Проектирование баз данных информационных систем
Основные понятия информационных баз данных. Определение связей между таблицами. Создание многотабличного запроса с параметром. Сортировка данных с помощью расширенного фильтра. Организация локальной распределённой сети. Концепция реляционной модели.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.03.2014 |
Размер файла | 27,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
СОДЕРЖАНИЕ
Введение
1. Системы управления базами данных
2. Настольные (локальные) СУБД
3. СУБД структуры «сервер-клиент»
Заключение
Список литературы
Введение
Для решения проблем обработки экономической информации используются современные компьютеры с соответствующим программным обеспечением, системами управлениями базами данных (СУБД). Лидирующее место среди СУБД в данный момент по праву занимает Microsoft Access.
В своей контрольной работе я знакомлюсь с основными понятиями информационных баз данных .
В первой части контрольной роботы я рассматриваю такие понятия как: БД; РБД; поле таблицы; запись таблицы; ключевое поле (ключ) таблицы; главная и подчиненная таблица; различные связи между таблицами; а также управления базами данных.
Для закрепления полученных знаний, и получения практических навыков во второй части своей контрольной я попробую создать базу данных, и провести ряд операций с помощью СУБД Access. Я рассматриваю такие операции, как определение связей между таблицами, сортировка данных с помощью «расширенного фильтра», создание однотабличного запроса на выборку, создание многотабличного запроса на выборку, сортировка данных за несколькими ключами, создание многотабличного запроса с параметром, создание в режиме «конструктор» запроса на обновление и т.д.
1. Системы управления базами данных
Для взаимодействия пользователя с БД используется системы управления базами данных (СУБД), которые обеспечивают:
- набор средств для поддержки таблиц и соотношений между ними;
- развитый пользовательский интерфейс, позволяющий вводить и модифицировать информацию, производить поиск и представлять результаты;
- средства программирования высокого уровня, позволяющие создавать собственные приложения.
Подход к построению СУБД значительно видоизменялся на протяжении почти 40 лет. На смену ВЦ предприятия и АСУП на их основе пришли персональные компьютеры и настольные (персональные) системы управления базами данных, затем с развитием коммуникаций появились распределенные системы и концепции управления крупными предприятиями - корпорациями на основе бизнес-процессов.
При этом в условиях динамичного изменения бизнес-процессов в последние годы сформулировался ряд определенных требований к функциональным возможностям тех СУБД, производители которых стремятся поддерживать свои продукты на высоком, конкурентоспособном уровне.
1.Создаваемые средствами СУБД приложения должны обладать высокой степенью мобильности и легко переноситься на разные компьютерные и сетевые платформы.
2.Коммуникационный обмен данными становится асинхронным, а информационные процессы длительными, и поэтому возникает необходимость журнализации состояния баз данных и проведения возможного отката/восстановления для расширенных временных рамок (дни, недели).
3.Средства СУБД должны допускать возможность гибкого варьирования архитектуры различных ИС для соблюдения разумного компромисса при разделении функциональных возможностей системы между рабочими станциями клиентов и серверами.
4.Создание "менеджеров процессов" может быть эффективным только в таких условиях, когда средства программирования СУБД объектно-ориентированы и возможно создание стабильных приложений при динамичном изменении маршрутизации сквозь эти задачи.
5.Производителям СУБД следует обеспечить соответствие поставляемых ими продуктов открытым стандартам взаимодействия.
6.Расширение бизнес-процессов за пределы одной компании и необходимость создания глобальных информационных связей выдвигает серьезную задачу поддержки высокой степени готовности систем, работающих 24 часа в сутки все 365 дней в году.
Перечисленные требований к СУБД как к интегрирующим звеньям информационных систем новой архитектуры позволяют взглянуть на существующие ныне на рынке продукты разных производителей под соответствующим углом зрения. Адекватность предлагаемых сегодня СУБД новым требованиям определит для их будущих владельцев и клиентов преимущества создаваемых ИС, их гибкость, мобильность, возможность легкой перестройки и, в конечном счете, способность к выживанию.
2. Настольные (локальные) СУБД
информационный многотабличный реляционный
Важным этапом в развитии настольных систем управления базами данных стали СУБД dBASE III и dBASE III PLUS фирмы Ashton Tate (Ребус в отечественном варианте), которые по существу стали стандартом для программных продуктов данного класса. После версии "третья с плюсом" разрабатывался проект dBASE IV, результатом которого стал пакет-монстр, трудный в освоении и малоэффективный, что привело фирму к краху.
Фирма Fox Software начинала с FохBase. Поначалу этот продукт мало отличался от dBASE: он лишь значительно быстрее работал и имел ряд полезных функций, которых у dBASE не было (русская "пиратская" версия FoxBase называлась "Карат-М"). Потом появился FoxPro - этот продукт оказался достаточно мощным, и очень многие программисты перешли на него. В последствии этот продукт купила MicroSoft и выпустила свою версию FoxPro 2.5, затем превратив его в визуальный объектно-ориентированный продукт Visual FoxPro 3.0. с последующим развитием.
Компания Nantucket производила компилятор Clipper. Пакет Clipper имел преимущество перед другими XBASE-продуктами по той простой причине, что позволял создавать исполняемые модули (ЕХЕ-файлы). Кроме того, у него было одно важное свойство, актуальное и по сей день: он позволял быстро и довольно простыми средствами создавать корпоративные программы средней сложности (АРМ "Кадры", "Финансы", "Библиотека" и пр.). Второе очевидное преимущество - простота освоения. В Clipper многие компоненты были уже готовы или собирались из кусочков за считанные минуты, для DOS по тем временам это было большое достижение. Недостатком являлось то, что у Clipper не было своей среды разработки. Программы набирались в каком-нибудь редакторе, а потом компилировались и запускались. Развивая его как язык программирования, фирма Nantucket намеревалась сделать из Clipper нечто, подобное языку Си++. Ориентация на объектно-ориентированный язык программирования привела к тому, что Clipper nepeстал быть самим собой. Пропала простота освоения, а требования к ресурсам неимоверно возросли. Проект потерпел неудачу, эту фирму купила компания Computer Associates и новый производитель выпустил Windows-вариант доработанного продукта под названием Visual Objects.
Постепенно настольные системы становятся сетевыми, поскольку стоит даже небольшую организацию рассадить по нескольким удаленным друг от друга офисам - и вот уже без схемы «клиент-сервер» работать нельзя. Перерастание локальной информационной системы в клиент-серверную - нормальный процесс, но, конечно, работа в архитектуре «клиент-сервер» не самоцель. Нужно использовать ее только тогда, когда это дает действительный выигрыш, действительную отдачу. Поэтому основные производители настольных СУБД выстроили ряд продуктов - приложений современных 32-разрядных операционных систем: «настольная СУБД с возможностью подключения к распределенной базе данных с использованием стандартного языка SQL» - «визуальная объектно-ориентированная среда разработки» - «распределенная СУБД структуры «сервер - клиент» (например, Microsoft Access - FoxPro - SQL Server).
Современные настольные СУБД входят в состав интегрированных программных продуктов типа Office: MS Access из состава Office 95 и 97, Paradox 7.0 из состава Corel Office 97, Approach из состава Lotus SmartSuite 97.
3. СУБД структуры «сервер-клиент»
Построение распределенных систем имеет важное значение, особенно в условиях бессистемного оснащения предприятия компьютерной техникой, когда многие уже, как правило, работают (или им необходимо работать) с системами, состоящими из множества компьютеров разного типа (серверов, мини-компьютеров, больших машин).
Централизованное хранение данных и доступ к центральной БД в условиях географически распределенной системы приводят к необходимости установления соединений между центральным сервером, хранящим данные, и компьютерами-клиентами. Большинство компьютеров-клиентов отделены от центрального сервера медленными и недостаточно надежными линиями связи, и работа в режиме удаленного клиента становится почти невозможной. Этим можно объяснить существующую ситуацию, когда в узлах распределенной системы функционируют группы автоматизированных рабочих мест (АРМ), абсолютно не связанные друг с другом.
Содержательная сторона задачи обычно требует обмена данными между группами АРМ, так как изменения в какие-либо данные могут вноситься в одной группе, а использоваться они могут в другой. На практике обмен информацией реализуется регламентной передачей файлов - через модемное соединение или «с курьером».
То, что данные доставляются к месту назначения не системными средствами, а путем экспорта/импорта файлов, приводит к необходимости участия человека в процессе обмена, а это влечет за собой малую оперативность поступления данных и необходимость реализации внешних механизмов контроля целостности и непротиворечивости. В результате возрастает вероятность появления ошибок. Кроме того, реализация всех алгоритмов обмена данными и контроля в этом случае возлагается на прикладных программистов, проектирующих АРМ. Объем работ по программированию и отладке подпрограмм обмена соответствует числу различных АРМ. Это также приводит к повышению вероятности сбоев в системе.
В современной технологии АРМ объединены в локальную сеть. АРМ - клиент выдает запросы на выборку и обновление данных, а СУБД исполняет их. Запросы клиента в соответствии с требованиями задачи сгруппированы в логические единицы работы (транзакции). Если все операции с базой данных, содержащиеся внутри транзакции, выполнены удачно, транзакция в целом также выполняется успешно (фиксируется). Если хотя бы одна из операций с БД внутри транзакции произведена неудачно, то все изменения в БД, происшедшие к этому моменту из транзакции, отменяются (происходит откат транзакции). Такое функционирование обеспечивает логическую целостность информации в базе данных.
При распределенной обработке изменения, проводимые приложением-клиентом, могут затрагивать более чем один сервер СУБД. Для поддержания целостности и в этом случае необходимо применение того или иного транзакционного механизма, реализуемого системными средствами, а не прикладной программой.
Но основной недостаток систем, построенных на распределенных транзакциях, - высокие требования к надежности и пропускной способности линий связи. Поэтому альтернативой распределенным транзакциям считается репликация (дублирование) данных. В таких системах одна и та же информация хранится в различных узлах. Согласование значений и распространение данных по узлам осуществляется автоматически. В зависимости от условий, специфицированных разработчиком, репликация может производиться либо сразу после наступления некоторого события (скажем, модификации строки таблицы), либо через заранее заданные интервалы времени (каждую минуту, каждый час и т.д.), либо в определенный момент времени (например, ночью, когда загрузка и стоимость линий связи минимальная). Если узел, в который выполняется репликация, в данный момент недоступен, информация об этом сохраняется в вызывающем узле, и репликация осуществляется после восстановления связи. Более того, гарантируется сохранение заданного вызывающим узлом порядка ее выполнения.
Транзакция может вносить изменения (то есть добавлять, удалять и изменять записи) в одну или несколько таблиц базы данных. Выбранные для репликации таблицы специальным образом помечаются. Для каждой такой таблицы или группы ее строк, выбранной по заданному условию, определяется один узел (СУБД), в котором данные таблицы являются первичными. Это тот узел, в котором происходит наиболее активное обновление данных. Репликационному серверу, обслуживающему БД с первичными данными, задается описание тиражирования (replication definition). В этом описании, к примеру, могут быть заданы интервалы значений первичного ключа таблицы или какое-нибудь другое условие, при выполнении которого измененные данные будут тиражироваться из этого узла к подписчикам. Если условие не задано, то описание тиражирования действует для всех записей таблицы. Возможность тиражирования группы записей таблицы означает, в частности, что часть записей может быть первичными данными в каком- то одном узле, а еще часть - в других узлах. В одном или нескольких узлах (СУБД), которым нужны измененные данные, в обслуживающем его репликационном сервере создается подписка (subscription) на соответствующее описание тиражирования. Здесь будет поддерживаться (с небольшой задержкой) копия первичных данных.
Современные СУБД используют так называемый системный журнал, в который вносятся записи об изменениях в базе данных и завершении транзакций. Журнал используется сервером БД для отката или прокрутки транзакций после сбоев и для резервного копирования. Измененые данные из журнала передаются репликационному серверу, обслуживающему этот узел. Репликационный сервер в соответствии с описанием тиражирования и подписками отправляет данные в специальном эффективном протоколе по месту назначения, то есть соответствующим репликационным серверам в удаленных узлах.
Именно в этом сечении - между репликационными серверами - связь может быть медленной или недостаточно надежной. Передаваемые данные в составе транзакции при недоступности узла-получателя записываются в стабильные очереди на диске и затем передаются по мере возможности. Данные могут передаваться в удаленный узел по маршруту, содержащему несколько репликационных серверов. В частности, такая возможность лежит в основе построения иерархических систем репликации.
В одной базе данных могут содержаться как первичные данные, так и данные-копии. Приложение-клиент, работающее со своей СУБД, может вносить изменения напрямую (операторами INSERT, DELETE, UPDATE) только в первичные данные. Для изменения копии данных предназначен механизм асинхронного вызова процедур. Для работы этого механизма в нескольких базах данных создаются процедуры с одинаковым именем и параметрами, но, возможно, с различным текстом. В одной базе данных процедура помечается как предназначенная к репликации. Вызов этой процедуры вместе со значениями параметров через журнал и механизм репликации передается к узлам-подписчикам, и в их базах данных вызывается одноименная процедура с теми же значениями параметров.
СУБД, хранящая вторичные данные, может быть любой из ряда доступных через шлюз: будь то Oracle, Informix, DB2, RMS, ISAM и т.п.. СУБД, хранящая первичные данные, требует наличия менеджера журнала транзакций (Log Transfer Manager - LTM). Сейчас разработаны LTM для Sybase SQL Server и Oracle; на очереди другие СУБД. Интерфейс LTM является открытым, и в скором времени, возможно, подобные модули будут созданы для нестандартных источников данных.
Вообще, тиражирование данных может найти самое разнообразное применение:
- для разгрузки сервера, выполняющего активное обновление данных (OLTP) от сложных запросов, связанных с поддержкой принятия решений (decision-support);
- для консолидации данных от подразделений в центре;
- для обмена данными по медленным или ненадежным линиям связи;
- для поддержания резервной базы данных;
-для построения сети равноправных узлов, обменивающихся данными.
Следует подчеркнуть, что репликационный сервер тиражирует транзакции, а не отдельные изменения в базе данных. Метод тиражирования транзакций гарантирует целостность внутри транзакции и, как следствие, невозможность нарушения ссылочной целостности. Схема обновления первичных данных и копий данных исключает возможность возникновения конфликтов; последние могут быть вызваны только неправильным проектированием системы или сбоем.
Большинство производителей современных промышленных СУБД в той или иной мере обеспечивают поддержку распределенной обработки транзакций. Распределенная обработка данных основывается на синхронных или асинхронных механизмах обработки распределенных транзакций. Эти механизмы могут использоваться и совместно. Поскольку каждый механизм обладает своими сильными и слабыми сторонами, выбор его зависит от требований конкретной подзадачи.
Исторически первым появился метод синхронного внесения изменений в несколько БД, называемый двухфазной фиксацией (2РС, two- phase commit). Этот механизм реализован сейчас практически всеми производителями СУБД. Суть метода двухфазной фиксации состоит в том, что при завершении транзакции серверы БД, участвующие в ней, получают команду «приготовиться к фиксации транзакции». После получения подтверждений от всех серверов транзакция фиксируется на кадом из них. Таким образом, в любой момент времени обеспечивается целостность данных в распределенной системе. Платой за это являются требование доступности всех участвующих серверов и линий связи во время проведения транзакции, а также невозможность работы приложений-клиентов при недоступности, например, удаленного сервера. Кроме того, необходимо высокое быстродействие линий связи для обеспечения приемлемого времени реакции у приложения-клиента.
В распределенной системе идеальным являлось бы состояние, когда каждая программа-клиент обращается только к тем серверам, которые находятся в пределах ее локальной сети, а передача данных и обеспечение целостности осуществляются системными средствами и не требуют специальных действий со стороны прикладной программы. Такое распределение функций возможно и на практике реализуется с помощью механизма асинхронного тиражирования транзакций.
Синхронное проведение изменений в участвующих в распределенной транзакции базах данных не всегда является необходимым требованием. Рассмотрим, например, случай ввода данных с измерительного оборудований в цехе и последующего анализа этой информации на уровне управления. Здесь очень важно обеспечить достаточно малый (но, возможно, ненулевой) интервал времени между изменениями в исходных данных и в их копии на другом узле системы, где происходит построение отчетов.
Механизм асинхронного тиражирования транзакций (репликации) гарантирует доставку измененных данных на вторичные серверы непосредственно после завершения транзакции, если сервер доступен, или же тотчас после подключения сервера к сети. Такой способ предполагает хранение дублирующей информации в различных узлах сети и по сравнению с другими подходами к репликации существенно разгружает трафик сети, минимизирует время отклика системы, а также позволяет оптимизировать нагрузку на серверы.
В зависимости от условий, специфицированных разработчиком, репликация может производиться либо сразу после наступления некоторого события (скажем, модификации строки таблицы), либо через заранее заданные интервалы времени (каждую минуту, каждый час и т.д.), либо в определенный момент времени (например, ночью, когда загрузка и стоимость линий связи минимальная). Если узел, в который выполняется репликация, в данный момент недоступен, информация об этом сохраняется в вызывающем узле, и репликация осуществляется после восстановления связи. Более того, гарантируется сохранение заданного вызывающим узлом порядка ее выполнения.
Основные преимущества такого решения - повышение надежности системы (за счет контролируемого дублирования данных) и увеличение ее производительности из-за существенного снижения сетевого трафика. Причем для уменьшения объема передаваемых данных обычно реплицируется не полный образ таблицы (или ее подмножества), а только информация об изменениях, происшедших с момента последней репликации.
Надо отметить, что асинхронная репликация не делает линии связи более надежными или скоростными. Она лишь перекладывает задачи трансляции данных и обеспечения их целостности «с плеч» прикладной программы и пользователя на системный уровень.
Асинхронная репликация, в отличие от 2РС, не гарантирует полной синхронности информации на всех серверах в любой момент времени. Синхронизация происходит через некоторый, обычно небольшой интервал времени, величина которого определяется быстродействием соответствующего канала связи. Для большинства задач кратковременное наличие устаревших данных в удаленных узлах не критично и вполне допустимо.
Вместе с тем асинхронная репликация транзакций принципиально обеспечивает целостность информации, так как объектом обмена данными здесь является логическая единица работы - транзакция, а не просто данные из измененных таблиц.
Все современные серверы БД используют блокировки, чтобы обеспечить параллелизм в многопользовательской среде. Речь может идти о блокировках на уровне страниц, строк или таблиц, причем характер используемой блокировки чаще всего определяется в момент описания таблиц. Действительно, пользователи и разработчики корпоративных информационных систем все больше внимания уделяют эффективности базовой СУБД. В частности, речь идет о способах реализации систем блокировки, которые в значительной степени влияют на качество исполнения проектов. Система блокировок синхронизирует доступ пользователей к базе данных, а в идеале гарантирует непротиворечивость данных и истинность результатов выполнения запросов. В то время как один пользователь блокирует область базы данных, например, для просмотра и·возможной модификации данных, последние должны быть защищены от воздействия со стороны других пользователей, возможно пытающихся вносить изменения в той же области данных.
Задача масштабирования рано или поздно встает в любой организации, и это вполне объяснимо. Никто и никогда не покупает аппаратуру про запас, с большими резервами по вычислительной мощности. В то же время объемы хранимых данных и количество реально работающих приложений имеют тенденцию к неуклонному увеличению. Поэтому лучше всего изначально остановить свой выбор на такой аппаратной конфигурации, которая в дальнейшем будет легко наращиваться и развиваться.
В настоящее время этому требованию в наибольшей степени отвечают компьютеры с симметричной многопроцессорной (SMP) или массивно-параллельной (МРР) архитектурой, на которых при увеличении количества процессоров обеспечивается практически линейный рост производительности. Обработка нескольких запросов, вложенных циклов внутри одного запроса, загрузка и сортировка данных, создание индексов и т.д. - все это выполняется параллельно на различных процессорах. Более того, одновременно реализуется эффективная динамическая балансировка загрузки системных ресурсов (процессоров, оперативной и дисковой памяти).
Виртуальным-процессором (ВП) называется процесс сервера баз данных. ВП можно сравнить с операционной системой - поток по отношению к нему выступает как процесс, подобно тому как сам ВП является процессом с точки зрения операционной системы.
В отличие от операционной системы, которая должна обеспечивать выполнение произвольных процессов, ВП подразделяются на несколько классов, каждый из которых спроектирован для наиболее оптимального выполнения задач определенного вида. Например, ВП CPU работают на потоки обслуживания клиентов, реализующие оптимизацию и логику выполнения запросов; ВП АIO выполняют операции асинхронного обмена с диском; ВП TLI контролируют сетевое взаимодействие.
Сервер поддерживает очереди потоков для каждого класса ВП. Как только ВП освобождается, он выбирает из очереди следующий поток, тем самым достигается равномерная загрузка. Переключение же ВП с одного потока на другой выполняется значительно быстрее, чем переключение ОС с одного процесса на другой. Кроме того, многопотоковая архитектура способствует более рациональному использованию ресурсов ОС, поскольку потоки разделяют ресурсы ВП, на котором они выполняются, - память, коммуникационные порты, файлы.
Начальное число ВП каждого класса задается в конфигурационном файле. Но если потребности в каких-то видах увеличиваются, то инструменты администрирования позволяют динамически, не останавливая сервер, запустить дополнительные ВП. Например, если растет очередь потоков к ВП CPU, то можно увеличить их число. Точно так же возможно добавление виртуальных процессоров обмена с дисками, сетевых процессоров.
Разделение данных между виртуальными процессорами и потоками сервера реализовано на основе разделяемой памяти - механизма, обеспечиваемого операционной системой. Разделение данных позволяет:
- снизить общее потребление памяти, поскольку участвующим в разделении процессам, то есть виртуальным процессорам, нет нужды поддерживать свои копии информации, находящейся в разделяемой памяти;
- сократить число обменов с дисками, потому что буферы ввода-вывода сбрасываются на диск не для каждого процесса в отдельности, а образуют один общий для всего сервера баз данных пул; виртуальный процессор зачастую избегает выполнения операций ввода с диска, поскольку нужная таблица уже прочитана другим процессором;
- организовать быстрое взаимодействие между процессами; через разделяемую память, в частности, обмениваются данными потоки, участвующие в параллельной обработке сложного запроса; разделяемая память используется также для организации взаимодействия между локальным клиентом и сервером.
Заключение
В общем смысле термин «база данных» (БД) можно применить к любой совокупности связанной информации, объединенной вместе по определенному признаку, т.е. к набору данных, организованных определенным образом. При этом большинство БД использует табличный способ преставления, где данные располагаются по строкам (которые называются записями) и столбцам (которые называются полями), причем все записи должны состоять из одинаковых полей и все данные одного поля должны иметь один тип. Например, расписание движения поездов, полетов самолетов, книга заказов или учет товаров и т.п. легко могут быть представлены в такой форме. Базы данных должны содержать только независимую (первичную) информацию, поэтому не любая таблица представляет собой базу данных.
В последнее время наибольшее распространение получили реляционные базы данных (слово «реляционная» происходит от английского relation - отношение). Концепции реляционной модели данных связаны с именем известного специалиста в области систем 6aз данных Е. Кодда. Именно поэтому реляционную модель данных в литературе часто называют моделью Кодда.
В компьютерном варианте в реляционной БД информация хранится, как правило, в нескольких таблицах-файлах, связанных между собой посредством одного или нескольких совпадающих в этих таблицах полей (в некоторых компьютерных системах все таблицы одной базы помещаются в один файл). Каждая строка в таблице реляционной БД должна быть уникальна (т.е. не должно быть одинаковых строк-записей). Такие уникальные столбцы (или уникальные группы столбцов), используемые, чтобы идентифицировать каждую строку и хранить все строки отдельно, называются первичными ключами таблицы.
Основным назначением БД является быстрый поиск содержащейся в ней информации. При этом БД могут содержать значительный объем информации, например, список домашних телефонов г.Астрахани (с его недостаточной степенью телефонизации) составляет десятки тысяч абонентов. В телефонной книге абоненты упорядочены (отсортированы) в алфавитном порядке и поиск по фамилии займет не очень много времени, однако, поиск по адресу или неточному номеру телефона и т.п. вручную - не решаемая практически задача.
Список литературы
1. Атре Ш. Структурный подход к организации баз данных. - М.: Финансы и статистика, 2011. - 320 с.
2. Бойко В.В., Савинков В.М. Проектирование баз данных информационных систем. - М.: Финансы и статистика, 2012. - 351 с.
3. Голицина О.Л., Максимов Н.В., Попов И.И. Базы данных: Учебное пособие. - М.: ФОРУМ: ИНФРА-М, 2012. - 352 с.
4. Джексон Г. Проектирование реляционных баз данных для использования с микроЭВМ. -М.: Мир, 2011. - 252 с.
5. Карпова Т.С. Базы данных: модели, разработка, реализация. - СПб.: Питер, 2012. - 304 с.
6. Кириллов В.В. Структуризованный язык запросов (SQL). - СПб.: ИТМО, 2012. - 80 с.
7. Корнеев И.К., Машурцов В.А. Информационные технологии в управлении. - М.: ИНФРА-М, 2011. - 158 с.
8. Мартин Дж. Планирование развития автоматизированных систем. - М.: Финансы и статистика, 2012 - 196 с.
9. Хаббард Дж. Автоматизированное проектирование баз данных. - М.: Мир, 2012. - 294 с.
Размещено на Allbest.ru
Подобные документы
Основные понятия информационных баз данных. Реляционная модель данных. Создание с помощью программы СУБД Access таблиц "Оптовый магазин", их сортировка по различным критериям. Введение многотабличного запроса на выборку с обновлением записей и отчетом.
контрольная работа [25,6 K], добавлен 26.02.2009Структура многотабличных баз данных, создание и редактирование таблиц в MS Access, установка связей между таблицами, фильтрация и сортировка данных, создание БД "Месторождения нефти". Составление форм, запроса на выборку по разным полям и отчетов.
лабораторная работа [531,5 K], добавлен 13.02.2012Изучение реляционной модели данных. Выявление потребности задач в данных и определение состава и структуры информационных объектов. Построение концептуальной модели предметной области. Создание форм, запросов и отчетов с помощью конструктора запросов.
курсовая работа [6,3 M], добавлен 09.10.2021- Разработка информационной системы предприятия с помощью системы управления базами данных Access 2007
Проектирование структуры базы данных предприятия с помощью СУБД Access. Установка связей между таблицами и ввод в них данных. Создание форм к базе данных, фильтрация запросов, просмотр отчетов. Получение комплексного отчета после группировки и сортировки.
лабораторная работа [787,7 K], добавлен 22.11.2014 Создание таблиц базы данных с помощью MS Access "Страны Азии". Форма базы данных и запросы к выборкам данных. Модификация структуры таблиц, создания связей между главными таблицами, редактирование данных и проектирование форм для реальной базы данных.
контрольная работа [723,9 K], добавлен 25.11.2012Описание торговой сети, сбор данных, которые должны содержаться в базе данных. Определение сущностей и атрибутов и построение концептуальной модели. Переход к физической модели. Определение таблиц, полей и типов данных. Определение связей между таблицами.
курсовая работа [1,5 M], добавлен 31.03.2015Сущность и характеристика типов моделей данных: иерархическая, сетевая и реляционная. Базовые понятия реляционной модели данных. Атрибуты, схема отношения базы данных. Условия целостности данных. Связи между таблицами. Общие представления о модели данных.
курсовая работа [36,1 K], добавлен 29.01.2011Понятие системы управления базой данных. Создание конструктора запроса. Отчеты по анализу интенсивности движения в узлах и на участках улично–дорожной сети. Связи между таблицами. Добавление данных с помощью форм. Копирование данных из другого источника.
курсовая работа [5,7 M], добавлен 06.08.2013Основные понятия базы данных. Разработка сложной формы для обработки данных. Модели организации данных. Архитектура Microsoft Access. Реляционные связи между таблицами баз данных. Проектирование базы данных. Модификация данных с помощью запросов действий.
лабораторная работа [345,5 K], добавлен 20.12.2011Основные области проектирования информационных систем: базы данных, программы (выполнение к запросам данных), топология сети, конфигурации аппаратных средств. Модели жизненного цикла программного обеспечения. Этапы проектирования информационной системы.
реферат [36,1 K], добавлен 29.04.2010