Высокая чувствительность отклика нейроклассификатора к колебаниям входов может индицировать наличие выбросов в данных

Двумерная визуализация распределения примеров выборки в пространствах пар наиболее чувствительных признаков, оценка ее результатов. Повторение циклов из шагов исключения примеров-выбросов, повторного обучения нейросети, нового расчета чувствительностей.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 08.02.2013
Размер файла 218,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Описание мониторинга выбросов случайных процессов контролируемых параметров. Основные принципы обработки статистических данных в базисе аддитивной аппроксимации стандартными распределениями. Разработка методов аппроксимирующих вкладов значений выборки.

    контрольная работа [308,2 K], добавлен 19.08.2015

  • Зависимость функций плотности вероятности, кумулятивного и обратного кумулятивного распределений от их параметров. Представление примеров вычисления вероятностей и доверительных интервалов. Рассмотрено нормального, логнормального, бинарного распределения.

    курсовая работа [377,0 K], добавлен 28.07.2012

  • Разработка программы для визуализации результатов статистической обработки экспериментальных данных. График, визуализирующей зависимость температуры физического объекта от времени, регистрируемой датчиками на протяжении фиксированного промежутка времени.

    курсовая работа [1,8 M], добавлен 18.09.2014

  • Понятие и направления анализа акций. Изучение принципов работы нейросети с использованием программы "Нейросимулятор". Создание оптимально работающей нейросети для прогнозирования котировок акций, этапы данного процесса и оценка полученных результатов.

    презентация [42,3 K], добавлен 19.08.2013

  • Определение понятия квадротомического дерева. Рассмотрение основных примеров квадродерева, его достоинств и недостатков. Визуализация квадротомированного изображения. Создание программы разбора бинарной, заполненной случайным образом, матрицы N на M.

    курсовая работа [392,3 K], добавлен 09.08.2015

  • Решение математических примеров, построение графиков с помощью программы Mathcad. Создание 3D модели сборки, гидродинамического расчета, термического расчета и статистического расчета с помощью программы SolidWorks. Детали интерфейса, элементы вкладок.

    отчет по практике [2,3 M], добавлен 25.11.2014

  • Основные отличия нейросетей от других методов. Неформализуемые и трудно формализуемые задачи. Моделирование интеллектуальной деятельности человека. Оценка стоимости квартир в Перми с использованием нейронных сетей. Проектирование и обучение нейросети.

    презентация [139,4 K], добавлен 14.08.2013

  • Обнаружение аномалий сетевого трафика на основе дискретного вейвлет-анализа с применением статистических критериев и критерия Фишера для выбросов дисперсий. Парсинг .pcap-файлов и визуализация. Блок-схемы алгоритмов функций main, analysis, koef, disp.

    курсовая работа [295,2 K], добавлен 22.03.2018

  • Анализ работы параллельных вычислений на видеокарте GeForce GT 540M с использованием текстурной памяти. Рассмотрение специфических особенностей по адресации текстурной памяти. Изучение основ чтения и записи данных. Описание примеров данных программ.

    лабораторная работа [3,1 M], добавлен 04.12.2014

  • Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.

    курсовая работа [215,2 K], добавлен 19.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.