Программы-переводчики: история и характеристики

Машинный перевод как процесс перевода текстов с одного естественного языка на другой с помощью компьютерной программы, принцип работы. История становления и развития данной формы перевода, оценка его эффективности и сферы использования на сегодня.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 09.01.2014
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Возникший как важная составляющая человеческого общения, перевод с языка на язык служит как общекультурным (например, взаимообогащению литератур разных народов), так и вполне утилитарным целям. В последние десятилетия все чаще требуются переводы текстов специального характера - экономических, юридических, технических, при работе с которыми главная функция перевода - не эстетическая, общекультурная, а информационная и коммуникативная.

Принято считать, что мировая история машинного перевода началась с появлением компьютеров. Но идея носилась в воздухе с давних времен, принимая подчас весьма причудливые формы… Появление первых ЭВМ лишь позволило начать воплощение фантастических проектов в жизнь. Сегодня обострение языковых проблем и прогресс в области высоких технологий диктуют направления поиска новых решений.

Машинный перевод - процесс перевода текстов (письменных, а в идеале и устных) с одного естественного языка на другой с помощью специальной компьютерной программы. Так же называется направление научных исследований, связанных с построением подобных систем.

1. История машинного перевода

Впервые мысль о возможности автоматического перевода в начале 40_x годов XIX века высказал британский математик Чарльз Бэббидж. Он пытался убедить правительство в необходимости финансировать исследования по разработке механического прототипа ЭВМ и обещал, что его машина сможет переводить разговорную речь… Проекту Бэббиджа суждено было остановиться на стадии прототипа, и его идеи на сто лет легли под сукно.

В 1933 году изобретатель П.П. Смирнов-Троянский получил в СССР патент на механическую «машину для подбора и печатания слов при переводе с одного языка на другой». Огромная заслуга этого человека в том, что он предложил и автоматический двуязычный словарь, и схему кодирования межъязыковых грамматических соответствий; правда, только для «синтетического» языка эсперанто. «Лингвистический арифмометр» Смирнова-Троянского опередил время, но дошел до наших дней лишь в списке научных курьезов: расширить его функциональность для работы с естественными языками так и не удалось.

Bell Labs (бывшая американская, а ныне франко-американская, корпорация, крупный исследовательский центр в области телекоммуникаций) продемонстрировала первое электронное устройство синтеза речи, «прапредок» современных систем перевода «на лету», на Всемирной ярмарке 1939 года в Нью-Йорке. Практического значения «железный болтун» так и не получил, но вызвал огромный интерес.

Появление ЭВМ заставило иначе взглянуть на машинный перевод. Можно сказать, что первые компьютеры, задействованные в расшифровке сообщений во время второй мировой войны, тоже трудились над переводами. Вплоть до конца 40_х годов ХХ века машинный перевод был скорее объектом увлекательных исследований, чем важной сферой использования вычислительной техники. Его история как научно-прикладного направления началась в 1947_м…

История машинного перевода как научно-прикладного направления началась в конце 40_х годов прошлого века. Теоретической основой начального (конец 1940_х - начало 1950_х годов) периода работ по машинному переводу был взгляд на язык как кодовую систему. Пионерами МП были математики и инженеры. Описания их первых опытов, связанных с использованием только что появившихся ЭВМ для решения криптографических задач, были опубликованы в США в конце 1940_х годов. Датой рождения машинного перевода как исследовательской области обычно считают март 1947; именно тогда специалист по криптографии Уоррен Уивер в своем письме Норберту Винеру впервые поставил задачу машинного перевода, сравнив ее с задачей дешифровки.

Тот же Уивер после ряда дискуссий составил в 1949 г. меморандум, в котором теоретически обосновал принципиальную возможность создания систем машинного перевода. У. Уивер писал: «У меня перед глазами текст, написанный по-русски, но я собираюсь сделать вид, что на самом деле он написан по-английски и закодирован при помощи довольно странных знаков. Все, что мне нужно, - это взломать код, чтобы извлечь информацию, заключенную в тексте». Аналогия между переводом и дешифрованием была естественной в контексте послевоенной эпохи, если учитывать успехи, которых достигла криптография в годы Второй мировой войны.

Идеи Уивера легли в основу подхода к МП, основанного на концепции interlingva: стадия передачи информации разделена на два этапа. На первом входное предложение следует перевести на искусственный язык-посредник (например, созданный на базе упрощенного английского языка), а затем результат этого перевода представить средствами выходного языка. Несмотря на то, что существует данная научная концепция уже полвека, ни одной реально работающей системы на ее основе пока не создано. Главная проблема - в разработке «посредника» и формальном описании его в терминах естественного языка.

Меморандум Уивера вызвал самый живой интерес к проблеме МП. В 1948 г. А. Бут и Ричард Риченс произвели некоторые предварительные эксперименты (так, Риченс разработал правила разбиения словоформ на основы и окончания). Вскоре началось финансирование исследований. На ранних этапах разработка МП активно поддерживалась военными, при этом в США основное внимание уделялось русско-английскому направлению, а в СССР - англо-русскому.

Помимо очевидных практических нужд важную роль в становлении машинного перевода сыграло то обстоятельство, что предложенный в 1950 г. английским математиком А. Тьюрингом знаменитый тест на разумность («тест Тьюринга») фактически заменил вопрос о том, может ли машина мыслить, на вопрос о том, может ли машина общаться с человеком на естественном языке таким образом, что тот не в состоянии будет отличить ее от собеседника-человека. Тем самым вопросы компьютерной обработки естественно-языковых сообщений на десятилетия оказались в центре исследований по кибернетике (а впоследствии по искусственному интеллекту), а между математиками, программистами и инженерами-компьютерщиками с одной стороны и лингвистами - с другой установилось продуктивное сотрудничество.

В 1952 г. состоялась первая конференция по МП в Массачусетском технологическом университете, а в 1954 г. в Нью-Йорке была представлена первая система МП - IBM Mark II, разработанная компанией IBM совместно с Джоржтаунским университетом (это событие вошло в историю как Джорджтаунский эксперимент). Была представлена очень ограниченная в своих возможностях программа (она имела словарь в 250 единиц и 6 грамматических правил), осуществлявшая перевод с русского языка на английский. В том же 1954_м первый эксперимент по машинному переводу был осуществлен в СССР И.К. Бельской (лингвистическая часть) и Д.Ю. Пановым (программная часть) в Институте точной механики и вычислительной техники Академии наук СССР, а первый промышленно пригодный алгоритм машинного перевода и система машинного перевода с английского языка на русский на универсальной вычислительной машине были разработаны коллективом под руководством Ю.А. Моторина. После этого работы начались во многих информационных институтах, научных и учебных организациях страны. Казалось, что создание систем качественного автоматического перевода вполне достижимо в пределах нескольких лет (при этом акцент делался на развитии полностью автоматических систем, обеспечивающих высококачественные переводы; участие человека на этапе постредактирования расценивалось как временный компромисс). Профессиональные переводчики всерьез опасались в скором времени остаться без работы…

50_е годы - первое разочарование

К началу 50_х годов целый ряд исследовательских групп в США и в Европе работали в области МП. В эти исследования были вложены значительные средства, однако результаты очень скоро разочаровали инвесторов. Одной из главных причин невысокого качества МП в те годы были ограниченные возможности аппаратных средств: малый объем памяти при медленном доступе к содержащейся в ней информации, невозможность полноценного использования языков программирования высокого уровня. Другой причиной было отсутствие теоретической базы, необходимой для решения лингвистических проблем, в результате чего первые системы МП сводились к пословному (word-to-word) переводу текстов без какой-либо синтаксической (а тем более смысловой) целостности.

В 1959 г. философ Й. Бар-Хиллел выступил с утверждением, что высококачественный полностью автоматический МП (FAHQMT) не может быть достигнут в принципе. В качестве примера он привел проблему нахождения правильного перевода для слова pen в следующем контексте: Джон искал свою игрушечную коробку. Наконец он ее нашел. Коробка была в манеже. Джон был очень счастлив. Pen в данном случае должно переводиться не как «ручка» (инструмент для письма), а как «детский манеж» (play-pen). Выбор того или иного перевода в этом случае и в ряде других обусловлен знанием внеязыковой действительности, а это знание слишком обширно и разнообразно, чтобы вводить его в компьютер. Однако Бар-Хиллел не отрицал идею МП как таковую, считая перспективным направлением разработку машинных систем, ориентированных на использование их человеком-переводчиком (своего рода «человеко-машинный симбиоз»).

Это выступление самым неблагоприятным образом отразилось на развитии МП в США. В 1966 г. специально созданная Национальной Академией наук комиссия ALPAC (Automatic Language Processing Advisory Committee), основываясь, в том числе и на выводах Бар-Хиллела, пришла к заключению, что машинный перевод нерентабелен: соотношение стоимости и качества МП было явно не в пользу последнего, а для нужд перевода технических и научных текстов было достаточно человеческих ресурсов. За докладом ALPAC последовало сокращение финансирования исследований в области МП со стороны правительства США - и это несмотря на то, что в то время как минимум три различные системы МП регулярно использовались рядом военных и научных организаций (в числе которых ВВС США, Комиссия США по ядерной энергии, Центр Евроатома в Италии).

60_е годы: низкий старт

Следующие десять лет разработка систем МП осуществлялась в США университетом Brigham Young University в Прово, штат Юта (ранние коммерческие системы WEIDNER и ALPS) и финансировалась Мормонской церковью, заинтересованной в переводе Библии; в Канаде группами исследователей, в числе которых TAUM в Монреале с ее системой METEO; в Европе - группами GENA (Гренобль) и SUSY (Саарбрюкен). Особого упоминания заслуживает работа в этой области отечественных лингвистов, таких, как И.А. Мельчук и Ю.Д. Апресян (Москва), результатом которой стал лингвистический процессор ЭТАП. В 1960 г. в составе Научно-исследовательского института математики и механики в Ленинграде была организована экспериментальная лаборатория машинного перевода, преобразованная затем в лабораторию математической лингвистики Ленинградского государственного университета.

70-80_е годы: новый импульс

Новый подъем исследований в области МП начался в 1970_х годах и был связан с серьезными достижениями в области компьютерного моделирования интеллектуальной деятельности. Соответствующая область исследований, возникшая несколько позже МП (датой ее рождения обычно считают 1956 г.), получила название искусственного интеллекта, а создание систем машинного перевода было осмыслено в 1970_е годы как одна из частных задач этого нового исследовательского направления.

При этом несколько сместились акценты: исследователи теперь ставили целью развитие «реалистических» систем МП, предполагавших участие человека на различных стадиях процесса перевода. Системы МП из «врага» и «конкурента» профессионального переводчика превращаются в незаменимого помощника, способствующего экономии времени и человеческих ресурсов.

За период 1978-93 гг. в США на исследования в области МП истрачено 20 миллионов долларов, в Европе - 70 миллионов, в Японии - 200 миллионов.

Можно выделить два основных стимула к развитию работ по машинному переводу в современном мире. Первый - собственно научный; он определяется комплексностью и сложностью компьютерного моделирования перевода. Как вид языковой деятельности перевод затрагивает все уровни языка - от распознавания графем (и фонем при переводе устной речи) до передачи смысла высказывания и текста. Кроме того, для перевода характерна обратная связь и возможность сразу проверить теоретическую гипотезу об устройстве тех или иных языковых уровней и эффективности предлагаемых алгоритмов. Эта характеристическая черта перевода вообще и машинного перевода в частности привлекает внимание теоретиков, в результате чего продолжают возникать все новые теории автоматизации перевода и формализации языковых данных и процессов. Вместе с тем разработки в области МП стимулировали развитие не только лингвистики. Результаты работ по МП способствовали началу и развитию исследований и разработок в области автоматизации информационного поиска, логического анализа естественно-языковых текстов, экспертных систем, способов представления знаний в вычислительных системах и т.д.

Второй стимул - социальный, и обусловлен он возрастающей ролью самой практики перевода в современном мире как необходимого условия обеспечения межъязыковой коммуникации, объем которой возрастает с каждым годом. Другие способы преодоления языковых барьеров на пути коммуникации - разработка или принятие единого языка, а также изучение иностранных языков - не могут сравниться с переводом по эффективности. С этой точки зрения можно утверждать, что альтернативы переводу нет, так что разработка качественных и высокопроизводительных систем машинного перевода способствует разрешению важнейших социально-коммуникативных задач.

Одной из новых разработок этого периода стала технология TM (translation memory), работающая по принципу накопления: в процессе перевода сохраняется исходный сегмент (предложение) и его перевод, в результате чего образуется лингвистическая база данных; если идентичный или подобный исходному сегмент обнаруживается во вновь переводимом тексте, он отображается вместе с переводом и указанием совпадения в процентах. Затем переводчик принимает решение (редактировать, отклонить или принять перевод), результат которого сохраняется системой. А в конечном итоге «не нужно дважды переводить одно и то же предложение!». В настоящее время разработчиком известной коммерческой системы, основанной на технологии TM, является система TRADOS (основана в 1984 г.).

В СССР с середины 70_х годов были созданы промышленные системы машинного перевода с английского языка на русский АМПАР (на основе исследований и разработок коллектива Ю.А. Моторина), с немецкого языка на русский НЕРПА, с французского языка на русский ФРАП, автоматические терминологические словари в помощь человеку-переводчику. Система АМПАР длительное время находилась в промышленной эксплуатации; впоследствии на ее базе были созданы более эффективные системы МП для персональных компьютеров семейства СПРИНТ; была также разработана система МП с русского языка на английский АСПЕРА. На этих разработках основываются такие системы машинного перевода, как Stylus, Socrat и другие.

От 90_х к XXI веку

В 1990 г., когда системы машинного перевода снова стали одним из приоритетных направлений развития компьютерной отрасли и вышли на новый качественный уровень, пройдя непростой этап переосмысления и взаимной интеграции, Ларри Чайлдс предложил их классификацию, актуальную до сих пор. Он разделил все «электронные переводчики» на три группы.

FAMT (Fully-Automated Machine Translation) - инструменты полностью автоматизированного машинного перевода. Такие системы пока находятся в стадии разработки, поскольку проблемы автоматического понимания, перевода и синтеза «живых» текстов еще не решены, и это едва ли случится в ближайшее время. Одним из видов FAMT_программ являются уже существующие системы перевода устной речи «на лету»… Но их возможности пока чрезвычайно ограничены.

HAMT (Human-Assisted Machine Translation) - приложения для автоматизированного машинного перевода текстов, выполняемого при участии человека; причем в эту группу входят как продукты, «выросшие» из ТМ- и МТ-систем, так и базирующиеся на иных принципах - статистическом, фразеологическом и т.д., и комплексные решенияMAHT (Machine-Assisted Human Translation) - вспомогательные средства для выполнения перевода человеком с использованием компьютера. К категории MAHT_приложений сегодня относится абсолютное большинство «электронных переводчиков» и компьютерных словарей - как программных, так и онлайновых.

90_е годы принесли с собой бурное развитие рынка ПК (от настольных до карманных) и информационных технологий, широкое использование сети Интернет (которая становится все более интернациональной и многоязыкой). Все это сделало возможным, а главное востребованным, дальнейшее развитие систем МП. Появляются новые технологии, основанные на использовании нейронных сетей, концепции коннекционизма, статистических методах.

В настоящее время несколько десятков компаний занимаются разработкой коммерческих систем МП, в их числе: Systran, IBM, L&H (Lernout & Hauspie), Language Engineering Corporation, Transparent Language, Nova Incorporated, Trident Software, Atril, TRADOS, Caterpillar Co., LingoWare; Ata Software; Lingvistica b.v. и др. В настоящее время в Российской Федерации продолжаются в незначительных масштабах некоторые работы по системам МП, основанным на подходе «текст-смысл-текст», не всегда явно проговариваемым лозунгом которого в момент обоснования этого подхода в 1960_х годов был «машинный перевод без перевода, без машин, без алгоритмов». Идея подхода заключалась в том, что от лингвиста требуется только декларативное описание фактов языка (т.е. лингвистическая теория, претендующая, правда, на особую точность и формализованность), а алгоритмы перевода составят программист и математик. В рамках этих исследований были получены значительные теоретико-лингвистические результаты (в частности, создана теория так называемых лексических функций, нашедшая применение в лексикографии), однако для создания практических систем подобного рода подход оказался недостаточно эффективным. Все практические системы без исключения используют идею переводных соответствий, т.е. в их основе лежит модель «текст-текст», и они реализуют краткую схему перевода. Неизмеримо выросшие за последние десятилетия возможности вычислительной техники и новые программистские подходы никак не могут помочь реализовать идеи анализа и синтеза, основанные на приоритете выявления только синтаксической структуры с последующим переходом к смыслу.

С начала 1990_х годов на рынок систем ПК выходят отечественные разработчики.

В июле 1990 года на выставке PC Forum в Москве была представлена первая в России коммерческая система машинного перевода под названием PROMT (PROgrammer's Machine Translation). В 1991 г. было создано ЗАО «ПРОект МТ», и уже в 1992 г. компания «ПРОМТ» выиграла конкурс NASA на поставку систем МП (ПРОМТ была единственной неамериканской фирмой на этом конкурсе).

Несмотря на такую долгую историю, фактически всеми системами осуществляется перевод только на уровне поверхностного синтаксиса, поскольку еще не разработаны (по всей видимости) эффективные модели формального представления смысла, носителем которого должен выступать язык-посредник - интерлингва, хотя для отдельных узких отраслей такие модели строятся (например, METEO и LingoWare). Специалисты связывают построение адекватных систем МП с развитием искусственного интеллекта: машина сможет переводить с одного языка на другой, когда научится думать, как человек.

Другой путь совершенствования МП, более доступный на современном этапе, - составить корпус соответствий на двух языках. Можно предположить, что такие работы ведутся, и многими разными командами, но их действия не скоординированы, и потому результат слишком мал.

Критики современных систем МП полагают, что установка на жанровую ограниченность (научить машину сначала понимать совсем простые, специально отобранные тексты) на практике привела к тому, что задача моделирования естественного языка фактически уступила место задаче моделирования ограниченных (и крайне примитивных) подъязыков отдельных отраслей знания. При этом наилучшего результата на этом пути, как известно, достигла канадская система TAUM-METEO, отлично выполняющая задачу англо-французского перевода сводок погоды. Простейшим видом систем такого рода являются автоматические разговорники для туристов, предлагающие пользователю более или менее разнообразные «меню» стандартных вопросов и ответов на двух или нескольких языках.

2. Принцип работы машинного перевода

Каким образом осуществляется работа программы переводчика?

В ее основе лежит алгоритм перевода - последовательность однозначно и строго определенных действий над текстом для нахождения соответствий в данной паре языков L1 - L2 при заданном направлении перевода (с одного конкретного языка на другой). Обычные словари и грамматики разных языков не применимы для машинного перевода, так как описывают значения слов и грамматические закономерности в нестрогой форме, никак не приемлемой для «машинного» использования. Следовательно, нужна формальная грамматика языка, т.е. логически непротиворечивая и явно выраженная (безо всяких подразумеваний и недомолвок). Как только начали появляться формальные описания различных областей языка - прежде всего морфологии и синтаксиса, - наметился прогресс и в разработке систем автоматического перевода. Чтобы успешно работать, система машинного перевода включает в себя, во-первых, двуязычные словари, снабженные необходимой информацией (морфологической, относящейся к формам слова, синтаксической, описывающей способы сочетания слов в предложении, и семантической, т.е. отвечающей за смысл), а во-вторых - средства грамматического анализа, в основе которых лежит какая-нибудь из формальных, т.е. строгих, грамматик. Наиболее распространенной является следующая последовательность формальных операций, обеспечивающих анализ и синтез в системе машинного перевода.

1. На первом этапе осуществляется ввод текста и поиск входных словоформ (слов в конкретной грамматической форме, например дательного падежа множественного числа) во входном с сопутствующим морфологическим анализом, в ходе которого устанавливается принадлежность данной словоформы к определенной лексеме (слову как единице словаря). В процессе анализа из формы слова могут быть получены также сведения, относящиеся к другим уровням организации языковой системы, например, каким членом предложения может быть данное слово. Для машины совмещение двух этих операций - и грамматического разбора, и обращения к смыслу слов - задача трудная. Лучше сделать синтаксический анализ не зависящим от смысла слов, а словарь использовать на других этапах перевода.

2. Что такое независимый синтаксический анализ, можно понять, если попытаться разобрать фразу, из которой «убраны» значения конкретных слов. Блестящим образцом фразы такого рода является придуманное академиком Л.В. Щербой предложение: Глокая куздра штетко будланула бокра и кудрячит бокрёнка. Бессмысленная фраза? Как будто да: в русском языке нет слов, из которых она состоит (кроме союза и). И все же в какой-то степени мы ее понимаем.

3. То есть машина осуществляет синтаксический анализ предложения без опоры на значения составляющих его слов, с использованием информации только об их грамматических свойствах. В результате синтаксического анализа возникает синтаксическая структура, которая изображается в виде дерева зависимостей: «корень» - сказуемое, а «ветви» - синтаксические отношения его с зависимыми словами. Каждое слово предложения записывается в своей словарной форме, а при ней указываются те грамматические характеристики, которыми обладает это слово в анализируемом предложении.

4. 2. Следующий этап включает в себя перевод идиоматических словосочетаний, фразеологических единств или штампов данной предметной области (например, при англо-русском переводе обороты типа in case of, in accordance with получают единый цифровой эквивалент и исключаются из дальнейшего грамматического анализа); определение основных грамматических (морфологических, синтаксических, семантических и лексических) характеристик элементов входного текста (например, числа существительных, времени глагола, их роли в данном предложении и пр.), производимое в рамках входного языка; разрешение неоднозначности (скажем, англ. round может быть существительным, прилагательным, наречием, глаголом или же предлогом); анализ и перевод слов. Обычно на этом этапе однозначные слова отделяются от многозначных (имеющих более одного переводного эквивалента в выходном языке), после чего однозначные слова переводятся по спискам эквивалентов, а для перевода многозначных слов используются так называемые контекстологические словари, словарные статьи которых представляют собой алгоритмы запроса к контексту на наличие / отсутствие контекстных определителей значения.

5. 3. Окончательный грамматический анализ, в ходе которого доопределяется необходимая грамматическая информация с учетом данных выходного языка.

6. 4. Синтез выходных словоформ и предложения в целом на выходном языке. Здесь не получится обойтись простым переводом «узлов» дерева на другой язык. Синтаксис каждого языка устроен на свой лад: то, что в русском предложении - подлежащее, в другом языке может (или должно) быть выражено дополнением, а дополнение, наоборот, должно преобразоваться в подлежащее; то, что в одном языке обозначается группой слов, переводится на другой всего одним словом и т.д. Такой переход от структуры к реальному предложению называется синтаксическим синтезом.

7. В зависимости от особенностей морфологии, синтаксиса и семантики конкретной языковой пары, а также направления перевода общий алгоритм перевода может включать и другие этапы, а также модификации названных этапов или порядка их следования, но вариации такого рода в современных системах, как правило, незначительны. Для решения проблемы многозначности слова используется анализ контекста. Дело в том, что каждое из нескольких значений многозначного слова в большинстве случаев реализуются в своем наборе контекстов. То есть у каждого из «конкурирующих» (при интерпретации) значений - свой набор контекстов. И именно вот эта зависимость значения от окружения позволяет слушающему понять высказывание правильно. Для правильного понимания высказывания необходимо в полной мере учитывать также правила обусловленности выбранного значения лексическим окружением (действующие при «фразеологической» интерпретации слова), правила обусловленности выбранного значения семантическим контекстом (так называемые законы семантического согласования) и правила обусловленности выбранного значения грамматическим (морфолого-синтаксическим) контекстом.

8. Действующие системы машинного перевода, как правило, ориентированы на конкретные пары языков (например, французский и русский или японский и английский) и используют, как правило, переводные соответствия либо на поверхностном уровне, либо на некотором промежуточном уровне между входным и выходным языком. Качество машинного перевода зависит от объема словаря, объема информации, приписываемой лексическим единицам, от тщательности составления и проверки работы алгоритмов анализа и синтеза, от эффективности программного обеспечения. Современные аппаратные и программные средства допускают использование словарей большого объема, содержащих подробную грамматическую информацию. Информация может быть представлена как в декларативной (описательной), так и в процедурной (учитывающей потребности алгоритма) форме.

9. В практике переводческой деятельности и в информационной технологии различаются два основных подхода к машинному переводу. С одной стороны, результаты машинного перевода могут быть использованы для поверхностного ознакомления с содержанием документа на незнакомом языке. В этом случае он может использоваться как сигнальная информация и не требует тщательного редактирования. Другой подход предполагает использование машинного перевода вместо обычного «человеческого». Это предполагает тщательное редактирование и настройку системы перевода на определенную предметную область. Здесь играют роль полнота словаря, ориентированность его на содержание и набор языковых средств переводимых текстов, эффективность способов разрешения лексической многозначности, результативность работы алгоритмов извлечения грамматической информации, нахождения переводных соответствий и алгоритмов синтеза. На практике перевод такого типа становится экономически выгодным, если объем переводимых текстов достаточно велик (не менее нескольких десятков тысяч страниц в год), если тексты достаточно однородны, словари системы полны и допускают дальнейшее расширение, а программное обеспечение удобно для постредактирования.

3. Примеры программ переводчиков

PROMT (Компания PROMT является одной из старейших российских IT_компаний, с 1991 года успешно развивая технологии машинного перевода)

Сократ

Google переводчик

Яндекс переводчик

Lingvo переводчик

ATLAS Translation

World Magic Translator

WEB TRANS 3.0

IM Translator

4. Будущее программ переводчиков

компьютерный программа перевод машинный

Основной проблемой при разработке программ переводчиков текста стала неоднозначность перевода некоторых слов, в связи с этим перевод получается не точным, а иногда даже абсурдным. Создать по-настоящему интеллектуальную систему перевода, способную сравниться в качестве работы с человеком переводчиком пока не удалось, и в ближайшее время такой возможности не предвидится.

Но, несмотря на это фирмы, занимающиеся разработкой программного обеспечения по переводу текстов, которые смогли закрепить свои позиции на рынке, все время совершенствуют свои продукты, создавая целые программные комплексы. В них входят программы для перевода текстов, электронные словари, программы для перевода сообщений электронной почты, программы мгновенного перевода слов в текстовых редакторах, программы для перевода web_страниц и программы, встраивающиеся в web_браузер, способные переводить отдельные слова и фразы. Некоторые из них способны предоставить возможность услышать произношение иностранных слов.

С годами растет не только функциональность программ переводчиков текста, но и количество языков и возможных направлений перевода. Особенно удачные переводы получаются при работе с языками латинской группы. К тому же появилась возможность человеку принимать участие в переводе. Теперь люди могут сами настраивать и редактировать словари, добавлять в них новые слова и фразы. Технический прогресс не стоит на месте и в нашу жизнь тесно вошли КПК и смартфоны, поэтому кампании разработчики программного обеспечения позаботились о том, чтоб новые версии их продуктов можно было всегда иметь при себе в наладоннике или телефоне.

Вывод

Таким образом, невозможно представить современную жизнь без быстрых программ-переводчиков. Данные программы незаменимы в учёбе, работе, удобны как для изучения языка, так и для простого пополнения словарного запаса. Простота в использовании, скорость - основные преимущества современных программ-переводчиков. Однако, есть и минусы, над устранением которых работают многие компании. Эти минусы проявляются в неточности перевода, невозможности отобразить языковые обороты и приёмы и т.д.

Само собой такие программы не способны заменить человека, но они позволяют понять смысл текста, на перевод которого затрачивается всего несколько секунд. Это довольно весомый аргумент в сторону программ переводчиков текста. К тому же гораздо проще посмотреть непонятное слово в электронном словаре, а не листать толстый словарь иностранных языков, опубликованный в бумажном виде. Поэтому вопреки всем недостаткам программ переводчиков, работа над их усовершенствованием ведется и по сей день. Спрос, как говорится - рождает предложение.

Используемая литература

1. http://mrtranslate.ru/download/download.html

2. http://do.gendocs.ru/docs/index_153515.html

3. http://www.bibliofond.ru/view.aspx? id=73055

4. http://www.primavista.ru/rus/catalog/mashinniy_perevod

5. http://www.transinter.ru/articles/265

6. http://www.aet.su

Размещено на Allbest.ru


Подобные документы

  • История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.

    курсовая работа [30,0 K], добавлен 19.06.2015

  • Мировая история технологии машинного перевода как класса систем искусственного интеллекта. Классификация программ онлайн-переводчиков, поддержка функции контролируемого входного языка. Многоязычные браузеры в Интернете и перечень электронных словарей.

    контрольная работа [21,6 K], добавлен 03.02.2011

  • Исследование современных технологий машинного перевода. Изучение классификации систем перевода. Характеристика особенностей работы с электронным словарем. Языковые инструменты Google. Программы для проверки правописания и грамматики, текстовые редакторы.

    реферат [917,0 K], добавлен 02.11.2014

  • Перевод - процесс создания на основе исходного текста на одном языке равноценного ему в коммуникативном отношении текста на другом языке, требования к обеспечению его эквивалентности. Машинные технологии перевода; характеристика систем Translation Memory.

    презентация [347,8 K], добавлен 06.01.2014

  • История возникновения, эволюция машинного перевода. Основные требования к коммуникативной эквивалентности. Последовательность формальных операций в системе машинного перевода, ее концепции развития. Переводчик для офиса. Преимущества электронных словарей.

    презентация [455,3 K], добавлен 22.10.2013

  • Составление транслятора на языке С для перевода кода программы из языка Pascal в код программы на языке Cи. Распознавание и перевод конструкций: for, type, function, integer. Вешняя спецификация, описание, структура, текст программы; распечатка текстов.

    курсовая работа [287,8 K], добавлен 24.06.2011

  • Понятие и цель применения текстовых данных. Принцип кодирования азбуки Морзе. Основные методы языка высокого уровня C#. Алгоритм работы, листинг, тестирование программы для перевода текста в последовательность кодов азбуки Морзе. Руководство пользователя.

    курсовая работа [1,4 M], добавлен 15.01.2013

  • Специализированные программы-переводчики. Возможности компьютерных словарей. Проблемы перевода многостраничной документации. Принципы, по которым построены компьютерные словари. Какие тексты нецелесообразно переводить с помощью компьютерных переводчиков.

    презентация [9,2 K], добавлен 13.11.2010

  • Компьютерная программа как последовательность инструкций, предназначенная для исполнения устройством управления вычислительной машины. Анализ стандартов перевода текстов компьютерных игр. Рассмотрение особенностей ИТ-перевода, примеры грубейших ошибок.

    реферат [65,5 K], добавлен 29.01.2013

  • Программы офисного назначения. История возникновения и назначения электронных таблиц. Связные листы и построение диаграмм. Редакторы текстов, табличные процессоры, программы подготовки презентаций. Программы распознавания символов и программы-переводчики.

    контрольная работа [372,2 K], добавлен 08.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.