых компьютеров.

Объектом исследования является модель квантового компьютера.

Предметом исследования выступают архитектурные модели квантового компьютера.

Методы исследования. Для решения поставленных задач в работе использовались методы дискретной математики, теории сложности алгоритмов, функционального программирования.

Глава 1. Архитектура квантовых компьютеров

1.1 Принципиальная схема квантового компьютера

Квантовые методы выполнения вычислительных операций, а также передачи и обработки информации, уже начинают воплощаться в реально функционирующих экспериментальных устройствах, что стимулирует усилия по реализации квантовых компьютеров. Квантовый компьютер состоит из n кубитов и позволяет проводить одно- и двухкубитовые операции над любым из них (или любой парой). Эти операции выполняются под воздействием импульсов внешнего поля, управляемого классическим компьютером.

Принципиальная схема работы любого квантового компьютера может быть представлена следующим образом (рис.1) См. статью Валиева К. А. Квантовые компьютеры: можно ли их сделать «большими»? // УФН. - 1999. - Т. 169. - C. 691- 694..

Рис. 1. - схематическая структура квантового компьютера

Основной его частью является квантовый регистр - совокупность некоторого числа L кубитов. До ввода информации в компьютер все кубиты регистра должны быть приведены в основные базисные (булевые) состояния. Эта операция называется подготовкой начального состояния или инициализацией. Далее каждый кубит подвергается селективному воздействию, например, с помощью импульсов внешнего электромагнитного поля, управляемых классическим компьютером, которое переведет основные базисные состояния определенных кубитов в не основное состояния |0с Ю |1с. При этом состояние всего регистра перейдет в суперпозицию базисных состояний вида |nс = |n1,n2,n3,...nLс, где ni = 0,1.

При вводе информации в квантовый компьютер состояние входного регистра, с помощью соответствующих импульсных воздействий преобразуется в соответствующую когерентную суперпозицию базисных ортогональных состояний. В таком виде информация далее подвергается воздействию квантового процессора, выполняющего последовательность квантовых логических операций, определяемую унитарным преобразованием, действующим на состояние всего регистра. К моменту времени t в результате преобразований исходное квантовое состояние становится новой суперпозицией, которая и определяет результат преобразования информации на выходе компьютера.

Совокупность всех возможных операций на входе данного компьютера, формирующих исходные состояния, а также осуществляющих унитарные локальные преобразования, соответствующие алгоритму вычисления, способы подавления потери когерентности - так называемой декогерентизации квантовых состояний и исправления случайных ошибок, играют здесь ту же роль, что и "программное обеспечение" в классическом компьютере См. статью Валиева К. А. Квантовые компьютеры: можно ли их сделать «большими»? // УФН. - 1999. - Т. 169. - C. 691- 694..

1.2 Общие требования к элементной базе квантового компьютера

квантовый компьютер связь криптография

При выборе конкретной схемы любого квантового компьютера необходимо решить три вопроса: во-первых, выбрать физическую систему, представляющую требуемую систему кубитов, во вторых, определить физический механизм, определяющий взаимодействие между кубитами, необходимое для выполнения двухкубитовых операций, в третьих, определить способы селективного управления кубитами и измерения их состояния на выходе. Все это вместе взятое аналогично "аппаратному обеспечению" классического компьютера.

Считается, что для реализации полномасштабного квантового компьютера, превосходящего по производительности любой классический компьютер, на каких бы физических принципах он не работал, следует обеспечить выполнение следующих пяти основных требований См. статью Валиева К. А. Квантовые компьютеры и квантовые вычисления // УФН. - 2005. - Т. 175. - C. 7.:

1. Физическая система, представляющая полномасштабный квантовый компьютер, должна содержать достаточно большое число L > 103 хорошо различаемых кубитов для выполнения соответствующих квантовых операций.

2. Необходимо обеспечить условия для приготовления входного регистра в исходном основном базисном состоянии |01,02,03,...0Lс, то есть возможность процесса инициализации.

3. Необходимо обеспечить максимальное подавление эффектов декогерентизации квантовых состояний, обусловленное взаимодействием системы кубитов с окружающей средой, что приводит к разрушению суперпозиций квантовых состояний и может сделать невозможной выполнение квантовых алгоритмов. Время декогерентизации должно, по крайней мере, в 104 раз превышать время выполнения основных квантовых операций (времени такта). Для этого система кубитов должна быть достаточно слабо связана с окружением.

4. Необходимо обеспечить за время такта выполнение требуемой совокупности квантовых логических операций, определяющей унитарное преобразование. Эта совокупность должна содержать определенный набор только двухкубитовых операций, типа контролируемый инвертор или контролируемое НЕ (Controlled NOT є CNOT) (аналог исключающего ИЛИ в классических компьютерах), осуществляющих операции поворота вектора состояния двух взаимодействующих кубитов в четырехмерном гильбертовом пространстве, и однокубитовых операций, осуществляющих поворот вектора состояния кубита в двухмерном гильбертовом пространстве, таких как операции НЕ, Адамара и некоторые другие.

5. Необходимо обеспечить с достаточно высокой надежностью измерение состояния квантовой системы на выходе. Проблема измерения конечного квантового состояния является одной из основных проблем квантовых вычислений.

1.3 Основные направления в развитии элементной базы квантовых компьютеров

1.3.1 Квантовые компьютере на основе ионов, захваченных ионными ловушками

Взаимодействие между заряженными ионами в одномерной цепочке этих ловушек осуществляется посредством возбуждения их коллективного движения, а индивидуальное управление ими с помощью лазеров инфракрасного диапазона. Первый прототип квантового компьютера на этих принципах был предложен австрийскими физиками И.Цираком и П.Цоллером в 1995 году. В настоящее время интенсивные экспериментальные работы ведутся в Los Alamos Natl.Lab. (LANL) и Natl.Inst.Stand.Tech. (NIST) в США Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. - М.-Ижевск: Регулярная и хаотическая динамика, 2004. С.49-51.. Преимущество такого подхода состоит в сравнительно простом индивидуальном управлении отдельными кубитами. Основными недостатками этого типа квантовых компьютеров являются необходимость создания сверхнизких температур, обеспечение устойчивости состояний ионов в цепочке и ограниченность возможного числа кубитов значением L < 40.

1.3.2 Квантовые компьютеры на основе молекул органических жидкостей с косвенным скалярным взаимодействием между ними и методов ядерного магнитного резонанса (ЯМР) для управления кубитами

В предложенном способе построения квантового компьютера кубитами выступают спины - ядер водорода (протоны) и углерода 13С в молекулах жидкости. Так, в молекуле трихлорэтилена (рис. 2) спины ядер двух атомов 13С и одного протона образуют три кубита. Два атома 13С химически неэквивалентны и поэтому имеют различные частоты ядерного магнитного резонанса w A и w B в заданном внешнем постоянном магнитном поле B 0, протон будет иметь третью резонансную частоту w C. Подавая импульсы внешнего переменного магнитного поля на частотах (ид, tog, о) с, мы селективно управляем квантовой эволюцией любого из этих спинов (выполняем однокубитовые вентили). Между спинами ядер, разделенных одной химической связью 1H-13С и13С-13С, имеется магнитное контактное взаимодействие, что позволяет построить двухкубитовые вентили.

Рис. 2. - схема ансамблевого ядерно магнитнорезонансного квантового компьютера

Главным преимуществом такого компьютера является то, что огромное число практически независимых молекул-компьютеров жидкости действует, обеспечивая тем самым возможность управления ими с помощью хорошо известных в технике ядерного магнитного резонанса (ЯМР) операций над макроскопическим объемом жидкости. Последовательности радиочастотных импульсов, выполняющие в этом случае роль определенных квантовых логических вентилей, осуществляют глобальные унитарные преобразования состояний соответствующих ядерных спинов для всех молекул-компьютеров. Индивидуальное обращение к отдельным кубитам заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого ЯМР квантового компьютера. Замечательно, что он может в принципе работать при комнатной температуре. Время декогерентизации квантовых состояний ядерных спинов в жидкости достаточно велико. Оно может составлять несколько секунд.

В области ЯМР квантовых компьютеров на органических жидкостях к настоящему времени достигнуты наибольшие успехи. Они связаны в основном с хорошо развитой импульсной техникой ЯМР-спектроскопии, обеспечивающей выполнение различных операций над когерентными суперпозициями состояний ядерных спинов и с возможностью использования для этого стандартных ЯМР-спектрометров, работающих при комнатных температурах.

Экспериментально на ЯМР квантовых компьютерах были осуществлены алгоритм Гровера поиска данных, квантовое фурье-преобразование, квантовая коррекция ошибок, квантовая телепортация, квантовое моделирование и другие операции.

Основными ограничениями для этого направления являются Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. - М.-Ижевск: Регулярная и хаотическая динамика, 2004. С.120-122. :

Ш Смешанный характер исходного состояния кубитов, что требует использования определенных неунитарных операций для приготовления начального состояния.

Ш Измеряемый на выходе сигнал экспоненциально убывает с ростом числа кубитов L.

Ш Число ядерных спинов-кубитов в отдельной молекуле с достаточно различающимися резонансными частотами L ограничено.

Ш Однокубитовые и двукубитовые квантовые операции являются относительно медленными.

Эти ограничения приводят к тому, что ЯМР квантовые компьютеры на молекулах органической жидкости не смогут иметь число кубитов, значительно больше десяти. Их следует рассматривать лишь как прототипы будущих квантовых компьютеров, полезные для отработки принципов квантовых вычислений и проверки квантовых алгоритмов.

1.3.3 Квантовые компьютеры на основе зарядовых состояний куперовских пар

Данный принцип построения квантовых компьютеров основан на использовании в качестве кубитов зарядовых состояний куперовских пар в квантовых точках, связанных переходами Джозефсона, предложенное Д.В.Авериным в 1998 году.

Первый твердотельный кубит на этих принципах был создан в NEC Fund.Res.Lab. в Японии в 1999 году. Полагают, что перспективность этого направления состоит в возможности создания электронных квантовых устройств высокой степени интеграции на одном кристалле, при этом для управления кубитами не потребуются громоздкие лазерные или ЯМР установки. Однако на пути создания квантовых компьютеров еще остается нерешенными ряд важных проблем и, в частности, проблема устойчивости состояний кубитов и декогерентизация. Поисковые работы квантовым компьютерам на высокотемпературных сверхпроводниках в России ведутся в Институте теоретической физики им. Л.Д.Ландау РАН Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. - М.-Ижевск: Регулярная и хаотическая динамика, 2004. С.125. .

1.3.4 Твердотельные ЯМР квантовые компьютеры

Важные перспективы открываются перед направлением твердотельных ЯМР квантовых компьютеров.

Для этого в 1998 г. австралийским физиком Б.Кейном было предложено использовать в качестве кубитов обладающие ядерным спином 1/2 донорные атомы с изотопами 31P, которые имплантируются в кремниевую структуру, Это предложение, которое пока остается нереализованным, открывает потенциальную возможность создания квантовых вычислительных устройств с практически неограниченным числом кубитов.

В рассматриваемом варианте предполагается использовать температуры достаточно низкие для того, чтобы электроны донорных атомов занимали только нижнее спиновое состояние в магнитном поле. В полях B і 2 Тл это соответствует температурам T Ј 0,1 K, гораздо более низким, чем температура вымораживания электронных состояний доноров, которые будут поэтому оставаться в неионизированном основном орбитальном S-состоянии.

Каждый донорный атом с ядерным спином - кубит в полупроводниковой структуре предполагается расположить регулярным образом с достаточной точностью под "своим" управляющим металлическим затвором (затвор A), отделенным от поверхности кремния тонким диэлектриком (например, окисью кремния толщиной порядка нескольких нанометров). Эти затворы образуют линейную решетку произвольной длины с периодом l (Рис. 3.) Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. - М.-Ижевск: Регулярная и хаотическая динамика, 2004.с.131..

Рис. 3. Схематическое изображение двух ячеек полупроводниковой структуры модели Кейна, lA ~ 10 нм, l ~ 20 нм, c ~ 20 нм.

С помощью электрического поля, создаваемого потенциалом затворов A, можно изменять распределение электронной плотности вблизи ядра в основном состоянии, изменяя, соответственно, резонансную частоту каждого ядерного спина, которая определяется сверхтонким взаимодействием его с электронным спином. Это позволяет осуществлять индивидуальное управление квантовыми операциями путем селективного воздействия резонансных радиочастотных импульсов на ядерные спины определенных доноров.

Величиной косвенного взаимодействия между ядерными спинами соседних доноров, которое обеспечивает выполнение двухкубитовых операций, предлагается управлять с помощью затворов J, расположенных между затворами A. Это возможно, если характерные размеры полупроводниковой структуры лежат в нанометровой области. Для формирования таких структур предполагается воспользоваться приемами современной нанотехнологии, в частности, методами эпитаксиального выращивания, сканирующей зондовой нанолитографией в сверхвысоком вакууме на основе сканирующих туннельных и атомных силовых микроскопов, электронно-лучевой и рентгеновской литографией.

Для того чтобы исключить взаимодействие ядерных спинов доноров с окружением сам кремний и окисел кремния должен быть достаточно хорошо очищен от изотопа 29Si, обладающего спином I = 1/2, который содержится в количестве 4,7% в естественном кремнии. Возможно использование и других материалов.

Были предложены и несколько вариантов измерения состояний кубитов, но ни один из них пока не реализован, а также ансамблевые варианты твердотельных ЯМР квантовых компьютеров. В России работы в этом направлении ведутся в Физико-технологическом институте РАН Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. - М.-Ижевск: Регулярная и хаотическая динамика, 2004. С.137..

Глава 2. Перспективы развития квантовых компьютеров

2.1 Нерешенные проблемы на пути построения квантовых компьютеров

Среди нерешенных проблем отметим следующие: в настоящее время отсутствует практическая разработка методов квантовых измерения состояний отдельного ядерного спина или их малых групп, не изучено влияние неидеальности управляющих кубитами импульсных последовательностей и многоуровневой сверхтонкой структуры энергетического спектра на декогерентизацию квантовых состояний, не разработаны способы подавления декогерентизации, определяемой шумами в электронной измерительной системе, не опробованы квантовые методы коррекции ошибок для многокубитовых систем.

Прототипы квантовых компьютеров существуют уже сегодня. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом (IBM), объявила о сборке 5-битового квантового компьютера Кайе Ф., Лафламм Р., Моска М. Введение в квантовые вычисления. - Ижевск: РХД, 2009. С.77.. Несомненно, это большой успех. К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности.

2.2 Квантовая связь и криптография

Из обширной области разработки квантовых методов связи и криптографии мы коснемся последствий создания квантовых компьютеров и систем связи для двух современных наиболее популярных криптосистем: для системы с открытым ключом (RSA система, Rivest, Sharnir, Adieman, 1977) и системы с ключом одноразового пользования (Vernam, 1935).

В основе системы RSA лежит предположение о том, что решение математической задачи о разложении больших чисел на простые множители на классических компьютерах невозможно; оно требует экспоненциально большого числа операций и астрономического времени.

Квантовый алгоритм Шора дает возможность вычислить простые множители больших чисел за практически приемлемое время и взломать шифры RSA криптосистем Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. -- М.: МЦНМО, 1999. С.44-46.. Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известных на сегодня вычислительных алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000-значное - за 1025(!) лет. (Для сравнения возраст Вселенной равен ~1010 лет.), в то время как согласно оценкам, квантовый компьютер с памятью объемом всего лишь около 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители в течение всего нескольких часов! Таким образом, для RSA криптосистем квантовый компьютер - плохая новость.

Для криптосистем с ключом одноразового пользования квантовые методы связи оказываются хорошей новостью: они позволяют обнаружить наличие подслушивания при передаче ключа. Эта возможность основана на квантовом принципе неопределенности Гейзенберга, который гласит, что измерение изменяет состояние измеряемой квантовой системы. Пусть ключ передается по световолокну с помощью фотонов, и информация закодирована в поляризации фотонов. Тогда подслушивание заключается в перехвате и измерении поляризации пересылаемых фотонов; после измерения они пересылаются адресату. При наличии подслушивания адресат обнаружит, что 25% фотонов приходят к нему с "неправильной" поляризацией. Если этих ошибок нет, то передача ключа не подслушивается, и им можно пользоваться. Таким образом, квантовые методы обеспечивают гарантированную секретность ключа одноразового пользования. Эксперименты по передаче ключа выполнены на расстояния до 40 км.

Квантовые каналы связи дают и другие возможности.

1. С помощью одного кубита можно передавать 2 бита информации ("плотное квантовое кодирование").

2. Возможна передача неизвестного квантового состояния ("квантовая телепортация") по классическому каналу, если абоненты связи предварительно поделили коррелированную пару квантовых частиц. Потенциальные возможности применения этих феноменов еще не выяснены.

2.3 Будущее квантовых компьютеров

Можно ожидать, что в будущем появятся также комбинированные варианты твердотельных квантовых компьютеров, использующих, например, в одной структуре и ядерные спины, и квантовые точки с электронными спинами, а также комбинированные методы обращения к кубитам, такие как двойной электрон-ядерный магнитный резонанс, динамическая поляризация ядерных спинов и оптическое детектирование ядерного магнитного резонанса.

Таким образом, весьма возможно, что в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор. Для того чтобы снизить уровень шумов, критически важный для нормальной работы квантового компьютера, первые модели, по всей видимости, придется охлаждать жидким гелием. Вероятно, первые квантовые компьютеры будут громоздкими и дорогими устройствами, не умещающимися на письменном столе и обслуживаемыми большим штатом системных программистов и наладчиков оборудования в белых халатах. Доступ к ним получат сначала лишь государственные структуры, затем богатые коммерческие организации. Но примерно так же начиналась и эра обычных компьютеров.

А что же станет с классическими компьютерами? Отомрут ли они? Вряд ли. И для классических, и для квантовых компьютеров найдутся свои сферы применения. Хотя, по всей видимости, соотношение на рынке будет все же постепенно смещаться в сторону последних.

Внедрение квантовых компьютеров не приведет к решению принципиально нерешаемых классических задач, а лишь ускорит некоторые вычисления. Кроме того, станет возможна квантовая связь - передача кубитов на расстояние, что приведет к возникновению своего рода квантового Интернета. Квантовая связь позволит обеспечить защищенное (законами квантовой механики) от подслушивания соединение всех желающих друг с другом. Ваша информация, хранимая в квантовых базах данных, будет надежнее защищена от копирования, чем сейчас. Фирмы, производящие программы для квантовых компьютеров, смогут уберечь их от любого, в том числе и незаконного, копирования.

Заключение

Окончательный вывод о том, какие из вариантов окажутся в конце концов реализованными в полномасштабном квантовом компьютере сейчас сделать пожалуй не представляется возможным. Для этого предстоит преодолеть еще много уже известных и еще неизвестных трудностей. Однако, в любом случае появление квантовых компьютеров будет означать революцию не только в вычислительной технике, но также и в технике передачи информации, в организации принципиально новых систем связи типа квантового Интернета и может быть началом развития новых пока неизвестных областей Науки и Техники.

Новая техника XXI века рождается путем синтеза новых идей в математике, физике, информатике, технологии. Исключительные возможности квантовых компьютеров будут способствовать и еще более глубокому пониманию физических законов в Природе. Построение квантовых компьютеров было бы еще одним подтверждением принципа неисчерпаемости Природы: Природа имеет средства для осуществления любой корректно сформулированной задачи.

Список использованной литературы

Статьи

1. Опенов Л. А. Спиновые логические вентили на основе квантовых точек // Соросовский образовательный журнал, 2000, т. 6, № 3, с. 93-98;

2. Килин С. Я. Квантовая информация // УФН. - 1999. - Т. 169. - C. 507-527.

3. Валиев К. А. Квантовые компьютеры: можно ли их сделать «большими»? // УФН. - 1999. - Т. 169. - C. 691- 694.

4. Валиев К. А. Квантовые компьютеры и квантовые вычисления // УФН. - 2005. - Т. 175. - C. 3-39.

5. Квантовый компьютер и квантовые вычисления. Глав. ред. В.А. Садовничий, Ижевск: ИЖТ, 1999. - 288с.

Книги

6. Дойч Д. Структура реальности. - Ижевск НИЦ «Регулярная и хаотическая динамика», 2001, 400 с.

7. Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. - М.-Ижевск: Регулярная и хаотическая динамика, 2004. - 320 с.

8. Кайе Ф., Лафламм Р., Моска М. Введение в квантовые вычисления. - Ижевск: РХД, 2009. - 360 с.

9. Китаев А., Шень А., Вялый М. Классические и квантовые вычисления. -- М.: МЦНМО, 1999. - 192 с.

10. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. -- М.: Мир, 2006. - 824 с.

11. Ожигов Ю. И. Квантовые вычисления.

12. Ожигов Ю. И. Конструктивная физика.

13. Прескилл Дж. Квантовая информация и квантовые вычисления (в 2-х томах). - Ижевск: РХД, 2008-2011. - 776 с.

Размещено на Allbest.ru


Подобные документы

  • Структура квантового компьютера. Несколько идей и предложений как сделать надежные и легко управляемые квантовые биты. Использование квантовых электродинамических полостей для фотонов. Системы двух одномерных квантовых каналов для электронных волн.

    презентация [102,5 K], добавлен 24.05.2014

  • Основные понятия квантовой механики, понятия и принципы квантовых вычислений. Возможность построения квантового компьютера, и его преимущества перед "классическим". Алгоритм Гровера - квантовый алгоритм быстрого поиска в неупорядоченной базе данных.

    реферат [241,0 K], добавлен 07.05.2009

  • Физическая реализация квантового компьютера. Вычислимые функции и разрешимые предикаты. Вероятностные алгоритмы, проверка простоты числа. Соотношение между классическим и квантовым вычислением. Базисы для квантовых схем. Универсальная квантовая схема.

    курсовая работа [3,8 M], добавлен 05.04.2013

  • Нейровычислитель как устройство переработки информации на основе принципов работы естественных нейронных систем. Основные преимущества нейрокомпьютеров. Кубит как основа для работы квантового компьютера. Основные перспективы квантовых компьютеров.

    курсовая работа [31,7 K], добавлен 07.01.2011

  • История возникновения идеи о квантовых вычислениях. Основные понятия квантовых вычислений. Квантовые биты, вентили и алгоритмы. Основные принципы работы и реализации квантового компьютера. Алгоритмы Шора и Гровера. Квантовый компьютер на ионных ловушках.

    реферат [1,8 M], добавлен 26.05.2012

  • Основные направления технического развития. Что же такое нанотехнологии? Основные типы квантовых компьютеров. Область применения и проблемы создания квантовых компьютеров. Компоненты субатомного размера. Нанотехнологии в информационных технологиях.

    отчет по практике [546,3 K], добавлен 06.06.2015

  • Исторические предшественники компьютеров. Появление первых персональных компьютеров. Концепция открытой архитектуры ПК. Развитие элементной базы компьютеров. Преимущества многопроцессорных и многомашинных вычислительных систем перед однопроцессорными.

    курсовая работа [1,7 M], добавлен 27.04.2013

  • История появления персональных компьютеров. Квантовые, оптические, молекулярные компьютеры. Решение задачи подсчета потраченного абонентами трафика, средствами табличного процессора MS Excel. Тарифы на услуги доступа к Интернету. Вид таблицы "Начисления".

    курсовая работа [888,6 K], добавлен 27.04.2013

  • Характеристики различных моделей портативных компьютеров. Возможности оперативных систем. ЭВМ и вычислительные системы. Порядок выбора портативных компьютеров и ОС. Выбор портативного компьютера для оснащения ими сотрудников консалтинговой фирмы.

    дипломная работа [65,3 K], добавлен 23.06.2012

  • Сущность, понятие и назначение квантового комп’ютера; его использование для вычисления процессов квантовой природы. Физические системы, реализующие кубиты. Упрощённая схема вычисления на квантовом компьютере. Тезис Черча-Тьюринга. Алгоритм Deutsch-Josza.

    реферат [122,6 K], добавлен 10.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.