Языки-интерпретаторы. Назначение, общее описание на примере языка LISP

Сведения об алгоритмических языках и программировании. Рассмотрение простейших языковых команд. Процесс поиска ошибок в программе. Функции и принципы работы интерпретатора и компилятора языка LISP EVAL. Изучение основного алгоритма программирования.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 23.03.2014
Размер файла 32,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки российской федерации

Брянский государственный технический университет

Контрольная работа

По дисциплине

«Алгоритмические языки»

На тему «Языки-интерпретаторы. Назначение, общее описание на примере языка LISP»

Выполнил

Кулагин В. В.

Группа З10ИСМП

Проверил преподаватель

Брянск 2014

  • Содержание
  • Введение
  • 1. Общие сведения об алгоритмических языках и программировании. Простейшие команды языка. Интерпретатор и компилятор
  • 2. Интерпретатор
  • 3. Интерпретатор языка LISP EVAL
  • Заключение
  • Список литературы

Введение

Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов - языков программирования. Смысл появления такого языка - оснащенный набор вычислительных формул дополнительной информации, превращает данный набор в алгоритм.

Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать. Первой цели идеально отвечает язык, который настолько "близок к машине", что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом. Второй цели идеально отвечает язык, который настолько "близок к решаемой задаче", чтобы концепции ее решения можно было выражать прямо и коротко.

Связь между языком, на котором мы думаем/программируем, и задачами и решениями, которые мы можем представлять в своем воображении, очень близка. По этой причине ограничивать свойства языка только целями исключения ошибок программиста в лучшем случае опасно. Как и в случае с естественными языками, есть огромная польза быть, по крайней мере, двуязычным. Язык предоставляет программисту набор концептуальных инструментов, если они не отвечают задаче, то их просто игнорируют. Например, серьезные ограничения концепции указателя заставляют программиста применять вектора и целую арифметику, чтобы реализовать структуры, указатели и т.п. Хорошее проектирование и отсутствие ошибок не может гарантироваться чисто за счет языковых средств.

Может показаться удивительным, но конкретный компьютер способен работать с программами, написанными на его родном машинном языке. Существует почти столько же разных машинных языков, сколько и компьютеров, но все они суть разновидности одной идей простые операции производятся со скоростью молнии на двоичных числах.

1. Общие сведения об алгоритмических языках и программировании. Простейшие команды языка. Интерпретатор и компилятор

Управлять компьютером нужно по определенному алгоритму. Алгоритм -- это точно определенное описание способа решения задачи в виде конечной (по времени) последовательности действий. Такое описание еще называется формальным. Для представления алгоритма в виде, понятном компьютеру, служат языки программирования сегодня практически все программы создаются с помощью языков программирования. Теоретически программу можно написать и средствами обычного человеческого (естественного) языка -- это называется программированием на метаязыке (подобный подход обычно используется на этапе составления алгоритма), но автоматически перевести такую программу в машинный код пока невозможно из-за высокой неоднозначности естественного языка.

Языки программирования -- искусственные языки. От естественных они отличаются ограниченным числом «слов», значение которых понятно транслятору, и очень строгими правилами записи команд (операторов). Совокупность подобных требований образует синтаксис языка программирования, а смысл каждой команды и других конструкций языка -- его семантику. Нарушение формы записи программы приводит к тому, что транслятор не может понять назначение оператора и выдает сообщение о синтаксической ошибке, а правильно написанное, но не отвечающее алгоритму использование команд языка приводит к семантическим ошибкам (называемые еще логическими ошибками или ошибками времени выполнения).

Процесс поиска ошибок в программе называется тестированием, процесс устранения ошибок -- отладкой.

С помощью языка программирования создается не готовая программа, а только ее текст, описывающий ранее разработанный алгоритм. Чтобы получить работающую программу, надо этот текст либо автоматически перевести в машинный код (для этого служат программы-компиляторы) и затем использовать отдельно от исходного текста, либо сразу выполнять команды языка, указанные в тексте программы (этим занимаются программы-интерпретаторы).

Интерпретатор берет очередной оператор языка из текста программы, анализирует его структуру и затем сразу исполняет (обычно после анализа оператор транслируется в некоторое промежуточное представление или даже машинный код для более эффективного дальнейшего исполнения). Только после того как текущий оператор успешно выполнен, интерпретатор перейдет к следующему. При этом, если один и тот же оператор должен выполняться в программе многократно, интерпретатор всякий раз будет выполнять его так, как будто встретил впервые. Вследствие этого, программы, в которых требуется осуществить большой объем повторяющихся вычислений, могут работать медленно. Кроме того, для выполнения такой программы на другом компьютере там также должен быть установлен интерпретатор -- ведь без него текст программы является просто набором символов.

По-другому, можно сказать, что интерпретатор моделирует некую виртуальную вычислительную машину, для которой базовыми инструкциями служат не элементарные команды процессора, а операторы языка программирования.

Компиляторы полностью обрабатывают весь текст программы (он иногда называется исходный код). Они просматривают его в поисках синтаксических ошибок (иногда несколько раз), выполняют определенный смысловой анализ и затем автоматически переводят (транслируют) на машинный язык -- генерируют машинный код. Нередко при этом выполняется оптимизация с помощью набора методов, позволяющих повысить быстродействие программы (например, с помощью инструкций, ориентированных на конкретный процессор, путем исключения ненужных команд, промежуточных вычислений и т. д.). В результате законченная программа получается компактной и эффективной, работает в сотни раз быстрее программы, выполняемой с помощью интерпретатора, и может быть перенесена на другие компьютеры с процессором, поддерживающим соответствующий машинный код.

Основной недостаток компиляторов -- трудоемкость трансляции языков программирования, ориентированных на обработку данных сложной структуры, часто заранее неизвестной или динамически меняющейся во время работы программы. Тогда в машинный код приходится вставлять множество дополнительных проверок, анализировать наличие ресурсов операционной системы, динамически их захватывать и освобождать, формировать и обрабатывать в памяти компьютера сложные объекты, что на уровне жестко заданных машинных инструкций осуществить довольно трудно, а для ряда задач практически невозможно.

С помощью интерпретатора, наоборот, допустимо в любой момент остановить работу программы, исследовать содержимое памяти, организовать диалог с пользователем, выполнить сколь угодно сложные преобразования данных и при этом постоянно контролировать состояние окружающей программно-аппаратной среды, благодаря чему достигается высокая надежность работы. Интерпретатор при выполнении каждого оператора проверяет множество характеристик операционной системы и при необходимости максимально подробно информирует разработчика о возникающих проблемах. Кроме того, интерпретатор очень удобен для использования в качестве инструмента изучения программирования, так как позволяет понять принципы работы любого отдельного оператора языка.

В реальных системах программирования перемешаны технологии и компиляции, и интерпретации. В процессе отладки программа может выполняться по шагам, а результирующий код не обязательно будет машинным -- он даже может быть исходным кодом, написанным на другом языке программирования (это существенно упрощает процесс трансляции, но требует компилятора для конечного языка), или промежуточным машиннонезависимым кодом абстрактного процессора, который в различных компьютерных архитектурах станет выполняться с помощью интерпретатора или компилироваться в соответствующий машинный код.

Разные типы процессоров имеют разные наборы команд. Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня. В данном случае «низкий уровень» не значит «плохой». Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.

Языком самого низкого уровня является язык ассемблера, который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью символьных условных обозначений, называемых мнемониками. Однозначное преобразование одной машинной инструкции в одну команду ассемблера называется транслитерацией. Так как наборы инструкций для каждого модели процессора отличаются, конкретной компьютерной архитектуре соответствует свой язык ассемблера, и написанная на нем программа может быть использована только в этой среде.

С помощью языков низкого уровня создаются очень эффективные и компактные программы, так как разработчик получает доступ ко всем возможностям процессора. С другой стороны, при этом требуется очень хорошо понимать устройство компьютера, затрудняется отладка больших приложений, а результирующая программа не может быть перенесена на компьютер с другим типом процессора. Подобные языки обычно применяют для написания небольших системных приложений, драйверов устройств, модулей стыковки с нестандартным оборудованием, когда важнейшими требованиями становятся компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам. В некоторых областях, например в машинной графике, на языке ассемблера пишутся библиотеки, эффективно реализующие требующие интенсивных вычислений алгоритмы обработки изображений.

2. Интерпретатор

алгоритм программирование компилятор интерпретатор

Интерпретамтор (языка программирования) Программа или техническое средство, выполняющее интерпретацию.

Вид транслятора, осуществляющего пооператорную (покомандную) обработку и выполнение исходной программы или запроса (в отличие от компилятора, транслирующего всю программу без её выполнения).

Программа (иногда аппаратное средство), анализирующая команды или операторы программы и тут же выполняющая их.

Языковый процессор, который построчно анализирует исходную программу и одновременно выполняет предписанные действия, а не формирует на машинном языке скомпилированную программу, которая выполняется впоследствии.

Типы интерпретаторов

Простой интерпретатор анализирует и тут же выполняет (собственно интерпретация) программу покомандно (или построчно), по мере поступления её исходного кода на вход интерпретатора. Достоинством такого подхода является мгновенная реакция. Недостаток -- такой интерпретатор обнаруживает ошибки в тексте программы только при попытке выполнения команды (или строки) с ошибкой.

Интерпретатор компилирующего типа -- это система из компилятора, переводящего исходный код программы в промежуточное представление, например, в байт-код или p-код, и собственно интерпретатора, который выполняет полученный промежуточный код (так называемая виртуальная машина). Достоинством таких систем является большее быстродействие выполнения программ (за счёт выноса анализа исходного кода в отдельный, разовый проход, и минимизации этого анализа в интерпретаторе). Недостатки -- большее требование к ресурсам и требование на корректность исходного кода. Применяется в таких языках, как Java, PHP, Python, Perl (используется байт-код), REXX (сохраняется результат парсинга исходного кода), а также в различных СУБД (используется p-код)

В случае разделения интерпретатора компилирующего типа на компоненты получаются компилятор языка и простой интерпретатор с минимизированным анализом исходного кода. Причём исходный код для такого интерпретатора не обязательно должен иметь текстовый формат или быть байт-кодом, который понимает только данный интерпретатор, это может быть машинный код какой-то существующей аппаратной платформы. К примеру, виртуальные машины вроде QEMU, Bochs, VMware включают в себя интерпретаторы машинного кода процессоров семейства x86.

Некоторые интерпретаторы (например, для языков Lisp, Scheme, Python, Бейсик и других) могут работать в режиме диалога или так называемого цикла чтения-вычисления-печати (англ. read-eval-print loop, REPL). В таком режиме интерпретатор считывает законченную конструкцию языка (например, s-expression в языке Lisp), выполняет её, печатает результаты, после чего переходит к ожиданию ввода пользователем следующей конструкции.

Уникальным является язык Forth, который способен работать как в режиме интерпретации, так и компиляции входных данных, позволяя переключаться между этими режимами в произвольный момент, как во время трансляции исходного кода, так и во время работы программ.

Следует также отметить, что режимы интерпретации можно найти не только в программном, но и аппаратном обеспечении. Так, многие микропроцессоры интерпретируют машинный код с помощью встроенных микропрограмм, а процессоры семейства x86, начиная с Pentium (например, на архитектуре Intel P6), во время исполнения машинного кода предварительно транслируют его во внутренний формат (в последовательность микроопераций).

Алгоритм работы простого интерпретатора

1. прочитать инструкцию;

2. проанализировать инструкцию и определить соответствующие действия;

3. выполнить соответствующие действия;

4. если не достигнуто условие завершения программы, прочитать следующую инструкцию и перейти к пункту 2.

Достоинства и недостатки интерпретаторов

Достоинства

Бомльшая переносимость интерпретируемых программ -- программа будет работать на любой платформе, на которой есть соответствующий интерпретатор.

Как правило, более совершенные и наглядные средства диагностики ошибок в исходных кодах.

Упрощение отладки исходных кодов программ.

Меньшие размеры кода по сравнению с машинным кодом, полученным после обычных компиляторов.

Недостатки

Интерпретируемая программа не может выполняться отдельно без программы-интерпретатора. Сам интерпретатор при этом может быть очень компактным.

Интерпретируемая программа выполняется медленнее, поскольку промежуточный анализ исходного кода и планирование его выполнения требуют дополнительного времени в сравнении с непосредственным исполнением машинного кода, в который мог бы быть скомпилирован исходный код.

Практически отсутствует оптимизация кода, что приводит к дополнительным потерям в скорости работы интерпретируемых программ.

3. Интерпретатор языка LISP EVAL

Функция EVAL - это функция, которая может вычислить любое правильно составленное выражение языка LISP. Например:

Говорят, что функция EVAL определяет семантику лисповских форм.

"Лишний" вызов интерпретатора может, например, снять эффект блокировки вычисления при помощи функции QUOTEили позволяет найти значение значения выражения. Например:

Замечание 1. Диалог с интерпретатором языка LISP на самом верхнем, командном уровне, можно описать простым циклом:

(PRINT (QUOTE _)) % Вывод приглашения %

(PRINT (EVAL (READ))) % Ввод выражения и %

% вычисление его значения %

(PRINT (QUOTE _)) % Повторение вывода приглашения %

Интерпретатор отвечает на заданный ему вопрос и ждет новое задание.

Замечание 2. Во многих LISP-системах имеется функция EVAL-QUOTE, которая подобна функции EVAL, за исключением того, что имеет два аргумента. Первый аргумент является именем функции, а второй - списком ее аргументов. Аргументы EVAL-QUOTE не вычисляются. Функция EVAL-QUOTE может быть определена как:

Замечание 3. Необходимо отметить еще одну особенность языка LISP, которая вытекает из природы организации структур данных и программ и механизма их интерпретации. На языке легко реализовывать задачиавтоматического синтеза программ. Он позволяет с помощью одних функций формировать определения других функций, программно анализировать и редактировать эти определения как S-выражения, а затем, используя функции типа EVAL, исполнять их.

Замечание 4. Опишем семантику функции EVAL для версии muLISP85.

Если OBJECT - атом, то функция (EVAL OBJECT) возвращает содержимое ячейки значения OBJECT. Т.к. ссылки на новые выбранные атомы автоматические, атомы "вычисляют сами себя" до тех пор, пока не будут связаны с другими значениями.

Если CAR-элемент OBJECT - это имя вычисляемой функции или LAMBDA, то функция (EVAL OBJECT)вычисляет каждый элемент CDR-части OBJECT и добавляет CAR-элемент OBJECT к списку результатов.

Если CAR-элемент OBJECT - имя невычисляемой функции, то функция (EVAL OBJECT) добавляет CAR-элемент OBJECT к CDR-элементу OBJECT без вычисления последнего.

Если CAR-элемент OBJECT - имя макрофункции, то функция (EVAL OBJECT) рекурсивно вычисляет результат добавления CAR-элемента OBJECT к его CDR-элементу.

Если CAR-элемент OBJECT - не функция, то функция (EVAL OBJECT) вызывает ошибку "Неопределенная функция" (UNDEFINED) и генерирует прерывание по ошибке.

Заключение

Изобретение языка программирования высшего уровня позволило нам общаться с машиной, понимать её (если конечно Вам знаком используемый язык), как понимает американец немного знакомый с русским языком древнюю азбуку Кириллицы. Проще говоря, мы в нашем развитии науки программирования пока что с ЭВМ на ВЫ. Поверьте мне это не сарказм вы только посмотрите как развилась наука программирования с того времени, как появились языки программирования, а ведь язык программирования высшего уровня, судя по всему ещё младенец. Но если мы обратим внимание на темпы роста и развития новейших технологий в области программирования, то можно предположить, что в ближайшем будущем, человеческие познания в этой сфере, помогут произвести на свет языки, умеющие принимать, обрабатывать и передавать информации в виде мысли, слова, звука или жеста. Так и хочется назвать это детище компьютеризированного будущего: «языки программирования "высочайшего" уровня». Возможно, концепция решения этого вопроса проста, а ближайшее будущее этого проекта уже не за горами, и в этот момент, где нибудь в Запорожье, Амстердаме, Токио или Иерусалиме, перед стареньким 133MHz горбится молодой, никем не признанный специалист и разрабатывает новейшую систему искусственного интеллекта, которая наконец-то позволит человеку, с помощью своих машинных языков, вести диалог с машиной на ТЫ.

Размышляя над этим, хочется верить в прогресс науки и техники, в высоко - компьютеризированное будущее человечества, как единственного существа на планете, пусть и не использующего один, определенный разговорный язык, но способного так быстро прогрессировать и развивать свой интеллект, что и перехода от многоязыковой системы к всеобщему пониманию долго ждать не придется.

Список литературы

1. В.Ю. Демьяненко. Программные средства создания и ведения баз данных. -М.: Финансы и статистика, 1984.

2. В.А. Мясников, С.А. Майоров, Г.И. Новиков. ЭВМ для всех. -М.: Знание, 1985.

3. А.Г. Гейн. Основы информатики и вычислительной техники. -М.: Просвещение, 1997.

4. В.Ф. Ляхович. Основы информатики. -Ростов-на-Дону: Феникс, 1996.

5. Вычислительная техника и программирование / Под ред. А.В. Петрова -М.: Высш. шк., 1990. Информатика: Базовый курс / С.В. Симонович и др. - СПб.: Питер, 1999.

Размещено на Allbest.ru


Подобные документы

  • Высокоуровневый язык программирования Lisp. Атомы и списки. Запрос к голове списка с помощью базовых функций. Свойства атомов Lisp. Удаление свойства и его значения. Работа со строками. Классы и объекты. Формы структурированных данных языка Lisp.

    курсовая работа [232,7 K], добавлен 07.01.2016

  • LISP (LIST PROCCESSOR) - обработчик списков. Особенности диалектов языка Лисп: Маклисп, муЛисп, Интерлисп, Франс Лисп, Зеталисп Лисп-машин, Коммон Лисп. Современные диалекты языка Лисп. Интерактивные системы программирования. Использование Лисп-машин.

    доклад [16,9 K], добавлен 22.09.2008

  • Основные сведения о языках программирования и их состав. Программа для компьютера. Использование компилятора и операторы. Языки программирования высокого уровня. Концепции объектно-ориентированного программирования. Языки искусственного интеллекта.

    презентация [6,3 M], добавлен 14.08.2013

  • Функции и основные компоненты систем программирования. Средства создания программ. Трансляторы языков программирования. Принципы и фазы работы компилятора, трансформация языка программирования в машинный код. Механизм преобразования интерпретатора.

    презентация [3,3 M], добавлен 07.02.2012

  • Общее описание и характеристики языка программирования (Ф-язык). Конструкции и элементы данного языка, порядок их взаимосвязи, разновидности и главные функции. Микрооперации Ф-языка, их назначение и особенности реализации. Графические схемы алгоритма.

    контрольная работа [67,5 K], добавлен 13.09.2008

  • Ознакомление с лямбда-выражениями и функциями языка Lisp. Этапы разработки алгоритма функции, производящей удаление из исходного списка всех элементов с четными номерами. Код программы, адаптированной для использования в базах данных больниц и ВУЗов.

    лабораторная работа [65,5 K], добавлен 21.05.2014

  • Характеристика структурированного языка программирования С, его основных структурных компонентов, области памяти, библиотеки. Методы поиска в массивах данных. Описание программы, функции сортировки и меню выбора, последовательного и бинарного поиска.

    курсовая работа [1,7 M], добавлен 19.05.2014

  • Алгоритмы и алфавит языка Турбо Паскаль. Основные типы данных. Операторы присваивания, перехода и выбора. Понятие массива в Паскале. Особенности работы со строками в программе. Использование линейного поиска и поиска с барьером. Основные виды сортировок.

    учебное пособие [53,2 K], добавлен 09.11.2009

  • Структура, классификация и требования к реализации компилятора. Проектирование и реализация анализирующей части компилятора языка С++. Способы реализации лексического анализа. Алгоритм работы синтаксического анализатора. Принципы программной реализации.

    курсовая работа [774,2 K], добавлен 26.01.2013

  • Понятие и специфические особенности языка программирования Си, история его создания. Интегрированная система Borland C. Процесс программирования с помощью данного языка. Графические примитивы в языках программирования. Преобразования на плоскости.

    курс лекций [782,2 K], добавлен 04.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.