ЭВМ с использованием математического пакета MathCad в среде Windows 98 для использования матричной алгебры в расчетах
Определение собственных значений матрицы с помощью характеристического уравнения, функция identity. Определение вектора, элементами которого являются собственные значения матрицы с помощью функций Mathcad. Приведение заданной матрицы к диагональному виду.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | практическая работа |
Язык | русский |
Дата добавления | 23.02.2013 |
Размер файла | 39,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство Топлива и Энергетики Украины
СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ
ПРАКТИЧЕСКАЯ РАБОТА
ПО ДИСЦИПЛИНЕ: «ИСПОЛЬЗОВАНИЕ ЭВМ В ИНЖЕНЕРНЫХ РАСЧЕТАХ ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ»
Тема :ЭВМ С ИСПОЛЬЗОВАНИЕМ МАТЕМАТИЧЕСКОГО ПАКЕТА MathCad В СРЕДЕ WINDOWS 98 ДЛЯ ИСПОЛЬЗОВАНИЯ МАТРИЧНОЙ АЛГЕБРЫ В РАСЧЕТАХ
Севастополь 2008
ДАННЫЕ ВАРИАНТА ЗАДАНИЯ
Коэффициенты квадратной матрицы А и вектора b
Таблица 1 - Коэффициенты квадратной матрицы А и вектора b
№ вар |
Коэффициенты квадратной матрицы А и вектора b системы линейных алгебраических уравнений |
||||||||||||||||||||
а11 |
а12 |
а13 |
а14 |
а21 |
а22 |
а23 |
а24 |
а31 |
а32 |
а33 |
а34 |
а41 |
а42 |
а43 |
а44 |
b1 |
b2 |
b3 |
b4 |
||
8 |
2,4 |
1,4 |
1,6 |
1,8 |
2,6 |
12 |
0,6 |
4,0 |
-0,8 |
0,85 |
0,1 |
0,2 |
0,4 |
1,2 |
1,0 |
1,5 |
0,1 |
0,2 |
-0,4 |
0,6 |
АЛГЕБРА МАТРИЦ
Использование матричных функций.
Собственные значения и векторы собственных значений матрицы.
а) Определение собственных значений с помощью характеристического уравнения.
Пусть X и Y - векторы. А- квадратная матрица, оператор преобразования Х в Y. Часто бывают случаи, когда необходимо найти вектор ? и значение скаляра л такие , что А? ? = л??. Такое уравнение имеет решения в виде собственных значений л1, л2,... и соответствующих им собственных векторов x1, х2,...Значение скаляра л носит название собственных значений квадратной матрицы А. Его можно получить из характеристического уравнения матрицы А.
Характеристическое уравнение матрицы имеет вид:
Его корни: называются собственными числами матрицы А.
Их сумма равна сумме диагональных элементов матрицы А (или следу матрицы А)
Исходная матрица:
Находим корни характеристического уравнения:
Функция identity (4) создаёт единичную матрицу размером 4*4
?лj =16
б) Определение вектора, элементами которого являются собственные значения матрицы с помощью функций Mathcad.
Для решения задач на собственные векторы и собственные значения в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы:
матрица вектор мathcad
eigenvals(A) - вычисляет вектор, элементами которого являются собственные значения матрицы А; По умолчанию Mathcad отобразит три знака после запятой. Если необходимо увеличить точность собственных чисел матрицы, то необходимо воспользоваться командами: Формат, Формат результата главного меню и указать в окошечке Число десятых доль-Displayed Precision (3) желаемое число знаков после запятой (от 0 до 15).
а) Вычисление матрицы, содержащей нормированные собственные векторы, соответствующие собственным значениям матрицы А
Нахождение матрицы векторов собственных значений матрицы.
eigenvecs(A) - вычисляет матрицу, содержащую нормированные собственные векторы, соответствующие собственным значениям матрицы А;
n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения, вычисляемого eigenvals;
для устранения ошибки округления увеличили точность до 8 знаков после запятой.
б) Вычисление собственного вектора для матрицы А и заданного собственного значения л.
Данную функцию применим к действительным собственным значениям.
Проверка правильности нахождения собственных векторов и собственных значений приведена для значения л0 . Причем проверка правильности выражения Ах=лх проведена дважды - сначала на числовых значениях х и л, а потом путем перемножения соответствующих матричных компонентов.
Вычисление собственного вектора для матрицы А и л3.
Как мы видим, в этом случае собственные вектора и матрица собственных векторов матрицы А, имеют численные значения, отличающиеся знаками. Однако это не меняет общности поставленной задачи, так как речь идёт о пространстве, в котором находятся собственные вектора матрицы А.
Приведение заданной матрицы к диагональному виду.
В Mathcad легко создать матрицы определенного вида с помощью одной из встроенных функций, например:
diag(v) - создаст диагональную матрицу, на диагонали которой находятся элементы вектора v;
Рассмотрим вектор, элементами которого являются собственные значения матрицы А.
Для квадратной матрицы А часто бывает необходимо найти, если это возможно, такую квадратную матрицу, чтобы выполнялось условие:Р-1 ?А?Р = L
Здесь L представляет собой квадратную матрицу diag (л1, л2……. лn) , где л1, л2…… лn являются собственными значениями матрицы А.
Найденная выше матрица Р содержит нормированные собственные векторы, соответствующие собственным значениям матрицы А; n-й столбец вычисляемой матрицы соответствует собственному вектору n-го собственного значения.
Матрица векторов собственных значений матрицы А приводит ее к треугольному виду:
ВЫВОДЫ
В результате выполнения практической работы №1 были изучены возможности математического пакета MathCad в среде Windows с целью дальнейшего использования матричной алгебры в инженерных расчетах электротехнических систем. Были изучены и повторены основные моменты теории матриц. Изучены способы задания векторов и матриц в среде MathCad. Я научился работать с массивами, векторами и матрицами, применял векторные и матричные операторы и функции. Вторая по частоте применения задача вычислительной линейной алгебры - это задача поиска собственных векторов и собственных значений матрицы. Для решения таких задач в Mathcad встроено несколько функций, реализующих довольно сложные вычислительные алгоритмы. Применение матричных функций намного облегчает расчёты по теоретическим основам электротехники, теории автоматического управления и другим дисциплинам. Как оказалось, особенно просто в MathCad работать с комплексными числами и полиномами высших порядков. Решение характеристических уравнений выдаётся в виде векторов, которые можно далее преобразовывать с помощью матричной алгебры, представленной в MathCad.
Размещено на Allbest.ru
Подобные документы
Алгебра матриц: задание численных и символьных элементов вектора и матрицы с и без применения шаблонов, использование векторных и матричных операторов и функций. Операции умножения и деления вектора и матрицы друг на друга и на скалярные числа.
практическая работа [107,0 K], добавлен 05.12.2009Возможности математического пакета MathCad в среде Windows 98 для использования матричной алгебры и решения системы линейных алгебраических уравнений. Методы решения систем линейных алгебраических уравнений. Сравнение метода Гаусса с методом MathCad.
практическая работа [62,6 K], добавлен 05.12.2009Решение нелинейного уравнения вида f(x)=0 с помощью программы Excel. Построение графика данной функции и ее табулирование. Расчет матрицы по исходным данным. Проведение кусочно-линейной интерполяции таблично заданной функции с помощью программы Mathcad.
контрольная работа [1,8 M], добавлен 29.07.2013Решение системы дифференциальных уравнений, заданной в нормальной форме Коши. Определение аналитических зависимостей изменения переменных состояния системы с использованием преобразования Лапласа. Численный метод решения системы c помощью Mathcad.
практическая работа [657,1 K], добавлен 05.12.2009Решение дифференциального уравнения N-го порядка методом интегрирования при помощи характеристического уравнения, методом интегрирования и операторным методом для значений аргументов при заданных начальных условиях и нулевых уравнения 4–го порядка.
практическая работа [806,9 K], добавлен 05.12.2009Сортировка строк списка в заданном порядке в Excel, технология использования расширенного фильтра. Формирование итогов в списках по заданным условиям. Процесс ввода матрицы в MathCAD. Контур оперативного управления (логистики) комплекса "Галактика".
контрольная работа [779,2 K], добавлен 03.08.2011Разработка эскизного и технического проектов программы преобразования заданной матрицы в ортогональную матрицу. Сравнивание транспонированной матрицы с обратной с целью проверки ортогональности. Выбор состава технических и программных средств реализации.
курсовая работа [52,1 K], добавлен 09.12.2014Разработка с использованием приложения Mathcad алгоритма и программы решения нелинейного уравнения методами касательных, половинного деления и хорд. Решение с помощью ее заданных нелинейных уравнений. Создание графической иллюстрации полученных решений.
курсовая работа [665,7 K], добавлен 22.08.2013Особенности применения матриц, функций Given..Find и Given..Minerr для решения нелинейного уравнения типа 4sin x+х=5 для заданной точности с помощью математического пакета MathCAD. Создание базы данных "Расписание автобусов" на основе программы Ms Access.
курсовая работа [208,9 K], добавлен 16.12.2010Дифференциальные уравнения как уравнения, в которых неизвестными являются функции одного или нескольких переменных, причем в уравнения входят не только сами функции, но и их производные. Решение операторным методом, с помощью рядов, методом Эйлера.
курсовая работа [301,4 K], добавлен 27.03.2011