Компьютерные технологии интеллектуальной поддержки управленческих решений

Сущность и назначение экспертных систем, их специфические свойства, структура и основные характеристики. Инструментальные средства, с помощью которых осуществляется разработка экспертных систем. "Инжинерия знаний" и ее роль. Функции систем поддержки.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 06.04.2014
Размер файла 30,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ ИНТЕЛЛЕКТУАЛЬНОЙ ПОДДЕРЖКИ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ

1. В чем состоит назначение экспертных систем?

Разработка систем интеллектуальной поддержки (основанных на знаниях) является составной частью исследований по искусственному интеллекту и имеет целью создание компьютерных методов решения проблем, обычно требующих привлечения специалистов. В конце 70-х гг. специалисты, работающие в области искусственного интеллекта, начали понимать нечто весьма важное: эффективность программы при решении задач зависит от знаний, которыми она обладает, а не только от формализмов и схем вывода, которые она использует. Была принята принципиально новая концепция, которую чрезвычайно просто сформулировать: чтобы сделать программу интеллектуальной, ее нужно снабдить множеством высококачественных специальных знаний о некоторой предметной области.

Существует много определений понятия «системы, основанные на знаниях», в частности они определяются как «интеллектуальные компьютерные программы, использующие знания и процедуры вывода для решения проблем, которые настолько сложны, что для их решения необходимо привлечение эксперта». Терминология по искусственному интеллекту пока еще окончательно не установилась, поэтому словосочетания «экспертные системы» (ЭС) и «системы, основанные на знаниях» будем употреблять как синонимы, хотя считается, что любая ЭС есть система, основанная на знаниях, но последняя не всегда является экспертной системой. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов. Можно сказать, что качество экспертной системы определяется размером и качеством базы знаний (правил, или эвристик). Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдение, интерпретация результатов, усвоение новой информации, выдвижение с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов. Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.

Более простые системы, основанные на знаниях, функционируют в режиме диалога, называемом режимом консультации. После запуска система задает пользователю ряд вопросов о решаемой задаче, требующих ответа: «да» или «нет». Ответы служат для установления фактов, по которым может быть выведено окончательное заключение.

В любой момент времени в системе содержатся три типа знаний:

* структурированные статические знания о предметной области, после того как эти знания выявлены, они уже не изменяются;

* структурированные динамические знания -- изменяемые знания о предметной области; они обновляются по мере выявления новой информации;

* рабочие знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.

Системы, основанные на знаниях, обладают рядом специфических свойств:

* Экспертиза может проводиться только в одной конкретной области.

* База знаний и механизм вывода являются различными компонентами (оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых экспертных систем).

* Наиболее подходящая область применения -- решение задач дедуктивным методом, т. е. правила, или эвристики выражаются в виде пар посылок и заключений типа «если -- то».

* Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос «Почему?» не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.

* Выходные результаты являются качественными (а не количественными).

* Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.

Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов, в том числе прогнозирование, планирование, контроль и управление, обучение.

Существует ряд прикладных задач, которые решаются с помощью систем, основанных на знаниях, более успешно, чем любыми другими средствами. При определении целесообразности применения таких систем нужно руководствоваться следующими критериями:

* Данные и знания надежны и не меняются со временем.

* Пространство (или область) возможных решений относительно невелико.

* В процессе решения задачи должны использоваться фрр-мальные рассуждения.

* Должен быть, по крайней мере, один эксперт, способный явно сформулировать свои знания и объяснить методы применения этих знаний для решения задач. экспертный система поддержка инжинерия

Но даже лучшие из существующих экспертных систем имеют определенные ограничения по сравнению с человеком-экспер-том, которые сводятся к следующему:

* Большинство экспертных систем не всегда бывают пригодны для применения конечным пользователем. Если пользователь не имеет некоторого опыта работы с такими системами, у него могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали их базы знаний. Поэтому необходима разработка соответствующего пользовательского интерфейса, обеспечивающего конечному пользователю свойственный ему режим работы.

* Навыки системы не всегда возрастают после сеанса экспертизы.

* Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.

Экспертные системы 1-го поколения не способны обучаться. Человек-эксперт при решении задач обычно обращается к своей интуиции, здравому смыслу, опыту, аналогии, если отсутствуют формальные методы решения или аналоги таких задач.

* Экспертные системы редко применяются в больших предметных областях.

* Считается, что в тех предметных областях, где отсутствуют эксперты, применение экспертных систем оказывается невозможным.

* Имеет смысл привлекать экспертные системы только для решения когнитивных задач.

* Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число «решений» зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке или системы поддержки принятия решений.

Однако системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом:

* У них нет предубеждений.

* Они не делают поспешных выводов.

* Эти системы работают систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

* База знаний может быть большой и достаточно стабильной. Будучи введены в машину один раз, знания сохраняются навсегда.

* Системы, основанные на знаниях, устойчивы к «помехам». Эксперт пользуется побочными знаниями и легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей.

Технологию построения экспертных систем называют инженерией знаний. Этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стратегии, эмпирические правила, которые они используют при решении задач, и встраивает эти знания в экспертную систему.

В результате появляется система, решающая задачи во многом так же, как человек-эксперт.

2. Каковы структура и основные характеристики экспертной системы?

Ядро экспертной системы составляет база знаний, которая создается и накапливается в процессе ее построения. Знания выражены в явном виде и организованы так, чтобы упростить принятие решений. Важность этой особенности экспертной системы невозможно переоценить.

Накопление и организация знаний -- одна из самых важных характеристик экспертной системы.

Последствия этого факта выходят за пределы построения программы, предназначенной для решения некоторого класса задач. Причина в том, что знания -- основа экспертных систем -- являются явными и доступными, что и отличает эти системы от большинства традиционных программ. Они обладают такой же ценностью, как и любой большой объем знаний, и эти знания могут широко распространяться посредством специальных и общих литературных источников.

Наиболее полезной характеристикой экспертной системы является то, что она применяет для решения проблем высококачественный опыт. Этот опыт может представлять уровень мышления наиболее квалифицированных экспертов в данной области, что ведет к решениям творческим, точным и эффективным. Именно высококачественный опыт в сочетании с умением его применять делает систему рентабельной, способной заслужить признание на рынке. Этому способствует также гибкость системы. Система может наращиваться постепенно в соответствии с нуждами бизнеса или заказчика. Это означает, что можно вначале вложить сравнительно скромные средства, а потом наращивать возможности системы по мере необходимости.

Другой полезной чертой экспертных систем является наличие у них прогностических возможностей. Экспертная система может функционировать в качестве модели решения задачи в заданной области, давая ожидаемые ответы в конкретной ситуации и показывая, как изменятся эти ответы в новых ситуациях. Экспертная система может объяснить подробно, каким образом новая ситуация привела к изменениям. Это позволяет пользователю оценить возможное влияние новых фактов или информации и понять, как они связаны с решением. Аналогично, пользователь может оценить влияние новых стратегий или процедур на решение, добавляя новые правила или изменяя уже существующие.

База знаний, определяющая компетентность экспертной системы, может также обеспечить новое качество -- институциональную память. Если база знаний разработана в ходе взаимодействия с ведущими специалистами в данной предметной области, то она представляет некоторую политику или способы действия этой группы людей. Этот набор знаний становится сводом очень квалифицированных мнений и постоянно обновляющимся справочником оптимальных стратегий и методов, используемых персоналом. Ведущие специалисты уходят, но их опыт остается, что весьма важно для деловой сферы.

Важным свойством экспертных систем является возможность их применения для обучения и тренировки персонала. Экспертные системы могут быть разработаны с расчетом на подобный процесс обучения, так как они уже содержат необходимые знания и способны объяснить процесс своего рассуждения. Остается только добавить программное обеспечение, поддерживающее соответствующий требованиям эргономики интерфейс между обучаемым и экспертной системой. Кроме того, должны быть включены знания о методах обучения и возможном поведении пользователя.

3. Какими инструментальными средствами осуществляется разработка экспертных систем?

Процесс создания экспертных систем претерпел значительные изменения за последние несколько лет. Благодаря появлению специальных инструментальных средств (ИС) построения ЭС сократились сроки разработки, значительно снизилась трудоемкость. Существует достаточно много схожих классификаций инструментальных средств. В частности, их можно разбить на три основных типа:

* языки программирования;

* среды программирования;

* пустые ЭС (оболочки).

С точки зрения разработчика экспертных систем наибольший интерес представляет использование сред программирования и пустых экспертных систем (оболочек), хотя не всегда можно заметить разницу между этими понятиями.

Создание экспертных систем с широким спектром возможностей, являющихся не механическими исполнителями воли человека, а его равноправными партнерами при поиске решений в сложных ситуациях, требует привлечения эффективных инструментальных средств программирования. К числу таких средств относятся языки обработки символьной информации, наиболее известными из которых являются Пролог и Лисп. Пролог -- язык высокого уровня, имеющий строгое теоретическое обоснование и ориентированный на использование концепций и методов математической логики. Как следует из его названия, Пролог предназначен для программирования в терминах логики. Основной особенностью Пролога, отличающей его от всех других языков, является декларативный характер написанных на нем программ. Язык Лисп изобретен в Массачусетском технологическом институте и обладает способностью обрабатывать списковые структуры. Языки программирования Лисп и Пролог имеют встроенные механизмы для манипулирования знаниями.

Помимо Лиспа и Пролога создано множество других языков, ориентированных на обработку символьной информации и разработку ЭС: Smalltalk, FRL, Interlisp. Кроме этих специализированных языков для разработки экспертных систем используются и обычные языки программирования общего назначения: Си, Ассемблер, Паскаль, Фортран, Бейсик и др.

Общим недостатком языков программирования для создания экспертных систем являются: большое время разработки готовой системы, необходимость привлечения высококвалифицированных программистов, трудности с модификацией готовой системы. Все это делает применение языков программирования для реализации ЭС весьма дорогостоящим и трудоемким.

Инструментальные средства второго типа -- среды программирования -- позволяют разработчику не программировать некоторые или все компоненты ЭС, а выбирать их из заранее составленного набора.

При применении последнего типа инструментария -- пустых ЭС, или «оболочек» -- разработчик ЭС полностью освобождается от работ по созданию программ и занимается лишь наполнением базы знаний. Однако при использовании этого способа могут возникнуть следующие проблемы: управляющие стратегии, вложенные в процедуры вывода базовой системы, а также принятый язык представления знаний могут не подходить для данного приложения. Все это затрудняет выбор подходящей пустой ЭС и их применение. Кроме того, уже в процессе создания прикладной системы может выясниться, что возможности, заложенные в используемом инструментальном средстве, не позволяют реализовать необходимые процедуры вывода и представление предметных знаний, требующиеся для успешной работы системы. В то же время в ряде случаев применение пустых ЭС оказывалось вполне оправданным и удобным: за короткие сроки разработчик имел возможность производить вполне добротные системы.

Типичным представителем второй и третьей групп инструментальных средств является пакет EXSYS Professional 5.0 for Windows (оболочка -- по определению разработчика -- компании MultiLogic Inc., США) и его последующая модификация Exsys Developer 8.0, предназначенный для создания прикладных экспертных систем в различных предметных областях. Система построена на использовании сложных правил вида ЕСЛИ-ТО-ИНАЧЕ. Для выбора стратегии получения заключения в системе по умолчанию используется обратная цепочка вывода. Прямая цепочка может быть задана при настройке системы. Система обладает развитым графическим интерфейсом, способна обращаться к внешним базам данных, проверять правила на непротиворечивость. При определенной настройке может работать с русскоязычными текстами.

4. Что такое «инжинерия знаний» и какова ее роль в интеллектуальной поддержке управленческих решений?

Как уже отмечалось, технологию построения экспертных систем часто называют инженерией знаний. Как правило, этот процесс требует специфической формы взаимодействия создателя экспертной системы, которого называют инженером знаний, и одного или нескольких экспертов в некоторой предметной области. Инженер знаний «извлекает» из экспертов процедуры, стратегии, эмпирические правила, которые они используют при решении задач, и встраивает эти знания в экспертную систему. Одной из наиболее сложных проблем, возникающих при создании экспертных систем, является преобразование знаний эксперта и описание применяемых им способов поиска решений в форму, позволяющую представить их в базе знаний системы, а затем эффективно использовать для решения задач в данной предметной области.

Обычно эксперт не прибегает к процедурным или количественным методам; его основные средства -- аналогия, интуиция и абстрагирование. Часто эксперт даже не может объяснить, как именно им было найдено решение. В лучшем случае вы получите от него лишь описание основных приемов, или эвристик, которые помогли ему успешно справиться с задачей. На инженера знаний возлагается очень сложная работа по преобразованию этих описаний в строгую, полную и непротиворечивую систему, которая позволяла бы решать прикладные задачи не хуже, чем это сделал бы сам эксперт, поскольку процесс построения базы знаний плохо структурирован и по своей природе является скорее циклическим, чем линейным.

Построение базы знаний включает три этапа:

* описание предметной области;

* выбор модели представления знаний (в случае использования оболочки этот этап исключается);

* приобретение знаний.

Первый шаг при построении базы знаний заключается в выделении предметной области, на решение задач которой ориентирована экспертная система. По сути, эта работа сводится к очерчиванию инженером знаний границ области применения системы и класса решаемых ею задач. При этом необходимо:

* определить характер решаемых задач;

* выделить объекты предметной области;

* установить связи между объектами;

* выбрать модель представления знаний;

* выявить специфические особенности предметной области.

Инженер знаний должен корректно сформулировать задачу. В то же время он должен уметь распознать, что задача не структурирована, и в этом случае воздержаться от попыток ее формализовать или применить систематические методы решения. Главная цель начального этапа построения базы знаний -- определить, как будет выглядеть описание предметной области на различных уровнях абстракции. Экспертная система включает базу знаний, которая создается путем формализации некоторой предметной области, а та, в свою очередь, является результатом абстрагирования определенных сущностей реального мира.

Выделение предметной области представляет собой первый шаг абстрагирования реального мира.

После того как предметная область выделена, инженер знаний должен ее формально описать. Для этого ему необходимо выбрать какой-либо способ представления знаний о ней (модель представления знаний). Если в качестве инструментального средства определена оболочка (пустая ЭС), то модель представления знаний определяется выбранным средством. Формально инженер знаний должен воспользоваться той моделью, с помощью которой можно лучше всего отобразить специфику предметной области.

Полученная после формализации предметной области база знаний представляет собой результат ее абстрагирования, а предметная область, в свою очередь, была выделена в результате абстрагирования реального мира. Человек обладает способностью работать с предметными областями различных типов, использовать различные модели представления знаний, рассматривать понятия реального мира с различных точек зрения, выполнять абстрагирования различных видов, проводить сопоставление знаний различной природы и прибегать к самым разнообразным методам решения задач. Имеются отдельные примеры совместного использования баз знаний, ориентированных на различные предметные области, но большинство современных систем может решать задачи только из одной предметной области.

Инженер знаний, прежде всего, обязан провести опрос эксперта и только потом приступать к построению системы. Эксперт, безусловно, должен быть специалистом в той области, в которой будет работать система. Первым делом необходимо определить целевое назначение системы. Какие, собственно, задачи предстоит решать системе, основанной на знаниях? Цели разработки системы следует сформулировать точно, полно и непротиворечиво.

После того как цель разработки системы определена, инженер знаний приступает к формулированию подцелей; это поможет ему установить иерархическую структуру системы и разбить ее на модули. Введение тех или иных подцелей обусловливается наличием связей между отдельными фрагментами знаний. Проблема сводится к разбиению задачи на две или несколько подзадач меньшей сложности и последующему поиску их решений. При необходимости полученные в результате разбиения подзадачи могут дробиться и дальше.

Следующий шаг построения базы знаний -- выделение объектов предметной области или, в терминах теории систем, установление границ системы. Как и формальная система, совокупность выделенных понятий должна быть точной, полной и непротиворечивой.

Ответы на все перечисленные вопросы позволяют очертить границы исходных данных. Для построения пространства поиска решения необходимо определить подцели на каждом уровне иерархии целей общей задачи. В вершине иерархии следует поместить задачу, которая по своей общности отражает принципиальные возможности и назначение системы.

После выявления объектов предметной области необходимо установить, какие между ними имеются связи. Следует стремиться к выявлению как можно большего количества связей, в идеале -- всех, которые существуют в предметной области.

Полученное качественное описание предметной области, если это необходимо, должно быть представлено средствами какого-либо формального языка, чтобы привести это описание к виду, позволяющему поместить его в базу знаний системы. Для решения этой задачи выбирается подходящая модель представления знаний, с помощью которой сведения о предметной области можно выразить формально.

И, наконец, в предметной области должны быть выявлены специфические особенности, затрудняющие решение прикладных задач. Вид этих особенностей зависит от назначения системы.

5. В чем состоят основные положения методологии построения экспертных систем?

Разработка (проектирование) ЭС существенно отличается от разработки обычного программного продукта. Предшествующий опыт разработки ЭС показал, что использование методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату. Дело в том, что неформализованность задач, решаемых ЭС, отсутствие завершенной теории ЭС и методологии их разработки приводят к необходимости модифицировать принципы и способы построения ЭС в ходе процесса разработки по мере того, как увеличивается знание разработчиков о проблемной области.

Перед тем как приступить к разработке ЭС, инженер по знаниям должен рассмотреть вопрос, следует ли разрабатывать ЭС для данного приложения. В обобщенном виде ответ может быть таким: использовать ЭС следует в том случае, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче.

Чтобы разработка ЭС была возможной (для данного приложения), необходимо одновременное выполнение, по крайней мере, следующих требований:

* наличие экспертов в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;

* эксперты должны сходиться в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;

* эксперты должны уметь выразить на естественном языке и объяснить используемые ими методы;

* задача, возложенная на ЭС, требует только рассуждений, а не действий;

* задача не должна быть слишком трудной, ее решение должно занимать у эксперта несколько часов, а не дней или недель;

* задача, хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно «понятной» и структурированной области, т. е. должны быть выделены основные понятия, отношения и известные (хотя бы эксперту) способы получения решения задачи;

* решение задачи не должно в значительной степени базироваться на «здравом смысле».

Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:

* решение задачи принесет определенный эффект;

* использование человека-эксперта невозможно либо из-за не достаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;

* при передаче информации к эксперту происходит недопустимая потеря времени или информации;

* при необходимости решать задачу в окружении, враждебном для человека.

Приложение соответствует методам ЭС, если решаемая задача обладает совокупностью следующих характеристик:

* может быть естественным образом решена посредством символьных рассуждений, а не числовой обработки;

* должна иметь эвристическую природу, т. е. ее решение должно сводиться к применению эвристических правил;

* должна быть достаточно сложной, чтобы оправдать затраты на разработку ЭС, однако не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решить;

* должна быть достаточно узкой, чтобы решаться методами инженерии знаний, и практически значимой.

При разработке ЭС используется концепция «быстрого прототипа». Суть ее состоит в том, что разработчики не пытаются сразу создать конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС, который должен удовлетворять двум противоречивым требованиям: с одной стороны, решать типичные задачи конкретного приложения, а с другой -- время и трудоемкость его разработки должны быть весьма незначительны, чтобы можно было максимально совместить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора (разработки) программных средств (осуществляемым инженером по знаниям и программистом). Для удовлетворения указанных требований при создании прототипа, как правило, используются разнообразные средства, ускоряющие процесс проектирования.

Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов инженерии знаний для данного приложения. По мере увеличения знаний прототип может достичь такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как повышение быстродействия ЭС, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемых ИС.

В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть этапов: идентификация, концептуализация, формализация, выполнение, тестирование, опытная эксплуатация.

На этапе идентификации определяются задачи, подлежащие решению, выявляются цели разработки, ресурсы, эксперты и категории пользователей.

На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

На этапе формализации определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решения, средств представления и манипулирования знаниями.

На этапе выполнения осуществляется наполнение экспертом базы знаний системы. Процесс приобретения знаний разделяют на получение знаний от эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Эвристический характер знаний приводит к тому, что процесс их приобретения является весьма трудоемким. На данном этапе создаются один или несколько прототипов ЭС, решающих требуемые задачи. Затем по результатам этапов тестирования и опытной эксплуатации создается конечный продукт, пригодный для промышленного использования. Разработка прототипа состоит в программировании его компонентов или выборе их из имеющихся ИС и наполнении базой знаний.

На этапе тестирования эксперт (и инженер по знаниям) в интерактивном режиме, используя диалоговые и объяснительные средства, проверяет компетентность ЭС. Процесс тестирования продолжается до тех пор, пока эксперт не решит, что система достигла требуемого уровня компетентности.

На этапе опытной эксплуатации проверяется пригодность ЭС для конечных пользователей. По результатам этого этапа может потребоваться существенная модификация ЭС.

Процесс создания ЭС не сводится к строгой последовательности перечисленных выше этапов. В ходе разработки приходится Неоднократно возвращаться на более ранние этапы и пересматривать принятые решения.

Критерии, с помощью которых оценивается ЭС, зависят от того, с чьей точки зрения дается оценка. Например, при тестировании первого прототипа оценка осуществляется с точки зрения эксперта, для которого важна полнота и безошибочность правил вывода. При тестировании промышленной системы оценка производится в основном с точки зрения инженера по знаниям, которого интересует эффективность работы ЭС. При тестировании ЭС после опытной эксплуатации оценка осуществляется с точки зре ния пользователя, заинтересованного, в первую очередь, в удобстве работы и получении практической пользы.

В ходе создания ЭС почти постоянно осуществляется ее модификация. Можно выделить следующие виды модификации системы:

* переформулирование понятий и требований;

* переконструирование представления;

* усовершенствование прототипа.

Усовершенствование прототипа осуществляется в процессе циклического прохождения через этапы выполнения и тестирования для отладки правил и процедур вывода. Циклы повторяются до тех пор, пока система не будет вести себя ожидаемым образом. Изменения, осуществляемые при усовершенствовании, зависят от выбранного, способа представления и класса задач, решаемых ЭС. Если в процессе усовершенствования желаемое поведение не достигается, необходимы более серьезные модификации архитектуры системы и базы знаний.

Возврат от этапа тестирования на этап формализации приводит к пересмотру выбранного ранее способа представления знаний. Данный цикл называют переконструированием.

Если возникшие проблемы еще более серьезны, то после неудачи на этапе тестирования может потребоваться возврат на этапы концептуализации и идентификации. В этом случае речь будет идти о переформулировании понятий, используемых в системе, т. е. о проектировании всей системы практически заново.

Мощность ЭС как систем, основанных на знании, зависит в первую очередь от качества и количества знаний, хранимых в них. Поэтому ясно, что процесс приобретения знаний для ЭС наиболее важный. Так как в настоящее время не существует методов автоматического приобретения знаний, процесс наполнения ЭС знаниями является весьма трудоемким. Знания для ЭС могут быть получены из различных источников (книг, отчетов, баз данных, эмпирических данных, персонального опыта менеджера, эксперта, инженера и т. п.). Однако наиболее значимые знания в настоящее время приобретаются от пользователей-экспертов.

Получение знаний от эксперта (экспертов) осуществляется в процессе интенсивного систематического взаимодействия инженера по знаниям с экспертом. Поэтому инженер по знаниям должен работать с экспертом в контексте решения конкретных задач (подзадач). Обычно оказывается неэффективным непосредственно спрашивать эксперта, с помощью каких методов он решает ту или иную задачу. В этом случае проявляется парадокс экспертизы (инженерии знаний); чем выше компетентность эксперта, тем меньше его способность описать знания, используемые им для решения задач. Более того, анализ попыток экспертов объяснить, как они формируют решение задач, показывает, что они часто описывают правдоподобные линии рассуждений, мало похожие на те, которыми они действительно пользуются.

Экспертные системы -- это прогрессирующее направление в области искусственного интеллекта. Причиной повышенного интереса, который экспертные системы вызывают к себе на протяжении всего своего существования, является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой предметной области, в которой не было бы создано ни одной ЭС или, по крайней мере, такие попытки не предпринимались бы.

Программные средства, базирующиеся на технологии и методах искусственного интеллекта, получили значительное распространение в мире. Их важность, и в первую очередь важность экспертных систем, состоит в том, что данные технологии существенно расширяют круг практически значимых задач, которые можно решать на компьютерах, и их решение приносит значительный экономический эффект.

Отличительной чертой компьютерных программ, называемых ЭС, является их способность накапливать знания и опыт наиболее квалифицированных специалистов (экспертов) в какой-либо узкой предметной области. Затем с помощью этих знаний пользователи ЭС, имеющие обычную квалификацию, могут решать свои текущие задачи столь же успешно, как это сделали бы сами эксперты. Такой эффект достигается благодаря тому, что экспертная система в своей работе воспроизводит примерно ту же схему рассуждений, которую обычно применяет человек-эксперт при анализе проблемы. Тем самым ЭС позволяют копировать и распространять знания, делая уникальный опыт нескольких высококлассных профессионалов доступным широким кругам рядовых специалистов.

Уровень пользователей экспертных систем может варьироваться в очень широком диапазоне. От вида деятельности пользователей зависят и функции, которыми наделяются создаваемые для них ЭС.

В настоящее время технология экспертных систем получила широкое распространение. Так, на американском и западноевропейском рынке систем искусственного интеллекта организациям, желающим создать экспертную систему, фирмы-разработчики предлагают сотни инструментальных средств для их построения. Прикладных же ЭС, успешно решающих задачи из определенного узкого класса, насчитываются тысячи. Это позволяет говорить о том, что ЭС сейчас составляют мощную ветвь в индустрии программных средств.

Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться недавно. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общие отличительные черты -- умение обучаться и развиваться, т. е. эволюционировать.

6. Что такое «система поддержки принятия решений»?

Системы поддержки принятия решений существуют очень давно: это военные советы, коллегии министерств, советы директоров или управляющих, всевозможные совещания, заседания членов правлений, аналитические центры и т. д. Хотя они никогда не назывались системами поддержки принятия решения, но выполняли именно их задачи (в некоторых случаях частично). До последнего времени они, естественно, не использовали вычислительные машины и правила их функционирования, хотя и регламентировались, но были формализованы далеко не так, как это требуется в человеко-машинных процедурах.

Увеличение объема информации, поступающей в органы управления и непосредственно к руководителям, усложнение решаемых задач, необходимость учета большого числа взаимосвязанных факторов и быстро меняющейся обстановки настоятельно требуют использовать вычислительную технику в процессе принятия решений. В связи с этим появился новый класс вычислительных систем -- системы поддержки принятия решений (СППР).

Термин «система поддержки принятия решений» появился в начале семидесятых годов. За это время дано много определений СППР.

Так, она определяется следующим образом: «Системы поддержки принятия решений являются человеко-машинными объектами, которые позволяют лицам, принимающим решения (ЛПР), использовать данные, знания, объективные и субъективные модели для анализа и решения слабоструктурированных и неструктурированных проблем». В этом определении подчеркивается предназначение СППР для решения слабоструктурированных и неструктурированных задач.

К слабоструктурированным относятся задачи, которые содержат как количественные, так и качественные переменные, причем качественные аспекты проблемы имеют тенденцию доминировать. Неструктурированные проблемы имеют лишь качественное описание.

Другое определение СППР: «Система поддержки принятия решений -- это компьютерная система, позволяющая ЛПР сочетать собственные субъективные предпочтения с компьютерным анализом ситуации при выработке рекомендаций в процессе принятия решения». Основная суть этого определения -- сочетание субъективных предпочтений ЛПР с компьютерными методами.

Еще одно определение СППР -- «компьютерная информационная система, используемая для различных видов деятельности при принятии решений в ситуациях, где невозможно или нежелательно иметь автоматическую систему, полностью выполняющую весь процесс решения».

Все три определения не противоречат, а дополняют друг друга и достаточно полно характеризуют СППР.

Человеко-машинная процедура принятия решений с помощью СППР представляет собой циклический процесс взаимодействия человека и компьютера. Цикл состоит из фазы анализа и постановки задачи для компьютера, выполняемой лицом, принимающим решение, и фазы оптимизации (поиска решения и выполнения его характеристик), реализуемой компьютером.

7. Каковы функции систем поддержки принятия решений?

Помогают произвести оценку обстановки (ситуаций), осуществить выбор критериев и оценить их относительную важность.

Генерируют возможные решения (сценарии действий).

Осуществляют оценку сценариев (действий, решений) и выбирают лучший.

Обеспечивают постоянный обмен информацией об обстановке принимаемых решений и помогаю? согласовать групповые решения.

Моделируют принимаемые решения (в тех случаях, когда это возможно).

Осуществляют динамический компьютерный анализ возможных последствий принимаемых решений.

Производят сбор данных о результатах реализации принятых решений и осуществляют оценку результатов.

Размещено на Allbest.ru


Подобные документы

  • Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".

    курсовая работа [2,2 M], добавлен 05.11.2014

  • Сущность экспертных систем и их научно-познавательная деятельность. Структура, функции и классификация ЭС. Механизм вывода и система объяснений. Интегрированные информационные системы управления предприятием. Применение экспертных систем в логистике.

    курсовая работа [317,3 K], добавлен 13.10.2013

  • Структура экспертных систем, их классификация и характеристики. Выбор среды разработки программирования. Этапы создания экспертных систем. Алгоритм формирования базы знаний с прямой цепочкой рассуждений. Особенности интерфейса модулей "Expert" и "Klient".

    курсовая работа [1,1 M], добавлен 18.08.2009

  • Архитектура IT сервисов, роль инженеров поддержки в обеспечении доступности систем. Структура многоуровневой службы технической поддержки. Моделирование мониторинга элементов информационной инфраструктуры. Тестирование сценариев запуска, остановки службы.

    дипломная работа [1,4 M], добавлен 03.07.2017

  • Понятие и особенности экспертных систем, способных накапливать, обрабатывать знания из некоторой предметной области, на их основе выводить новые знания и решать на основе этих знаний практические задачи. История и устройство юридических экспертных систем.

    реферат [58,4 K], добавлен 17.03.2015

  • Изучение характеристик, классификации, функций и основных элементов экспертных систем. Исследование их структуры и отличительных особенностей от другого программного обеспечения. Описания методов проектирования и области применения экспертных систем.

    реферат [38,1 K], добавлен 18.09.2013

  • Использование информационных технологий управления, поддержки и принятия решений, экспертных систем и обработки данных. Автоматизация бухгалтерии на примере ООО "Уралконфи": универсальная бухгалтерская программа "1С: Бухгалтерия" и ее основные функции.

    курсовая работа [1,9 M], добавлен 26.03.2012

  • Механизм автоматического рассуждения. Основные требования к экспертным системам. Наделение системы способностями эксперта. Типовая структура и классификация интерфейсов пользователей экспертных систем. Основные термины в области разработки систем.

    презентация [252,6 K], добавлен 14.08.2013

  • Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.

    курсовая работа [78,0 K], добавлен 03.06.2009

  • Рассмотрение понятия и истории возникновения систем поддержки принятия решения. Приспособленность информационных систем к задачам повседневной управленческой деятельности. Понятие термина "интеллектуальный анализ данных". Методика извлечения знаний.

    реферат [79,8 K], добавлен 14.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.