Моделирование лесного пожара
Теория нечетких множеств. Поэтапное компьютерное моделирование лесного пожара. Создание реалистичного природного, лесного массива. Создание анимационной модели распространения лесного пожара, ее программирование. Моделирование направлений пожара.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.03.2013 |
Размер файла | 938,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНОБРНАУКИ РОССИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. М.АКМУЛЛЫ»
ИНСТИТУТ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
Кафедра информационных и полиграфических систем и технологий
Специальность 230201 - Информационные системы и технологии
Курс 3
Моделирование лесного пожара
КУРСОВОЙ ПРОЕКТ
Уфа 2012
Содержание
- Введение
- Глава 1. Теоретические основы моделирования лесного пожара
- 1.1 Теория нечётких множеств
- 1.2 Перколяционая теория
- 1.3 Основы моделирования лесного пожара
- Глава 2. Поэтапное компьютерное моделирование лесного пожара
- 2.1 Создание реалистичного природного, лесного массива
- 2.2 Создание анимационной модели лесного пожара
- 2.3 Моделирование направлений пожара
- 2.4 Программирование модели лесного пожара
- Заключение
- Список используемой литературы
Введение
Актуальность проблемы. Ежегодно в России возникают десятки тысяч лесных пожаров, в результате которых сгорает более 1 млн. га леса. Еще большее количество леса при этом повреждается, а затем гибнет. Например, тепловое излучение от фронта пожара непосредственно воздействует на камбиальный слой дерева, а это приводит к его гибели. Кроме того, за счет теплопередачи тепла в почву изменяется её химический состав и структура, микрофлора и фауна почвы, повреждаются поверхностные корни деревьев. Ущерб от лесных пожаров не ограничивается стоимостью уничтоженной древесины, которая не превышает 10% от всех полезных свойств леса (почвозащитных, водоохранных, кислородопроизводящих, санитарно-гигиенических и др.). Различные виды лесных пожаров (низовые, верховые, почвенные и др.) представляют собой опасные стихийные бедствия, приносящие огромный ущерб и создающие угрозу для людей и материальных ресурсов, находящихся вблизи районов их возникновения и развития.
Так в июле и начале августа 2010 года лесные пожары в Европейской части России и на Урале охватили огромную площадь. Согласно данным Федерального агентства лесного хозяйства, общая площадь, пройденная огнем с начала года по 3 августа включительно существенно превысила миллион гектаров. По данным МЧС, представленным в Интернете, от 4 августа, при лесных пожарах погибли 50 человек. Полностью или частично сгорело не менее 130 населенных пунктов. Сгорела крупная военная база в Московской области. Ущерб от пожаров примерно сравнялся с годовым финансированием всего лесного хозяйства страны. Пожар проник на территорию Федерального ядерного центра в Сарове Нижегородской области, и с большим трудом был потушен. Многие крупные города и целые регионы Европейской России неделями существовали в условиях опасного для жизни людей задымления, местами видимость составляла лишь несколько десятков метров. Это вызвало частичную отмену авиасообщения и затрудняло автодорожное движение. По данным Национального аэрокосмического агентства США (NASA), облако дыма от лесных пожаров в Европейской части России по состоянию на 4 августа 2010 года достигло ширины в три тысячи километров. Дым от лесных пожаров проник в стратосферу на высоту около двенадцати километров. На такой высоте он может переноситься на очень большие расстояния.
Возникновение и распространение лесных пожаров зависят от различных условий (климатических: скорости ветра, температуры окружающей среды, состояния атмосферы и т.д.) рельефа местности и других факторов. Одной из наиболее опасных форм лесных пожаров являются верховые, на долю которых приходится 70% выгоревшей площади и наибольшие убытки.
Повышенное внимание к данной проблеме обусловлено также воздействием крупных лесных пожаров на приземный слой атмосферы, что вызывает климатические (понижение температуры среды за счет задымленности территорий приводит к гибели или более позднему вызреванию сельскохозяйственных культур) и экологические последствия. При определенных условиях (метеорологических, рельеф местности и др.) могут возникнуть массовые пожары («огненный шторм», огненные смерчи), в результате которых имеет место штормовая скорость ветра, реализуются высокие температуры, а газообразные продукты горения поднимаются на большую высоту и переносятся на значительные расстояния. Экспериментальные исследования лесных пожаров являются, как правило, дорогостоящими, а в некоторых случаях просто невозможными. В связи с этим большое значение имеет математическое моделирование возникновения и развития лесных пожаров.
Лесные пожары наносят огромный, и часто невосполнимый, ущерб природным и материальным ресурсам Российской Федерации. Причиной этого является отсутствие полноценной научной основы (базовой методики) качественного, и количественного анализа возможности возникновения, распространения и тушения лесных пожаров, что сдерживает не только создание высокоэффективной системы для борьбы с ними, но и затрудняет задачу оперативного определения оптимальных направлений для использования современных организационных способов и технических средств их тушения.
Попытки построения подобной методики (точнее, её основных элементов) уже предпринимались. При этом в качестве предполагаемой научной основы, как правило, рассматривались сложные математические модели газовой динамики реагирующих сред, дающих общую математическую модель как низовых, так и верховых пожаров. Но в нашей работе были объединены две более простые, но не менее действенные теории, а именно перколяционная теория и теория нечётких множеств.
Цели и задачи данной работы заключаются в создании модели для комплексного решения следующих задач в прогнозировании поведения лесного пожара: прогнозирование распространения трёхуровневого пожара, нахождение периметра контура лесного пожара.
Достоверность результатов
Достоверность результатов нашей работы базируется на использовании общепризнанных теоретических аппаратов исследования, апробированных ранее большим числом авторов. Все основные допущения, принятые в работе, также являются традиционными и общепринятыми в использованных теориях.
Объект исследования - процесс создания компьютерной модели лесного пожара.
Предмет исследования - компьютерное моделирование с учетом влияния ветра на распространение лесного верхового пожара.
Данный проект состоит из двух частей.
Целью аналитической части является рассмотрение существующего состояния предметной области, характеристики объекта и системы управления.
Проектная часть курсового проекта является описанием решений, принятых по всей вертикали проектирования. Глава основана на информации, представленной в аналитической части, обобщает ее. По сути, проектная часть является решением проблематики, изложенной в аналитической части, на языке информационных технологий.
В заключении сделаны выводы по проекту.
Глава 1. Теоретические основы моделирования лесного пожара
1.1 Теория нечётких множеств
лесной пожар моделирование программирование
Характер распространения лесного пожара в направлениях фронта, тыла и флангов в достаточной степени изучен, и соответствующие скорости распространения огня можно получить из различных источников информации. Эти скорости определяются исходя из статистических данных лесных хозяйств России, полученных на основе анализа реальных лесных пожаров, а также экспериментальных данных.
Математическая модель распространения лесного пожара заключается в анализе каждой точки контура горения с помощью нечетких множеств.
Нечеткие числа - это не обычные числа. Называются они так потому, что они представляют события, объекты недостаточно хорошо известные или определенные. Нечеткие числа отличаются от обычных тем, что их значения могут находиться в некотором диапазоне, при этом указывается так называемая функция принадлежности, с помощью которой задается субъективная оценка степени возможности нахождения этого числа в этом диапазоне (рис. 1).
Рис. 1. Нечеткое представление числа 2
Из рисунка 2 видно, что точка контура горения относится к фронту пожара, если мера угла между направлением ветра и линией, соединяющей данную точку с центром масс контура горения (далее угол отклонения точки), составляет нуль (0). Если этот угол составляет 90?(р/2), 180?(р) или 270?(3р/2), то точка контура горения отнесется к «правому флангу», «тылу» и «левому флангу» пожара, соответственно.
Рис. 2. Угол отклонения точки контура горения
Для того чтобы определить скорости распространения огня в точках отличных от фронта, тыла и флангов, будем считать соответствующие углы отклонения нечеткими числами и зададим для них функции принадлежности (рис. 3.).Будем использовать нормальные функции принадлежности треугольного вида.
Рис. 3. Представление нечетких переменных фронт, правый фланг, тыл, левый фланг
Функция принадлежности А(u) - это функция, областью определения которой является носитель U, u U, а областью значений - единичный интервал [0,1]. Чем выше А(u), тем выше оценивается степень принадлежности элемента носителя u нечеткому множеству А.
Носитель U - это универсальное множество, к которому относятся все результаты наблюдений в рамках оцениваемой квазистатистики.
После проведения анализа на принадлежность каждой точки контура горения, к фронту, тылу, тому или иному флангу в зависимости от угла отклонения этой точки, получим 4 значения - степени принадлежности к фронту, тылу, тому или иному флангу этой конкретной точки контура горения. Полученные с помощью этой функции значения использовались для расчета скоростей. После определения коэффициентов принадлежности для каждой точки кромки пожара учитываются и все его свойства, а также погодные условия. Эти значения играют роль коэффициентов в формуле скорости распространения пожара, используемой для определения местоположения кромки пожара на следующем временном шаге и которая выглядит следующим образом:
х = бхфр. + в хпр.фл. + г хт. + дхл.ф.,
где: б, в, г, д- коэффициенты, характеризующие степень принадлежности;
хфр., хпр.фл., хт., хл.фл. - скорости перемещения фронта, правого фланга, тыла и левого фланга соответственно.
Достоинством этого метода является то, что он позволяет анализировать каждую точку не только в отношении принадлежности к тому или иному множеству (фронт, тыл, правый и левый фланги), но и учитывает все характеристики погодные и лесные в каждой конкретной точке.
1.2 Перколяционая теория
Явление перколяции (или протекания среды) определяется:
Средой, в которой наблюдается это явление;
Внешним источником, который обеспечивает протекание в этой среде;
Способом протекания среды, который зависит от внешнего источника.
В качестве простейшего примера можно рассмотреть модель протекания (например электрического пробоя) в двумерной квадратной решетке, состоящей из узлов, которые могут быть проводящими или непроводящими. В начальный момент времени все узлы сетки являются непроводящими. Со временем источник заменяет непроводящие узлы на проводящие, и число проводящих узлов постепенно растет. При этом узлы замещаются случайным образом, то есть выбор любого из узлов для замещения является равновероятным для всей поверхности решетки.
Перколяцией называют момент появления такого состояния решетки, при котором существует хотя бы один непрерывный путь через соседние проводящие узлы от одного до противоположного края. Очевидно, что с ростом числа проводящих узлов, этот момент наступит раньше, чем вся поверхность решетки будет состоять исключительно из проводящих узлов.
Обозначим непроводящее и проводящее состояние узлов нулями и единицами соответственно. В двумерном случае среде будет соответствовать бинарная матрица. Последовательность замены нулей матрицы на единицы будет соответствовать источнику протекания.
В начальный момент времени матрица состоит полностью из непроводящих элементов:
0 |
0 |
0 |
0 |
|
0 |
0 |
0 |
0 |
|
0 |
0 |
0 |
0 |
|
0 |
0 |
0 |
0 |
При воздействии внешнего источника в матрице начинают добавляться проводящие элементы, однако поначалу их недостаточно для перколяции:
0 |
0 |
0 |
1 |
|
1 |
0 |
0 |
0 |
|
0 |
0 |
1 |
0 |
|
0 |
0 |
1 |
0 |
По мере увеличения числа проводящих узлов наступает такой критический момент, когда происходит перколяция, как показано ниже:
0 |
0 |
0 |
1 |
|
1 |
1 |
0 |
0 |
|
0 |
1 |
1 |
0 |
|
0 |
0 |
1 |
0 |
Видно, что от левой к правой границе последней матрицы имеется цепочка элементов, которая обеспечивает протекание тока по проводящим узлам (единицам), непрерывно следующим друг за другом.
Перколяция может наблюдаться как в решетках, так и других геометрических конструкциях, в том числе непрерывных, состоящих из большого числа подобных элементов или непрерывных областей соответственно, которые могут находиться в одном из двух состояний. Соответствующие математические модели называются решеточными или континуальными.
Индуктивно, понятие перколяции переносится на любые конструкции или материалы, которые называются перколяционной средой, для которой должен быть определен внешний источник протекания, способ протекания и элементы (фрагменты) которой могут находиться в разных состояниях, одно из которых (первичное) не удовлетворяет данному способу прохождения, а другое удовлетворяет. Способ протекания также подразумевает собой определенную последовательность возникновения элементов или изменение фрагментов среды в нужное для протекания состояние, которое обеспечивается источником. Источник же переводит постепенно элементы или фрагменты образца из одного состояния к другому, пока не наступит момент перколяции.
Совокупность элементов, по которым происходит протекание, называется перколяционным кластером. Будучи по своей природе связным случайным графом, в зависимости от конкретной реализации он может иметь различную форму. Поэтому принято характеризовать его общий размер. Порогом протекания называется количество элементов перколяционного кластера, отнесенное к общему количеству элементов рассматриваемой среды.
В бесконечной системе справедливо представление о четко определённом пороге протекания, не зависящем от того, какая последовательность случайных значений использовалась в эксперименте. В конечной системе чётко определённого порога не существует, а имеется так называемая критическая область с шириной порядка , в которую попадают значения порогов протекания, полученные в большинстве экспериментов с различными случайными последовательностями.
Порог протекания xc в бесконечной системе равен:
где N-количество элементов.
1.3 Основы моделирования лесного пожара
Глава 2. Поэтапное компьютерное моделирование лесного пожара
2.1 Создание реалистичного природного, лесного массива
Для начала, создадим восемь видеороликов в программе 3Dsmax (Рис.1 - Приложение А). Количество роликов соответствует направлениям горения. (Рис.2)
2.2 Создание анимационной модели лесного пожара
Далее, необходимо запустить Adobe Flash - именно в нем будет создана панель управления горением.
В окне приветствия программы Adobe Flash CS4, нужно выбрать пункт Create new Flash File (Action Script 2.0).(Рис.3)
После того как документ будет создан, командой главного меню File>Import>Import Video (Рис.4), вставим в документ флеш, созданные в 3Dsmax ролики.
В появившемся диалоговом окне (Рис.5.)предлагается выбрать вариант загрузки On your computer, это именно тот вариант, который нам необходим. Далее, в течении нескольких кликов мыши, нажимая «Далее», ролик появляется в документе Flash, в один момент, главное указать тип вставляемого видео - Movie Clip (Рис. 6).
Как видно на рис.7. видео ролики присутствуют в библиотеке в виде муви клипов.
Далее можно сохранить документ, ибо первая, подготовительная часть работы сделана.
Сделаем окно приветствия первым кадром. Сделаем надпись: Распространение пожара в лесном массиве под воздействием ветра.
Во втором кадре, нарисуем инструмент управления. Рис.8.. Добавим ему выразительности.
2.3 Моделирование направлений пожара
Это у нас будут кнопки, с помощью которых будет осуществляться навигация по временной шкале.
Далее, создаем с помощью команды Insert Blank Feyframe, восемь последовательных кадров, на которых будут расположены муви клипы. На всем протяжении монтажной шкалы, повторяем элемент управления (Рис.9).
Размещая муви клипы на рабочей области заметим, что они по размеру больше чем рабочая область. Изменим размер рабочей области соответственно с ними на 720х480 пикселей.
Располагаем клипы по кадрам соответственно:
Направление |
Кадр |
|
Север |
3 |
|
Северо-восток |
4 |
|
Восток |
5 |
|
Юго-восток |
6 |
|
Юг |
7 |
|
Юго-Запад |
8 |
|
Запад |
9 |
|
Северо-Запад |
10 |
Далее, на втором кадре также под «компасом» располагаем картинку.
Все выравниваем и проверяем. Теперь нужно поработать над «компасом». Каждая стрелка это отдельная кнопка, ведущая на соответствующий кадр.
Для улучшения визуального восприятия, удалим обводки со стрелок и сделаем заливку полупрозрачной.
Теперь кнопки выглядят следующим образом (Рис.10)
Далее, выделяем отдельную стрелку и нажимаем F8 (преобразовать в символ). В появившемся окне, обзываем кнопку (Рис.11) и нажимаем Enter . Данную операцию нужно повторить со всеми кнопками.
Надпись на первом кадре, также преобразовываем в кнопку. Она будет вести на 2-й кадр.
2.4 Программирование модели лесного пожара
Далее следует третий этап - программирование.
Выделяем кнопку «Север». Она должна вести на 3-й кадр. При выделенной кнопке, нажимаем F9 (Actions). Вводим для кнопки следующий скрипт:
on (press) {gotoAndStop(3);}
Соответственно перейти и остановиться на 3-ем кадре. Дело в том, что во флеш существуют разные принципы проигрывания временной шкалы. Шкала муви клипа не зависима от основной. И в одном кадре основной временной шкалы, может проигрываться до много кадров вложенной временной шкалы муви клипа.
Подобным образом программируем все кнопки. И ту, которая является надписью тоже. Ее скрипт на Рис.12.
Теперь на 1-ом кадре вставляем скрипт «stop»
Давим Save и проигрываем ролик, командой Control>Test Movie.
Щелкаем в разные стороны, все работает.
Заключение
§ Мы представили результаты компьютерного моделирования
развития лесных пожаров.
§ Новизной рассматриваемой математической модели является:
1) Трехслойность рассматриваемой модели
2) Нечеткая модель направления ветра
3) Было рассмотрено по 8 соседей для каждого дерево (во всех предыдущих моделей их было 4)
Список используемой литературы
1. Macromedia Flash 8 (+ CD-ROM): Джеймс Инглиш -- Москва, Эком, 2007.- 448 с.
2. Macromedia Flash 8 для профессионалов: Шон Пакнелл, Брайан Хогг, Крейг Суонн -- Москва, Вильямс, 2006.- 672 с.
3. Macromedia Flash MX 2004 ActionScript. Библия пользователя (+ CD-ROM): Роберт Рейнхардт, Джой Лотт -- Москва, Вильямс, 2006 г.- 960 с.
4. Macromedia Flash MX 2004. Экспресс-курс.: Владимир Дронов -- Москва, БХВ-Петербург, 2003.- 344 с.
5. Macromedia Flash Professional 8. Графика и анимация: Владимир Дронов -- Санкт-Петербург, БХВ-Петербург, 2006.- 656 с.
6. Macromedia Studio 8 (+ CD-ROM): Шаоэн Бардзелл и Джеффри Бардзелл -- Москва, Эком, 2006.- 592 с.
7. Голованов О.В., Перминов В.А. Визуализация распространения плоского фронта верхового лесного пожара // Информационные недра Кузбасса. Труды конференции. Часть 2, Кемерово: Изд.-во Полиграф, 2001. C.264-271.
8. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. Новосибирск: - Наука. 1992. - 407 с.
9. Гришин А.М., Перминов В.А., Шипулина О.В., Porterie B. (Франция). Общая математическая модель и некоторые результаты математического моделирования // VIII Всероссийский съезд по теоретической и прикладной механике, 23-29 августа 2001, Пермь. С.633.
10. Доррер Г.А. Математические модели динамики лесных пожаров. М.: - Лесная промышленность. 1979. - 160 с.
11. Китинг Дж. Flash MX. [пер. с англ.] / Джоди Китинг - М. и др. : DiaSoft, 2008. - 900 с.
12. Маров М. «Энциклопедия 3D Studio MAX 3», издательство «Питер», 2000.
13. Мартыновская А.Ю., Перминов В.А. Математическая модель распространения двумерного фронта верхового лесного пожара в осредненной постановке // Наука и образование: Материалы 7-ой международной конференции. Белово, 2008. С.199-207.
14. Перминов В.А. Математическое моделирование возникновения и распространения лесных пожаров // Материалы Всероссийской конференции «Наука и образование», 20-21 февраля 2003, Белово, 2003. C.505-507.
15. Перминов В.А. О возникновении и распространении лесных пожаров // Информационные технологии и математическое моделирование: Материалы V Международной научно-практической конференции. Ч.2. Томск: Изд-во Томского госуниверситета, 2006. С.45-47.
16. Перминов В.А. О численном решении задачи зажигания полога леса от очага низового лесного пожара в трехмерной постановке // Сопряженные задачи механики реагирующих сред, информатики и экологии: Избранные доклады 7-й Международной научной конференции. Томск: Изд-во Томского ун-та, 2007. С.172-179.
17. Работа в среде Macromedia Flash 5: Н. Г. Никифорова, Р. А. Федоровская, А. В. Никифоров -- Москва, ИВЭСЭП, 2008.- 72 с.
18. Самоучитель Macromedia Flash MX: Михаил Бурлаков -- Москва, БХВ-Петербург, 2003.- 656 с.
19. Шахраманьян М.А., Нигметов Г.М. Методика оперативной оценки последствий лесных пожаров. М.: - ВНИИ ГОиЧС. 2001. - 32 с.
Размещено на Allbest.ru
Подобные документы
Основное направление исследования клеточных автоматов. Математическое определение автоматов. Классификация по типам поведения. Тоталистичные клеточные автоматы. Создание и визуализация в Excel математической модели распространения лесного пожара.
курсовая работа [234,9 K], добавлен 01.11.2014Введение в интернет-технологии и компьютерное моделирование. Создание WEB страниц с использованием HTML. Создание динамических WEB страниц с использованием JavaScript. Работа с графикой в Adobe Photoshop и Flash CS. Основы компьютерного моделирования.
презентация [223,4 K], добавлен 25.09.2013Создание web-страниц с использованием языка HTML. Работа с графикой в Adobe Photoshop и Flash CS. Создание динамических web-страниц с использованием JavaScript и PHP. Базы данных и PHP. Пример реализации "Эконометрической модели экономики России" под WEB.
презентация [432,3 K], добавлен 25.09.2013Создание web-страниц с использованием HTML. Работа с графикой в Adobe Photoshop и Flash. Создание динамических web-страниц с использованием JavaScript. Пример реализации "Эконометрической модели экономики России". Моделирование с использованием Powersim.
презентация [478,4 K], добавлен 25.09.2013Переходный процесс включения и распространения включенного состояния в силовых тиристорах, его компьютерное моделирование на основе пакета программ приборно-технологического моделирования "Synopsys TCAD". Физические понятия в программном комплексе.
дипломная работа [914,1 K], добавлен 17.07.2016Обзор существующих автоматизированных информационных систем, их классификация и структура построения. Разработка инфологической модели базы данных для автоматизированной информационной системы руководителя тушения пожара, реализация в компьютерной СУБД.
дипломная работа [1,2 M], добавлен 07.06.2011Понятие и условие устойчивости бистабильной системы. Исследование модели "нагреватель - охлаждающая жидкость", построение фазового портрета стационарных состояний нагревателя. Компьютерное моделирование данной системы в пакете model vision studium.
курсовая работа [1,1 M], добавлен 07.06.2013Изучение аэродинамики как одной из разделов физики в современном мире. Компьютерное моделирование взаимодействия самолета с окружающей средой. Создание физического движка. Освоение языка программирования C++, графического программного интерфейса OpenGL.
практическая работа [1,1 M], добавлен 03.05.2015Создание Web-страниц с использованием HTML, с использованием JavaScript и PHP. Работа с графикой в Adobe Photoshop и Flash CS. Базы данных и PHP. Пример реализации "Эконометрической модели экономики России" под web. Основы компьютерного моделирования.
презентация [4,4 M], добавлен 25.09.2013Сферы применения машинной графики. Использование растровой, векторной и фрактальной графики. Цветовое разрешение и модели. Создание, просмотр и обработка информации. Форматы графических файлов. Программы просмотра. Компьютерное моделирование и игра.
презентация [661,5 K], добавлен 24.03.2017