Информационные технологии в промышленности и экономике
Классы задач, решаемые с помощью корпоративных информационных систем. Главные аспекты процесса информатизации образования. "Стихийные" и "организованные" образовательные сайты. Создание САПР-продуктов, требования к ним. Главные возможности DiaCAD.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лекция |
Язык | русский |
Дата добавления | 25.06.2013 |
Размер файла | 5,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ПРОМЫШЛЕННОСТИ И ЭКОНОМИКЕ
Внедрение информационных технологий в сферу производства, торговли, банковского дела первоначально развивалось по пути создания доморощенных информационных систем. Термин АСУП (автоматизированная система управления производством), появившийся в 60-е годы был на слуху десятки лет. Однако главная проблема комплексной автоматизации не была решена, но при этом был накоплен опыт разработок подобных систем и подготовлены специалисты, способные решать задачи внедрения информационных технологий в сферу управления бизнесом на современном уровне.
При проектировании АСУП зачастую игнорировались вопросы совместимости, стандартизации, что затрудняло внедрение современных технологий и приводило к большим затратам на модернизацию. В настоящее время, не смотря на специфику предметных областей, широкое распространение получили корпоративные информационные системы (КИС), базирующиеся на принципах корпоративных информационных технологий (см. подразд. 6.1) и современных стандартов (подразд. 8.3).
Выделяют три основных класса задач, решаемых с помощью КИС [27]. Это задачи:
* формирования отчетных показателей (налоговые службы, статистика, инвесторы и т.д.), получаемых на основе стандартной бухгалтерской и статистической отчетности;
* выработки стратегических управленческих решений по развитию бизнеса на основе базы высокоагрегированных показателей;
* выработки тактических решений, направленных на оперативное управление и решаемых на основе базы частных, высокодетализированных показателей, отражающих различные стороны локальных характеристик функционирования структуры.
Основной трудностью при внедрении КИС является диагностика.
Здесь можно выделить три этапа:
1) обследование, системный анализ и оценка существующей структуры и технологий управления;
2) разработка новых вариантов организационных структур и технологий управления на основе информационных технологий;
3) разработка положения по реорганизации управления, плана внедрения, регламента управленческого документооборота.
Условно выделяют тиражируемые, полузаказные и заказные КИС.
Тиражируемая КИС не требует доработки со стороны разработчика, существует сама по себе, не предоставляет возможности внесения изменений. Такие системы предназначены для малых предприятий.
Заказные системы при существующем уровне информационных технологий ушли в прошлое, они ненадежны, не соответствуют принятым стандартам и с трудом поддаются модернизации. Основная область их применения - производства с очень большой спецификой.
Полузаказные системы являются наиболее гибкими, в большей степени удовлетворяют требованиям заказчика, требуют меньших капитальных затрат. Основная область их применения - крупные предприятия (сотни документов в месяц и более пяти человек в цепочке бизнес-процессов).
В настоящее время на рынке корпоративных систем представлено большое число зарубежных разработок. Учитывая специфику принципов учета, управления, планирования, в российской экономике отечественные КИС занимают более прочные позиции. В табл. 6.1 представлены характеристики, функциональные возможности и области использования наиболее популярных отечественных КИС («Ай-Ти», «Галактика», «Парус», «1С») [8].
Рис. 1
Рис. 2
Рис. 3
Рис. 4
В информатизации банковской деятельности происходили процессы, аналогичные рассмотренным выше. Выделяют два основных направления [8, 46]:
1) информатизация задач ввода и обновления оперативной информации, получения стандартной отчетности (OLTP-системы - On-Line Tranzaction Processing на базе промышленных СУБД);
2) информатизация аналитических задач высокого уровня (анализ деятельности банка, подготовка консолидированного отчета, расчет и управление рисками и др.).
В первом случае используются системы на базе промышленных СУБД, так называемые OLTP-системы.
Во втором случае используется технология информационных хранилищ (Data Warehouse) и приложений оперативной аналитической обработки OLAP (On-Line Analytic Processing). В табл. 4 представлены характеристики наиболее распространенных банковских информационных систем [52].
Рис. 5
Рис. 6
Кроме КИС следует отметить программные системы, реализующие отдельные функции управления:
1. Бухгалтерские программы: 1С: Бухгалтерия, БЭСТ, Турбо-бухгалтер, Парус, Инфо-бухгалтер;
2. Системы автоматизации торговли: 1С: Торговля, Парус, БЭСТ 4, Фолио;
3. Информационно-справочные системы: Гарант, Консультант Плюс, Кодекс;
4. Программы для бизнес-планирования: Project Expert, Microsoft Project, Триумф-аналитик;
5. Системы автоматизации складского учета: 1С: Склад, Фолио, БЭСТ, Парус;
6. Системы автоматизации документооборота: Дело, Lotus Notus, 1С: Документооборот.
Отдельно от проблем построения КИС рассматривается направление создания автоматизированных систем управления технологическими процессами (АСУ ТП). Актуальность этой проблемы объясняется тем, что в старых системах зачастую выбранные элементы не стыкуются между собой, не удовлетворяют предъявляемым требованиям, и нет средств и возможностей для исправления сложившейся ситуации. В настоящее время в области АСУ ТП господствующей является концепция открытых систем на основе системной интеграции, базирующаяся на следующих принципах [21]:
* совместимость программно-аппаратных средств различных фирм-производителей снизу-вверх;
* комплексная проверка и отладка всей системы на стенде фирмы-интегратора на основе спецификации заказчика.
В большинстве случаев АСУ ТП представляют двухуровневую систему управления. Нижний уровень включает контроллеры, обеспечивающие первичную обработку информации, поступающей непосредственно с объекта управления. Программное обеспечение контроллеров обычно реализуется на технологических языках типа языка релейно-контактных схем.
Верхний уровень АСУ ТП составляют мощные компьютеры, выполняющие функции серверов баз данных и рабочих станций, обеспечивающих хранение, анализ и обработку всей поступающей информации, а также взаимодействие с оператором. Основой программного обеспечения верхнего уровня являются пакеты SCADA (Supervision Control And DATA Acquisition).
Наиболее ярко концепция открытых систем прослеживается в открытой модульной архитектуре контроллеров - ОМАС (Open Modular Architecture Controls), разработанной фирмой General Motors. Близкие к ним концепции предложены европейскими (European Open Systems Architecture for Control within Automation Systems - OSACA), японскими (Japan International Robotics and Factory Automation - IFORA, Japan Open Systems Environment for Controller Architecture - OSEC) и американскими (Technologies Enabling Agile Manufacturing - TEAM Projects) организациями. Содержание ОМАС-требований заключается в основных терминах:
Open - открытая архитектура, обеспечивающая интеграцию аппаратного и программного обеспечения;
Modular - модульная архитектура, позволяющая использовать компоненты в режиме Plug and Play;
Scaleable - масштабируемая архитектура, позволяющая легко изменять конфигурацию для конкретных задач;
Economical - экономичная архитектура;
Maintenable - легко обслуживаемая архитектура.
Аппаратная платформа контроллеров базируется на миниатюрных PC-совместимых компьютерах, обладающих высокой надежностью, быстродействием, совместимостью в силу «родственности» с компьютерами верхнего уровня. Операционная среда РС-контроллеров также должна удовлетворять требованиям открытости.
Здесь наиболее распространенной является операционная система QNX (фирма QSSL, Канада). Архитектура QNX является открытой, модульной, легко модифицируемой. Спецификой работы с контроллерами является использование языков технологического программирования, описывающих сам технологический процесс и ориентированных на работу не программистов, а технологов. Накопленный опыт работы с подобными языками обобщен в стандарте IEC 1131-3, где определены пять основных языковых средств:
SFG - язык последовательных функциональных схем;
LD - язык релейных диаграмм;
FBD - язык функциональных блоковых диаграмм;
ST - язык структурированного текста;
IL - язык инструкций.
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ОБРАЗОВАНИИ
Цель информатизации общества - создание гибридного интегрального интеллекта всей цивилизации, способного предвидеть и управлять развитием человечества. Образовательная система в таком обществе должна быть системой опережающей. Переход от консервативной образовательной системы к опережающей должен базироваться на опережающем формировании информационного пространства Российского образования и широком использовании информационных технологий [28].
Вхождение России в единое мировое информационное пространство ставит серьезные проблемы перед отечественным образованием. Начиная с 80-х годов, сумма знаний в обществе возрастает вдвое каждые 2 года. Изменится и структура знаний: доля традиционных знаний уменьшится с 70 до 40%, прагматических - с 15 до 10%, но возрастет доля новых знаний - с 5 до 15% и знаний, направленных на развитие творческих способностей личности - с 3 до 25%. Современное образование является поддерживающим, перспективное образование должно стать в информационном обществе опережающим.
Такое развитие информационного пространства требует обеспечения как психологической, так и профессиональной подготовленности всех участников образовательного процесса.
В условиях радикального усложнения жизни общества, его технической и социальной инфраструктуры решающим оказывается изменение отношения людей к информации, которая становится важнейшим стратегическим ресурсом общества. Успешность перехода к информационному обществу существенным образом зависит от готовности системы образования в кратчайшие сроки осуществить реформы, необходимые для ее приспособления к нуждам информационного общества.
По существу, речь идет о решении проблемы качественного изменения состояния всей информационной среды (пространства) обитания российского образования в сопряжении с отечественной наукой и общественной практикой, а также в сопряжении с мировой высшей школой и мировой наукой. Решение этой задачи открывает новые возможности для ускоренного прогрессивного индивидуального развития каждого человека в системе образования и для роста качества совокупного общественного интеллекта, что в перспективе окажет свое положительное влияние на все стороны общественной жизни России.
Эффективность процесса информатизации непосредственно зависит от эффективности процессов создания и использования информационного ресурса, т.е. всего информационного потенциала общества. Информационный ресурс фактически есть совокупность информации о прошлом и настоящем опыте человечества, база для воспроизводства новой информации.
По развитию информационного общества Россия отстала от многих западных стран. Это можно легко пронаблюдать на примере общего индекса зрелости информационного общества (Information Imperative Index). Он состоит из 20 четко сформулированных показателей из трех областей: социальной, информационной и компьютерной. Социальные показатели состоят из законодательной базы, регулирующих норм и политических факторов. Информационный показатель состоит в основном из сектора информатики и информационного бизнеса (программное обеспечение, мультимедиа и т.д.). Компьютерный показатель отражает объем и насыщенность рынка оборудования, такого как PC, Интернет, мобильные телефоны и пр. Россия находится на 34 месте из 54 стран, т.е. в группе III. Наилучшие показатели в России достигнуты в социальной сфере (20 место), затем идет информационная сфера (32 место), и наихудший уровень наблюдается в компьютерной сфере (46 место). Все это вместе составляет ясную картину, демонстрируя, что телекоммуникационная инфраструктура и аппаратное обеспечение требуют в целом большего развития, чем законодательная база.
В процессе информатизации образования необходимо выделить следующие аспекты:
* методологический;
* экономический;
* технический;
* технологический;
* методический.
Проанализируем состояние и развитие каждого аспекта.
Методологический аспект. Здесь главной проблемой является выработка основных принципов образовательного процесса, соответствующих современному уровню информационных технологий. К сожалению, на данном этапе новые технологии искусственно накладываются на традиционные образовательные формы. Поэтому необходимо найти новые подходы к формированию основных требований к каждому уровню образования. Например, как сочетать традиционные требования умения грамотно писать и считать с возможностями компьютера, который это делает лучше и в силу присущей человеку лени не способствует формированию таких навыков. Аналогичный пример касается чтения. Легкий доступ к информационным ресурсам, создание которых никто не контролирует, атрофирует у человека стремление работать с литературой. Такие же тенденции прослеживаются в области черчения и других дисциплин. Реальные лабораторные исследования заменяются работой в виртуальной среде. Но поскольку технический прогресс остановить невозможно, крайне важно выработать новые образовательные стандарты.
Экономический аспект. Экономической основой информационного общества являются отрасли информационной индустрии (телекоммуникационная, компьютерная, электронная, аудиовизуальная), которые переживают процесс технологической конвергенции и корпоративных слияний. Происходит интенсивный процесс формирования мировой «информационной экономики», заключающийся в глобализации информационных, информационно-технологических и телекоммуникационных рынков, возникновении мировых лидеров информационной индустрии, превращении «электронной торговли» по телекоммуникациям в средство ведения бизнеса.
К сожалению, наша страна активно не участвует в информационной индустрии, что во многом приводит к навязыванию западных стандартов в образовании.
Технический аспект. В настоящее время создано и внедрено достаточно большое число программных и технических разработок, реализующих отдельные информационные технологии. Но при этом используются различные методические подходы, несовместимые технические и программные средства, что затрудняет тиражирование, становится преградой на пути общения с информационными ресурсами и компьютерной техникой, приводит к распылению сил и средств. Наряду с этим различный подход к информатизации на школьном и вузовском уровнях вызывает большие трудности у учащихся при переходе с одного уровня обучения на другой, приводит к необходимости расходования учебного времени на освоение элементарных основ современных компьютерных технологий.
Отсутствие единой политики в области оснащения техническими и программными средствами в угоду сиюминутной выгоде инициирует использование устаревших информационных технологий, вызывает трудности при переходе с одного уровня обучения на другой, является препятствием для включения в мировую образовательную систему. Очень серьезным моментом, связанным с использованием низкосортной вычислительной техники, является игнорирование вопросов экологической безопасности работы с компьютерами. Этому аспекту за рубежом уделяется серьезное внимание и расходуются значительные средства на проведение в этой области научных исследований и практических мероприятий.
Поэтому необходима интеграция усилий участников образовательного процесса в рамках формирования единого информационного пространства общероссийского и регионального образования на единых концептуальных, методологических и технологических принципах. В связи с этим новизной данного проекта является разработка типовой модели информатизации со всеми компонентами компьютеризации и видами обеспечения. Научно-технический уровень современных базовых информационных технологий образования в общем, соответствует требованиям, предъявляемым прикладными информационными технологиями. Проблема заключается в недостаточном уровне проработки методологических вопросов.
При этом, как показывает анализ, огромные средства затрачиваются во всем мире на разработку многочисленных конкретных прикладных систем и уделяется совершенно недостаточное внимание методическим вопросам.
Технологический аспект. Технологической основой информационного общества являются телекоммуникационные и информационные технологии, которые стали лидерами технологического прогресса, неотъемлемым элементом любых современных технологий, они порождают экономический рост, создают условия для свободного обращения в обществе больших массивов информации и знаний, приводят к существенным социально-экономическим преобразованиям и, в конечном счете, к становлению информационного общества.
Методический аспект. Основные преимущества современных информационных технологий (наглядность, возможность использования комбинированных форм представления информации - данные, стереозвучание, графическое изображение, анимация, обработка и хранение больших объемов информации, доступ к мировым информационным ресурсам) должны стать основой поддержки процесса образования.
Усиление роли самостоятельной работы обучаемого позволяет внести существенные изменения в структуру и организацию учебного процесса, повысить эффективность и качество обучения, активизировать мотивацию познавательной деятельности в процессе обучения.
Основные факторы, влияющие на эффективность использования информационных ресурсов в образовательном процессе:
1. Информационная перегрузка - это реальность. Избыток данных служит причиной снижения качества мышления прежде всего среди образованных членов современного общества;
2. Внедрение современных информационных технологий целесообразно в том случае, если это позволяет создать дополнительные возможности в следующих направлениях:
* доступ к большому объему учебной информации;
* образная наглядная форма представления изучаемого материала;
* поддержка активных методов обучения;
* возможность вложенного модульного представления информации.
3. Выполнение следующих дидактических требований:
* целесообразность представления учебного материала;
* достаточность, наглядность, полнота, современность и структурированность учебного материала;
* многослойность представления учебного материала по уровню сложности;
* своевременность и полнота контрольных вопросов и тестов;
* протоколирование действий во время работы;
* интерактивность, возможность выбора режима работы с учебным материалом;
* наличие в каждом предмете основной, инвариантной и вариативной частей, которые могут корректироваться.
4. Компьютерная поддержка каждого изучаемого предмета, и этот процесс нельзя подменить изучением единственного курса информатики.
Положительным при использовании информационных технологий в образовании является повышение качества обучения за счет:
* большей адаптации обучаемого к учебному материалу с учетом собственных возможностей и способностей;
* возможности выбора более подходящего для обучаемого метода усвоения предмета;
* регулирования интенсивности обучения на различных этапах учебного процесса;
* самоконтроля;
* доступа к ранее недосягаемым образовательным ресурсам российского и мирового уровня;
* поддержки активных методов обучения;
* образной наглядной формы представления изучаемого материала;
* модульного принципа построения, позволяющего тиражировать отдельные составные части информационной технологии;
* развития самостоятельного обучения.
Отрицательными последствиями использования информационных технологий в образовании являются следующие:
* психобиологические, влияющие на физическое и психологическое состояние учащегося, и, в том числе, формирующие мировоззрение, чуждое национальным интересам страны;
* культурные, угрожающие самобытности обучаемых;
* социально-экономические, создающие неравные возможности получения качественного образования;
* политические, способствующие разрушению гражданского общества в национальных государствах;
* этические и правовые, приводящие к бесконтрольному копированию и использованию чужой интеллектуальной собственности.
В этих условиях информатизация образования должна быть управляемой.
Наиболее важным при использовании компьютерных технологий являются следующие дидактические требования:
* целесообразность представления учебного материала;
* достаточность, наглядность, полнота, современность и структурированность учебного материала;
* многослойность представления учебного материала по уровню сложности;
* своевременность и полнота контрольных вопросов;
* протоколирование действий во время работы;
* интерактивность, возможность выбора режима работы с учебным материалом.
В настоящее время получили широкое применение следующие направления использования информационных технологий:
1. Компьютерные программы и обучающие системы, представляющие собой:
* компьютерные учебники, предназначенные для формирования новых знаний и навыков;
* диагностические или тестовые системы, предназначенные для диагностирования, оценивания и проверки знаний, способностей и умений;
* тренажеры и имитационные программы, представляющие тот или иной аспект реальности, отражающие его основные структурные и функциональные характеристики и предназначенные для формирования практических навыков;
* лабораторные комплексы, в основе которых лежат моделирующие программы, предоставляющие в распоряжение обучаемого возможности использования математической модели для исследования определенной реальности;
* экспертные системы, предназначенные для обучения навыкам принятия решений на основе накопленного опыта и знаний;
* базы данных и базы знаний по различным областям, обеспечивающие доступ к накопленным знаниям;
* прикладные и инструментальные программные средства, обеспечивающие выполнение конкретных учебных операций (об-
работку текстов, составление таблиц, редактирование графической информации и др.).
2. Системы на базе мультимедиа-технологии, построенные с применением видеотехники, накопителей на CD-ROM.
3. Интеллектуальные обучающие экспертные системы, которые специализируются по конкретным областям применения и имеют практическое значение как в процессе обучения, так и в учебных исследованиях.
4. Информационные среды на основе баз данных и баз знаний, позволяющие осуществить как прямой, так и удаленный доступ к информационным ресурсам.
5. Телекоммуникационные системы, реализующие электронную почту, телеконференции и т.д. и позволяющие осуществить выход в мировые коммуникационные сети.
6. Электронные настольные типографии, позволяющие в индивидуальном режиме с высокой скоростью осуществить выпуск учебных пособий и документов на различных носителях.
7. Электронные библиотеки как распределенного, так и централизованного характера, позволяющие по-новому реализовать доступ учащихся к мировым информационным ресурсам.
8. Геоинформационные системы, которые базируются на технологии объединения компьютерной картографии и систем управления базами данных. В итоге удается создать многослойные электронные карты, опорный слой которых описывает базовые явления или ситуации, а каждый последующий - задает один из аспектов, процессов или явлений.
9. Системы защиты информации различной ориентации (от несанкционированного доступа при хранении, от искажений при передаче, от подслушивания и т.д.).
При создании компьютерных обучающих средств могут быть использованы различные базовые информационные технологии. Новые возможности, открываемые при внедрении современных информационных технологий в образовании, можно проиллюстрировать на примере мультимедиа-технологий. Появилась возможность создавать учебники, учебные пособия и другие методические материалы на машинном носителе. Они могут быть разделены на следующие группы:
1. Учебники, представляющие собой текстовое изложение материала с большим числом иллюстраций, которые могут быть установлены на сервере и переданы через сеть на домашний компьютер. При ограниченном количестве материала такой учебник может быть реализован в прямом доступе пользователя к серверу.
2. Учебники с высокой динамикой иллюстративного материала выполненные на CD-ROM. Наряду с основным материалом они содержат средства интерактивного доступа, анимации и мультипликации, а также видеоизображения, в динамике демонстрирующие принципы и способы реализации отдельных процессов и явлений. Такие учебники могут иметь не только образовательное, но и художественное назначение. Огромный объем памяти носителя информации позволяет реализовывать на одном оптическом диске энциклопедию, справочник, путеводитель и т.д.
3. Современные компьютерные обучающие системы для проведения учебно-исследовательских работ. Они реализуют моделирование как процессов, так и явлений, т.е. создают новую учебную компьютерную среду, в которой обучаемый является активным участником и может сам вести учебный процесс.
4. Системы виртуальной реальности, в которых учащийся становится участником компьютерной модели, отображающей окружающий мир. Для грамотного использования мультимедиа-продуктов этого типа крайне важно изучение их психологических особенностей и негативных воздействий на обучаемого.
5. Системы дистанционного обучения. В сложных социально-экономических условиях дистанционное образование становится особенно актуальным для отдаленных регионов, для людей с малой подвижностью, а также при самообразовании и самостоятельной работе учащихся. Эффективная реализация дистанционного обучения возможна лишь при целенаправленной программе создания высококачественных мультимедиа-продуктов учебного назначения по фундаментальным, естественнонаучным, общепрофессиональным и специальным дисциплинам. К сожалению, это требует значительных финансовых средств и пока не окупается на коммерческой основе, необходимы существенные бюджетные ассигнования в эту область. Реализация такой программы позволит по-новому организовать учебный процесс, увеличив нагрузку на самостоятельную работу обучаемого.
В процессе информатизации образования необходимо иметь в виду, что главный принцип использования компьютера - это ориентация на те случаи, когда человек не может выполнить поставленную педагогическую задачу. Например, преподаватель не может наглядно продемонстрировать большинство физических процессов без компьютерного моделирования. С другой стороны, компьютер должен помогать развитию творческих способностей учащихся, способствовать обучению новым профессиональным навыкам и умениям, развитию логического мышления. Процесс обучения должен быть направлен не на умение работать с определенными программными средствами, а на технологии работы с различной информацией: аудио- и видео-, графической, текстовой, табличной.
Современные инструментальные средства позволяют реализовать всю гамму компьютерных обучающих средств. Однако их использование требует достаточно высокой квалификации пользователя. Поэтому в настоящее время разработаны и широко используются специальные инструментальные средства, характеристика которых представлена в табл. 7.
Рис. 7
Рис. 8
Рис. 9
Рис. 10
К сожалению, большая часть учебных программных продуктов представляет собой аналоги существующих учебников. Более правильным является использование информационных технологий для изучения процессов и явлений, не поддающихся визуальному исследованию и изучению на основе существующих образовательных технологий. Другой сферой применения информационных технологий является домашнее образование.
Одним из направлений информатизации сферы образования, предлагаемых компанией ИВИТО (Интеграция и внедрение информационных технологий в образование) является разработка и поставка комплексных решений, включающих аппаратное и программное обеспечение, а также методическое сопровождение. В табл. 6.4 представлены программы, рекомендуемые для изучения компьютерных технологий в школе.
Рис. 11
Рис. 12
Использование компьютеров Macintosh связано с тем, что фирма Apple, одна из немногих ориентирующих свою деятельность специально на образование.
Большое распространение в сфере образования получил Интернет. Ресурсы Интернета чрезвычайно обширны от компьютерных учебников, энциклопедий до шпаргалок. Диапазон применения Интернета простирается от самостоятельной работы до дистанционного образования, а круг пользователей включает и учащихся, и учителей. Большинство учебных заведений имеет собственные сайты.
Все существующие образовательные сайты можно разделить на две группы: «стихийные» и «организованные».
«Стихийные» сайты, пользующиеся большой популярностью, содержат рефераты, курсовые, дипломы и т.п. Они однотипны по своей структуре, как правило, включают тематические рубрики. Наиболее известны из таких WEB-ресурсов следующие адреса:
www.referat.ru; allreferats.narod/ru; www.referatov.net, htpp://www.km/ ru//education.
«Организованные» сайты, имеют определенную структуру, направленную на решение ряда образовательных задач, и ориентированы на более широкий круг пользователей (преподавателей, учащихся, родителей). Портал «Поколение.ш» (www.pokoleniye.ru) включает разделы, являющиеся полноценными сайтами со своей структурой: «Учитель.ru», «Родитель.ru», «Писатель.ru» и др. Сайт http://all.edu.ru представляет официальную информацию Минобразования РФ, Федерации образования в Интернете, «Учительской газеты» и других организаций об образовании. Сайт emigrant.com.ru рассказывает о возможностях образования в Интернете за рубежом. Следует отметить, что дистанционное образование в Интернете, является бурно развивающимся направлением, приносящим большой доход. Основные достоинства такого обучения: низкая себестоимость, большая пропускная способность и интеграция в мировое образовательное пространство.
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ
Автоматизация проектирования традиционно является одной из эффективных задач в сфере любого производства. Так, например, в машиностроении производственный цикл предприятия, определяемый временем нахождения деталей, узлов и готовых изделий в цехах, составляет 1% всего времени от начала проектирования до выпуска готовой продукции, остальные 99% приходятся на опытно-конструкторскую, конструкторскую и технологическую подготовку производства. С другой стороны сложность решения задачи автоматизированного проектирования связана с многообразием и спецификой конкретных предметных областей.
Создание САПР-продуктов происходит в следующих направлениях [25]:
* универсальный графический пакет для плоского черчения, объемного моделирования и фотореалистической визуализации;
* открытая графическая среда для создания приложений (собственно САПР для решения разнообразных проектных и технических задач в различных областях);
* графический редактор и графическая среда приложений;
* открытая среда конструкторского проектирования;
* САПР для непрофессионалов (домашнего использования).
Наиболее полно возможности САПР-продукта на уровне универсального графического пакета можно проследить на примере AutoCAD 2000 - новой версии самого популярного в России чертежного пакета. Рассмотрим основные особенности новой разработки фирмы Autodesk [41]:
* возможность работы с несколькими файлами чертежей в одном сеансе без потери производительности;
* контекстное всплывающее меню, включающее группу операций буферного обмена, повтора последней операции, отмены действий и возврата отмененного действия, вызова динамических интерактивных операций панорамирования и зуммирования и др.;
* наличие средств моделирования, позволяющих редактировать твердотельные объекты на уровне ребер и граней;
* возможность обращения к свойствам объектов;
* возможность выбора, группировки и фильтрации объектов по типам и свойствам;
* наличие технологии создания и редактирования блоков;
* возможность вставки в чертеж гиперссылок;
* включение Design Center - нового интерфейса технологии drag-and-drop для работы с блоками, внешними ссылками, файлами изображений и чертежей;
* управление толщиной (весом) линий напрямую с воспроизводством на экране;
* возможность работы со слоями без вывода на печать;
* наглядная работа с размерами и размерными стилями;
* наличие средств управления видами и системами координат;
* наличие нескольких режимов визуализации от проволочного каркаса до закраски;
* наличие средств обеспечения точности ввода при создании и редактировании;
* возможность компоновки чертежей и вывода на печать;
* работа с внешними базами данных;
* наличие средств настройки с помощью редакторов Visual LISP и Visual Basic;
* совместимость версий (в форматах DWG AutoCAD R14, R13 и форматах DXF AutoCAD R14, R13, R12).
По оценкам специалистов AutoCAD 2000 является почти идеальным универсальным 2D/3D (двух- и трехмерной геометрии) графическим пакетом средней ценовой категории.
Создание приложений связано со спецификой конкретной предметной области и решается эта задача на различных инструментальных платформах. Рассмотрим эту проблему применительно к САПР в радиоэлектронике. Радиоэлектроника является очень широкой научно-технической областью, поэтому остановимся только на проблеме проектирования радиоэлектронной аппаратуры (РЭА).
Основные требования, предъявляемые к САПР в области проектирования РЭА [13]:
* решение всего комплекса задач проектирования РЭА: ввод структурной, функциональной и принципиальной схем; проведение расчетов; моделирование; конструирование аппаратуры; технологическая подготовка производства и изготовление;
* наличие полной библиотеки элементов и узлов, источников (генераторов) сигналов и шумов, с большим набором параметров и возможностью их легкой модификации;
* наличие справочной базы данных и ГОСТов;
* проведение необходимых расчетов (надежности, мощности, рабочих режимов и других параметров);
* возможность импорта и экспорта информации из других информационных систем;
* поддержка разнообразной периферии.
Процесс проектирования РЭА принято разбивать на этапы (системный, схемный, конструкторский, технологический, производственный), а саму проектируемую РЭА на уровни (система, подсистема или аппаратура, прибор, блок, ячейка или узел). Исходя из такого разбиения, представляется естественным требование, чтобы САПР поддерживали все этапы и уровни проектирования в полном объеме. К сожалению, на практике данный подход полностью не реализован. Ниже в табл. 6.5 представлены наиболее распространенные в России САПР и обозначены обеспечиваемые ими этапы проектирования [13].
Рис. 13
Приведенные в табл. 6.5 САПР условно подразделяются на три группы:
* САПР уровня ячеек (Р - CAD, OrCAD, DesignLab, ACCEL EDA, CADdy), обеспечивающие ввод схемы, разводку и производство печатных плат;
* схемотехнические САПР (PSpice, MicroCAP, Electronics Workbench, SISIE, MR-CAD, Симпатия, CircuitMaker, Dynamo), обеспечивающие ввод схемы и ее моделирование;
* САПР объемных конструкций (AutoCAD, EUCLID, T-FLEX CAD и др.), обеспечивающие разработку и выпуск конструкторской документации.
В последние годы большой интерес вызывают САПР для непрофессионалов (домашнего использования). Области их использования: индивидуальное строительство, любительское моделирование и конструирование, планирование ландшафта, интерьера и др. Основные требования к системам подобного класса - приемлемая стоимость и невысокие требования к ресурсам компьютера. В табл. 6.6 приведены характеристики таких САПР, представленных на рынке [6].
Рис. 14
Наиболее перспективным в области автоматизированного проектирования является использование открытых сред, основной особенностью которых является автоматизация процесса проектирования: выбор структуры объекта проектирования; необходимые расчеты, включая геометрические и т.д.
Примером реализации такого подхода является СПРУТ-технология, реализованная в виде графической оболочки со сменной проблемной ориентацией DiaCAD [25]. На рис. 6.8 представлены возможности проблемной ориентации DiaCAD, а на рис. 6.9 возможные варианты реализации конструкторских систем проектирования.
Рис. 15
Однако DiaCAD является только составной частью СПРУТ-технологии (рис. 6.10) и используется в тех случаях, когда удается формализовать процесс проектирования в данной предметной среде. Там, где это невозможно, используются средства интерактивного черчения, так же как в известных средствах графического редактирования.
Рис. 16
Рис. 17
информационный система образование сайт
Возможности DiaCAD определяются перечнем решаемых задач:
* оперативная разработка чертежей с соблюдением требований ГОСТов;
* создание и использование иерархических графических баз данных;
* интерактивная параметризация чертежа и его типовых фрагментов;
* интеллектуальное редактирование (редактирование чертежа путем изменения значений размеров);
* получение параметризированных программ без программирования.
Функционально DiaCAD можно разделить на две части: среда администратора графической базы данных и среда конструктора.
Среда администратора графической базы данных предназначена для работы с иерархическими графическими базами данных и позволяет решать следующие задачи:
* создание базы данных с произвольной иерархической структурой;
* оперативный просмотр чертежа;
* копирование данных из одного чертежа в другой;
* вывод чертежа на графопостроитель или печатающее устройство.
Среда конструктора позволяет создавать и редактировать чертежи и геометрические модели.
Принципиальной отличительной особенностью DiaCAD является возможность создания на ее основе с использованием единой интегрированной среды СПРУТ собственной САПР.
Размещено на Allbest.ru
Подобные документы
Классификация и области использования в экономике автоматизированных информационных технологий, их современное состояние и перспективы развития. Виды информационных систем управления. Основные задачи организации корпоративных вычислительных сетей.
реферат [23,6 K], добавлен 10.03.2013Понятие информационных технологий, их роль и значение в обществе на современном этапе. Компьютеры как базовая техническая составляющая процесса информатизации общества. Возможности интернета для образования, бизнеса и распространения информации.
презентация [2,1 M], добавлен 04.03.2012Концепции информатизации высшего образования: массовая компьютерная грамотность и формирование новой информационной культуры мышления. Роль информационных технологий в современном обществе. Социальные последствия процесса информатизации образования.
реферат [21,9 K], добавлен 23.02.2012Понятие информационного процесса и информационных технологий. Сущность, роль и значение процесса информатизации в общественном развитии. Цели, задачи и тенденции развития российского образования. Дидактические возможности коммуникационных технологий.
презентация [10,5 M], добавлен 25.12.2013Информационные технологии в современном обществе. Приоритетные направления информатизации здравоохранения. Задачи, решаемые с помощью персонального компьютера. Классификация информационных технологий, применяемых в деятельности медицинского работника.
презентация [1,9 M], добавлен 28.01.2016Технологические процессы обработки информации в информационных технологиях. Способы доступа к Internet. Информационные технологии в локальных и корпоративных компьютерных сетях. Средства обработки графической информации. Понятие информационной технологии.
учебное пособие [1,4 M], добавлен 23.03.2010Предмет и основные понятия информационных систем. Базовые стандарты корпоративных информационных систем. Характеристика входящих и исходящих потоков информации. Основные понятия искусственного интеллекта. Обеспечение безопасности информационных систем.
курс лекций [295,6 K], добавлен 11.11.2014Информационные технологии и системы. Связь организаций и информационных систем. Интегрированная система управления промышленными предприятиями. Возможности информационных технологий в бизнесе, их влияние на организацию и роль менеджеров в этом процессе.
курсовая работа [147,7 K], добавлен 07.05.2012Роль структуры управления в информационной системе. Примеры информационных систем. Структура и классификация информационных систем. Информационные технологии. Этапы развития информационных технологий. Виды информационных технологий.
курсовая работа [578,4 K], добавлен 17.06.2003Классификация автоматизированных информационных систем. Классические примеры систем класса А, B и С. Основные задачи и функции информационных систем (подсистем). Информационные технологии для управления предприятием: понятие, компоненты и их назначение.
контрольная работа [22,9 K], добавлен 30.11.2010