Обобщенные модели

Обзор подхода к описанию детерминированных и стохастических систем, базирующихся на понятии агрегативности. Очерк комплексного решения проблем, возникающих в процессе создания и моделирования машинной объектов системы, на основе математической схемы.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 18.10.2013
Размер файла 201,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

по вычислительной техники и программированию

ОБОБЩЕННЫЕ МОДЕЛИ

Обобщенный подход базируется на понятии агрегативной системы (от англ., aggregate system), представляющей собой формальную схему общего вида, которую будем называть А-схемой. Этот подход позволяет описывать поведение непрерывных и дискретных, детерминированных и стохастических систем.

Комплексное решение проблем, возникающих в процессе создания и машинной реализации модели, возможно лишь в случае, если моделирующие системы имеют в своей основе единую формальную математическую схему, т. е., А-схему. А-схема должна выполнять несколько функций:

- являться адекватным математическим описанием объекта моделирования;

- позволять в упрощенном варианте (для частных случаев) проводить аналитические исследования.

Представленные требования несколько противоречивы, но в рамках обобщенного подхода на основе А-схем удается найти между ними компромисс.

При агрегативном подходе первоначально дается формальное определение объекта моделирования - агрегативной системы. При агрегативном описании сложный объект (система) разбивается на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие их взаимодействие. В случае сложной организации полученных подсистем, подсистемы декомпозируются до уровней в которых они могут быть удобно математически описаны. В результате сложная система представляется в виде многоуровневой конструкции из взаимосвязанных элементов, объединенных в подсистемы различных уровней.

Элементом А-схемы является агрегат. Связь между агрегатами (внутри системы S и с внешней средой E) осуществляется с помощью оператора сопряжения R.

Агрегат может рассматриваться как А-схема, т. е., может разбиваться на элементы (агрегаты) следующего уровня.

Характеристиками агрегата являются множества моментов времени Т, входных X и выходных Y сигналов, состояний Z в каждый момент времени t.

Пусть переход агрегата из состояния z(t1) в состояние происходит за малый интервал времени z. Переходы из состояния z(t1) в z(t2) определяются внутренними параметрами агрегата.

В начальный момент времени t0 состояния z имеют значения, равные z, т. е., z=z(t0), которые задаются законом распределения L. Пусть изменение состояния агрегата при входном сигнале хп описывается случайным оператором V. Тогда для момента времени при поступлении входного сигнала хn состояние определяется (1).

(1)

Если на интервале времени нет поступления сигналов, то для состояние агрегата определяется случайным оператором U, это можно записать как - (2).

(2)

Так как на оператор U не накладываются ни какие ограничения, то допустимы скачки состояний z в моменты времени, не являющимися моментами поступления входных сигналов x.

Моменты скачков z называются особыми моментами времени ts, состояния z(ts) - особыми состояниями А-схемы. Для описания скачков состояний z в особые моменты времени ts используется случайный оператор W, который представляет собой частный случай оператора U (3).

(3)

На множестве состояний Z выделяется такое подмножество Z(Y), что если z (t) достигает Z(Y), то это состояние является моментом выдачи выходного сигнала.

Выходной сигнал можно описать оператором выходов (4).

(4)

Агрегатом будем понимать любой объект, который описывается следующим образом (5).

(5)

Структура агрегативной системы.

Рассмотрим А-схему, структура которой приведена на рис.

Рисунок - Структура агрегата системы:

Функционирование А-схемы связано с переработкой информации, передача последней на схеме показана стрелками. Вся информация, циркулирующая в А-схеме, делится на внешнюю и внутреннюю. Внешняя информация поступает от внешних объектов, внутренняя информация вырабатывается агрегатами самой А-схемы. Обмен информацией между А-схемой и внешней средой Е происходит через агрегаты, называющиеся полюсами А-схемы.

Различают входные полюсы на которые поступают x-сообщения (агрегаты At А2, Аб), и выходные полюсы А-схемы, выходная информация которых является у - сообщениями (агрегаты А1 А3, А4, А5, А6). Агрегаты, не являющиеся полюсами, называются внутренними.

Каждому агрегату А-схемы Ап подводятся входные контакты (In) с элементарными входными сигналами xi(t), i = 1In, и выходные контакты (Jn) с сигналами yj(t), j = 1Jn.

Введем ряд предположений:

1) взаимодействие между А-схемой и внешней средой Е, а также между отдельными агрегатами внутри системы S осуществляется при передаче сигналов;

2) для описания сигнала достаточно некоторого конечного набора характеристик;

3) элементарные сигналы мгновенно передаются в А-схеме независимо друг от друга по элементарным каналам;

4) к входному контакту любого элемента А-схемы подключается не более чем один элементарный канал, к выходному контакту - любое конечное число элементарных каналов при условии, что ко входу одного и того же элемента А-схемы направляется не более чем один из упомянутых элементарных каналов.

Взаимодействие А-схемы с внешней средой Е рассматривается как обмен сигналами между внешней средой Е и элементами А-схемы, поэтому внешняя среда является фиктивным элементом системы А0, вход которого содержит I0 входных контактов и выход - J0 выходных контактов. Можем записать контакты (6):

(6)

Каждый агрегат, в т. ч., Ап можно охарактеризовать множеством входных контактов:

И множеством выходных контактов:

Пара множеств {Xi(n)}, {Уj(n)} представляют математическую модель агрегата, которая описывает сопряжения его с прочими элементами А-схемы и внешней средой Е.

В силу предположения о независимости передачи сигналов каждому соответствует не более чем один выходной контакт:

По входному контакту:

Введем оператор сопряжения R: оператор:

Y* = R * (Xi(n))

С областью определения в множестве {Xi(n)} и областью значений {Уj(n)}, сопоставляющий входному контакту Хin выходной контакт Yjn связанный с ним элементарным каналом.

Совокупность множеств {Xi(n)}, {Уj(n)} и оператор R представляют схему сопряжения элементов в А-схему. Это есть одноуровневая система сопряжения.

Оператор сопряжения R можно задать в виде таблицы, в которой на пересечении строк с номерами элементов (агрегатов) п и столбцов с номерами контактов i располагаются пары чисел k, l, указывающие номер элемента k и номер контакта l, с которым соединен контакт Хi(n). (таб.)

Таблица:

п

i

1

2

3

4

5

0

1.1

3.1

4.1

5.1

6.1

1

0.1

2

1.3

0.2

0.3

3

1.2

2.1

4

3.2

2.1

2.2

5

2.2

6

5.2

0.4

Если столбцы и строки такой таблицы пронумеровать парами n,i и k,l соответственно и на пересечении помещать 1 для контактов n,i и k,l, соединенных элементарным каналом и 0 в противном случае, то получим матрицу смежности ориентированного графа, вершинами которого являются контакты агрегатов, а дугами - элементарные каналы А-схемы.

В более сложных случаях могут быть использованы многоуровневые иерархические схемы сопряжения. Схема сопряжения агрегата, определяемая оператором R, может быть использована для описания весьма широкого класса объектов. Упорядоченную совокупность конечного числа агрегатов n = NA и оператора R можно представить А-схемой при следующих условиях:

1) каждый элементарный канал, передающий сигналы во внешнюю среду должен начинается в одном из выходных каналов первого агрегата А-схемы; каждый элементарный канал, передающий сигналы из внешней среды должен заканчиваться на одном из выходных каналов А-схемы;

2) сигналы в А-схеме передаются непосредственно от одного агрегата к другому без устройств, которые способны отсеивать сигналы, по каким-либо признакам; детерминированный агрегативность моделирование

3) согласование функционирования агрегатов А-схемы во времени;

4) сигналы между агрегатами предаются мгновенно, без искажений и перекодирования, изменяющего структуру сигнала.

Размещено на Allbest.ru


Подобные документы

  • Процесс моделирования работы САПР: описание моделирующей системы, разработка структурной схемы и Q-схемы, построение временной диаграммы, построение укрупненного моделирующего алгоритма. Описание математической модели, машинной программы решения задачи.

    курсовая работа [291,6 K], добавлен 03.07.2011

  • Метод решения математической модели на примере решения задач аналитической геометрии. Описание согласно заданному варианту методов решения задачи. Разработка математической модели на основе описанных методов. Параметры окружности минимального радиуса.

    лабораторная работа [310,6 K], добавлен 13.02.2009

  • Исследование особенностей создания математической модели и её дальнейшего решения в пакете MathCAD. Характеристика предметного и абстрактного моделирования технических объектов. Построение графика максимального прогиба балки и угла поворота сечения.

    курсовая работа [610,5 K], добавлен 11.12.2012

  • Анализ существующих систем и подходов, обзор предметной области решения. Система Macroscop. Комплекс "Интеллектуальное видеонаблюдение Kipod". Системы видеонаблюдения VOCORD. Разработка математической модели минимизации структуры. Интерфейс программы.

    дипломная работа [1,5 M], добавлен 19.01.2017

  • Программное средство системного моделирования. Структурная схема модели системы, временная диаграмма и ее описание. Сравнение результатов имитационного моделирования и аналитического расчета характеристик. Описание машинной программы решения задачи.

    курсовая работа [146,5 K], добавлен 28.06.2011

  • Расчет тепловой схемы с применением методов математического моделирования. Разработка алгоритма реализации модели. Составление программы для ПЭВМ, ее отладка и тестирование. Проведение численного исследования и параметрическая оптимизация системы.

    курсовая работа [2,8 M], добавлен 01.03.2013

  • Значение вербальных и знаковых информационных моделей для исследования объектов, процессов, явлений. Роль метода формализации в процессе создания компьютерной модели. Использование программы AutoCAD для трехмерного моделирования и визуализации объекта.

    курсовая работа [866,5 K], добавлен 08.01.2015

  • Структурная схема модели системы, временная диаграмма, блок-схема моделирующего алгоритма, математическая модель, описание машинной программы решения задачи, результаты моделирования. Сравнение имитационного моделирования и аналитического расчета.

    курсовая работа [209,7 K], добавлен 28.06.2011

  • Понятие математической модели, физические свойства и классификация. Обзор систем компьютерного моделирования. Применение системы MathCAD для исследования реакции электрической цепи на внешнее воздействие. Графическая схема алгоритма и её описание.

    курсовая работа [191,7 K], добавлен 29.09.2013

  • Определение назначения и описание функций имитационных моделей стохастических процессов систем массового обслуживания. Разработка модели описанной системы в виде Q-схемы и программы на языке GPSS и C#. Основные показатели работы имитационной модели.

    курсовая работа [487,4 K], добавлен 18.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.