Обработка графов

Решение прикладных задач при помощи процедур анализа графовых моделей. Задачи поиска кратчайших путей на основе алгоритма Флойда и нахождения минимального охватывающего дерева. Масштабирование и распределение подзадач обработки графов по процессорам.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 17.09.2013
Размер файла 704,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Изучение основных понятий и определений теории графов. Рассмотрение методов нахождения кратчайших путей между фиксированными вершинами. Представление математического и программного обоснования алгоритма Флойда. Приведение примеров применения программы.

    контрольная работа [1,4 M], добавлен 04.07.2011

  • Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.

    реферат [39,6 K], добавлен 06.03.2010

  • Способы построения остовного дерева (алгоритма поиска в глубину и поиска в ширину). Вид неориентированного графа. Понятие и алгоритмы нахождения минимальных остовных деревьев. Последовательность построения дерева графов по алгоритмам Крускала и Прима.

    презентация [22,8 K], добавлен 16.09.2013

  • Постановка задач линейного программирования. Примеры экономических задач, сводящихся к задачам линейного программирования. Допустимые и оптимальные решения. Алгоритм Флойда — алгоритм для нахождения кратчайших путей между любыми двумя узлами сети.

    контрольная работа [691,8 K], добавлен 08.09.2010

  • Теоретическое обоснование теории графов. Методы нахождения медиан графа. Задача оптимального размещения насосной станции для полива полей. Алгоритм Флойда, поиск суммарного расстояния до вершин. Функция нахождения индекса минимального значения в массиве.

    курсовая работа [336,8 K], добавлен 28.05.2016

  • Методология и технология разработки программного продукта. Решение задачи поиска кратчайших путей между всеми парами пунктов назначения, используя алгоритм Флойда. Разработка интерфейса программы, с использованием среды Delphi Borland Developer Studio.

    курсовая работа [2,0 M], добавлен 26.07.2014

  • Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.

    курсовая работа [1,1 M], добавлен 26.06.2012

  • В статье рассмотрен подход к созданию моделей композитного документооборота на основе аппарата теории графов. Описаны методы детерминирования множеств для разработанной модели, предложена алгебра документооборота с использованием графов.

    статья [346,4 K], добавлен 19.04.2006

  • Анализ алгоритмов нахождения кратчайших маршрутов в графе без отрицательных циклов: Дейкстры, Беллмана-Форда и Флойда-Уоршалла. Разработка интерфейса программы на языке C++. Доказательство "правильности" работы алгоритма с помощью математической индукции.

    курсовая работа [1,5 M], добавлен 26.07.2013

  • Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.

    курсовая работа [195,5 K], добавлен 08.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.