Сведения о принтерах
Отличия процесса работы лазерного принтера от работы копировального аппарата. Структурная схема лазерного принтера, особенности узла транспортировки бумаги. Профилактика и диагностика неисправностей кинематики и механики. Технологии растрирования.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 21.01.2013 |
Размер файла | 238,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Основные сведения о принтерах
лазерный принтер копировальный диагностика
Принтер - периферийное устройство компьютера, используемое для вывода информации на бумажный или пластиковый носитель. В зависимости от способа печати принтеры делятся на три класса: матричные, струйные и лазерные. Цель принтера - сформировать на бумаге точку, цвет которой определяется 24-битным (иногда - 32-битным) числом - по 8 бит на каждый из базовых цветов - жёлтый, голубой и пурпурный. При 32-битовом цвете добавляется черный.
На каждую точку, формируемую принтером, может приходиться от нуля до 255 частей чернил, причём если «положить» по 255 частей всех трёх цветов, то должен выйти чёрный, или почти чёрный цвет. Существуют два способа достичь этого - растровый и дозировочный.
Дозировочный предполагает, что принтер имеет возможность напылять чернила, точно отмеряя их количество. В таком случае печатающая головка просто «льёт» нужный объём чернил в каждую точку. Однако, технически реализовать такую головку нелегко. Традиционные струйные принтеры способны всего лишь «выплюнуть» по команде от компьютера капельку строго определённого объема, и не более того. Потому применяют так называемый растр. Точку изображения делят на 16*16 клеточек (всего - 256), и заполняют капельками чернил нужную часть этих клеточек. Это значит, что физическое разрешение принтера (число клеточек, которые он может печатать) должно быть в 16 раз выше реального. Это, в частности, значит, что струйный принтер с разрешением 1200*1200 при такой технологии даст реальное разрешение всего в 75 точек на дюйм.
Технологии растрирования позволяют выжать из техники несколько больше. Поэтому на практике качество изображения зависит не только от физического разрешения принтера.
Классификация принтеров
Принтеры разнятся между собой по различным признакам:
- цветность (чёрно-белые и цветные);
- способ формирования символов (знакопечатающие и знакосинтезирующие);
- принцип действия (матричные, термические, струйные, лазерные);
- способы печати (ударные, безударные) и формирования строк (последовательные и параллельные);
- ширина каретки (с широкой (375-450 мм) и узкой (250 мм) кареткой), длина печатной строки (80 и 132-136 символов);
- набор символов (вплоть до полного набора символов ASCII);
- скорость печати;
- разрешающая способность, наиболее употребительной единицей измерения является dpi - количество точек на дюйм.
Внутри ряда групп можно выделить несколько разновидностей принтеров; например, матричные знакосинтезирующие принтеры по принципу действия могут быть ударными, термографическими, электрографическими, электростатическими, магнитографическими.
Среди ударных принтеров часто используются литерные, шаровидные, лепестковые (типа «ромашка»), игольчатые (матричные).
Печать у принтеров может быть посимвольная, построчная, постраничная. Скорость печати варьируется от 10-300 знаков / секунду (ударные принтеры) до 500-1000 знаков / секунду и даже до нескольких десятков (до 20) страниц в минуту (безударные лазерные принтеры); разрешающая способность - от 3-5 точек на миллиметр до 30-40 точек на миллиметр (лазерные принтеры).
Лазерные принтеры
Лазерные принтеры используют ксерографический (электрофотографический) метод печати, который также применяется в большинстве аппаратов копирования. В целом лазерный принтер - монохромное устройство. В настоящее время имеются и цветные лазерные принтеры, по сути представляющие собой конструктивное объединение нескольких лазерных принтеров, один из них показан на рисунке 1.
Рис. 1 - Лазерный принтер HP laserjet 1020
Принцип действия лазерного принтера
Формирование изображения
Лазерные принтеры формируют изображение путем позиционирования точек на бумаге (растровый метод). Первоначально страница формируется в памяти принтера и лишь затем передается в механизм печати. Растровое представление символов и графических образов производится под управлением контроллера принтера. На рисунке 4 изображено формирование образа путем соответствующего расположения точек в ячейках сетки или матрицы, как на шахматной доске.
Растровая технология в значительной степени отличается от векторной, используемой в перьевых графопостроителях. При использовании векторной технологии изображение формируется путем построения линий из одной точки в другую.
Принцип действия лазерного принтера: лазерные принтеры, получившие наибольшее распространение, используют технологию фотокопирования, называемую еще электрофотографической, которая заключается в точном позиционировании точки на странице посредством изменения электрического заряда на специальной пленке из фотопроводяшего полупроводника. Подобная технология печати применяется в ксероксах. Принтеры фирм HP и QMS, например, используют механизм печати ксероксов фирмы Canon.
Важнейшим конструктивным элементом лазерного принтера является вращающийся фотобарабан, с помощью которого производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой из фотопроводящего полупроводника (обычно оксид цинка). По поверхности барабана равномерно распределяется статический заряд. С помощью тонкой проволоки или сетки, называемой коронирующим проводом. На этот провод подается высокое напряжение, вызывающее возникновение вокруг него светящейся ионизированной области, называемой короной. Лазер, управляемый микроконтроллером, генерирует тонкий световой луч, отражающийся от вращающегося зеркала. Этот луч, попадая на фотобарабан, засвечивает на нем элементарные площадки (точки), и в результате фотоэлектрического эффекта в этих точках изменяется электрический заряд. Для некоторых типов принтеров потенциал поверхности барабана уменьшается от -900 до -200 В. Таким образом, на фотобарабане возникает копия изображения в виде потенциального рельефа.
На следующем рабочем шаге с помощью другого барабана, называемого девелопером (developer), на фотобарабан наносится тонер - мельчайшая красящая пыль. Под действием статического заряда мелкие частицы тонера легко притягиваются к поверхности барабана в точках, подвергшихся экспозиции, и формируют на нем изображение. На рисунке 6 показан принцип создания копии изображения на фотобарабане.
Лист бумаги из подающего лотка с помощью системы валиков перемещается к барабану Затем листу сообщается статический заряд, противоположный по знаку заряду засвеченных точек на барабане. При соприкосновении бумаги с барабаном частички тонера с барабана переносятся (притягиваются) на бумагу. Для фиксации тонера на бумаге листу вновь сообщается заряд и он пропускается между двумя роликами, нагревающими его до температуры около 180°-200°С (если вы хоть раз ставили пирог со сладкой начинкой в духовку, то знаете, как тяжело разделить пропеченные компоненты). После собственно процесса печати барабан полностью разряжается, очищается от прилипших частиц тонера и готов для нового цикла печати. Описанная последовательность действий происходит очень быстро и обеспечивает высокое качество печати.
В светодиодном принтере для засвечивания барабана вместо лазерного луча, управляемого с помощью системы зеркал, используется неподвижная светодиодная строка (линейка), состоящая из 2500 светодиодов, которой формируется не каждая точка изображения, а целая строка. Цветная печать: при печати на цветном лазерном принтере используются две технологии. В соответствии с первой, широко используемой до недавнего времени, на фотобарабане последовательно для каждого отдельного цвета (Cyan, Magenta, Yellow, Black) формировалось соответствующее изображение, и лист печатался за четыре прохода, что, естественно, сказывалось на скорости и качестве печати. В современных моделях (например, HP Color LaserJet 5) в результате четырех последовательных прогонов на фотобарабан наносится тонер каждого из четырех цветов. Затем при соприкосновении бумаги с барабаном на нее переносятся все четыре краски одновременно, образуя нужные сочетания цветов на отпечатке.
В результате достигается более ровная передача цветовых оттенков, почти такая же, как при печати на цветных принтерах с термопереносом красителя. Соответственно в цветных лазерных принтерах используются четыре ёмкости для тонеров. Принтеры этого класса оборудованы большим объемом памяти, процессором и, как правило, собственным винчестером. На винчестере содержатся разнообразные шрифты и специальные программы, которые управляют работой, контролируют состояние и оптимизируют производительность принтера. Цветные лазерные принтеры имеют довольно крупные габариты и большую массу.
Технология процесса цветной лазерной печати весьма сложна, поэтому и цены на цветные лазерные принтеры еще очень высоки.
2. Основные характеристики лазерных принтеров
Лазерный принтер является сложным оптико-механическим устройством, которое, независимо от конструктивного исполнения, характеризуется большим количеством различных параметров. С потребительской точки зрения все параметры можно разбить на группы, определяющие:
- качество печати;
- скорость печати;
- удобство в эксплуатации;
- экономичность работы;
- дополнительные возможности.
Физические процессы
В основе работы, как копировального аппарата, так и лазерного принтера лежит процесс сухой ксерографии (лат. xeros - сухой и graphos - писать). В свою очередь он базируется на электростатической фотографии.
В основе электростатической фотографии лежит способность некоторых полупроводников уменьшать свое удельное сопротивление под действием света. Такие полупроводники называются фотопроводниками и используются для изготовления фоторецепторов.
Основные характеристики фотопроводников перечислены ниже:
- спектральная чувствительность - характеризует способность фотопроводника реагировать на излучение различных длин волн. Ни один фотопроводник не может одинаково реагировать на различные длины волн. Некоторые типы фоторецепторов слабо реагируют на голубой цвет, который вообще не воспроизводится на копии, некоторые слабо реагируют на желтый цвет. В идеале фотопроводник должен одинаково хорошо передавать все цвета, однако обычно этого не происходит;
- фотоэлектрическая чувствительность (скорость формирования изображения) - это величина, характеризующая скорость уменьшения заряда на фоторецепторе при освещении его светом заданной интенсивности. Чем меньше остаточная величина заряда на фоторецепторе после его экспонирования, тем выше качество копии. Эта величина может зависеть от материала, срока эксплуатации и состояния проводника;
- скорость темновой утечки - величина, характеризующая, как быстро фотопроводник теряет заряд в темноте. Это связано с тем, что полупроводник, из которого изготовлен фоторецептор, хотя и приобретает в темноте свойства диэлектрика, но все же не может хранить заряд так долго, как это могут делать диэлектрики;
- усталость материала - это явление, возникающее при многократном и частом экспонировании фоторецептора. Усталость материала может возникать и при засветке солнечным светом (пользователь вытащил картридж и оставил его на солнце барабаном вверх). Усталость материала приводит к увеличению скорости темновой утечки заряда, а в некоторых случаях наоборот к сохранению заряда на поверхности после экспонирования;
- устойчивость к внешним воздействиям - эта характеристика определяет способность фотопроводника сохранять свои свойства как можно дольше при механическом контакте с бумагой. Бумага, при правильном использовании аппарата, является наиболее важным фактором естественного износа фоторецептора. Поэтому шероховатая бумага, неправильно обрезанная и т.д. сокращает срок службы фоторецептора. Хотя сама бумага практически не контактирует с фоторецептором, однако жесткие волокна бумаги могут попадать под ракельный нож. Кроме того, срок его службы сокращают различные химические вещества, которые могут попасть на него с бумаги или с другого источника, а также механические повреждения;
- кристаллизация - процесс преобразования атомов фотопроводника из аморфной структуры в упорядоченную, кристаллическую. При этом фотопроводник теряет свои свойства. Такой процесс нельзя остановить, но можно замедлить при правильном обращении с проводником;
- начальный потенциал - это потенциал на поверхности фоторецептора, при котором накапливаемый заряд равен заряду, утекающему в подложку. Обычно фоторецептор заряжают до потенциала ниже начального, чтобы избежать его повреждения;
- остаточный потенциал - потенциал, который остается на освещенных участках фоторецептора после экспонирования. При экспонировании фоторецептор быстро теряет заряд до определенной величины, затем скорость утекания заряда значительно снижается. Высокий остаточный потенциал способствует притягиванию частиц тонера на освещенные участки, что приводит к фону на копии.
Эти характеристики фотопроводника тщательно анализируются при выборе его в качестве фоторецептора для копировального аппарата либо принтера.
Принцип действия лазерного принтера несколько отличается от принципов работы копировального аппарата. Источником света здесь служит лазер, который уменьшает потенциал в определенных участках фоторецептора. При этом фоновые участки фоторецептора остаются заряженными. Тонер заряжается противоположным зарядом. При контакте тонер притягивается подложкой в участки с низким потенциалом, пробитые лазером. Лазерная засветка осуществляется следующим способом: Лазерная пушка светит на зеркало, которое вращается с высокой скоростью. Отраженный луч через систему зеркал и призму попадает на барабан и за счет поворота зеркала выбивает заряды по всей длине барабана. Затем происходит поворот барабана на один шаг (этот шаг измеряется в долях дюйма и именно он определяет разрешение принтера по вертикали) и вычерчивается новая линия. В некоторых принтерах кроме поворота барабана используется поворот зеркала по вертикали, которое позволяет на одном шаге поворота барабана вычертить два ряда точек. В частности первые принтеры с разрешением 1200 dpi использовали именно этот принцип.
Скорость вращения зеркала очень высока. Она составляет порядка 7-15 тыс. об./мин. Для того, чтобы увеличить скорость печати не увеличивая скорость зеркала его выполняют в виде многогранной призмы.
Лазерные принтеры кроме механической части включают в себя достаточно серьезную электронику. В частности на принтерах устанавливается память большого объема, для того, чтобы не загружать компьютер и хранить задания в памяти. На части принтеров устанавливаются винчестеры. Электронная начинка принтера также содержит различные языки описания данных (Adobe PostScript, PCL).
Эти языки опять же предназначены для того, чтобы забрать часть работы у компьютера и передать принтеру.
Принцип действия отдельных компонентов лазерного принтера
Рассмотрим физический принцип действия отдельных компонентов лазерного принтера.
Как уже писалось выше, важнейшим конструктивным элементом лазерного принтера является вращающийся фотобарабан, с помощью которого производится перенос изображения на бумагу. Фотобарабан представляет собой металлический цилиндр, покрытый тонкой пленкой из фотопроводящего полупроводника (обычно оксид цинка). По поверхности барабана равномерно распределяется статический заряд. С помощью тонкой проволоки или сетки, называемой коронирующим проводом.
Лазер квантовый генератор, источник мощного оптического излучения. Излучение избыточной энергии возбужденных атомов вынуждается внешним воздействием.
Лазер отличается от обычных источников света (например, лампы с вольфрамовой нитью) двумя важными свойствами излучения. Во-первых, оно когерентно, т.е. пики и провалы всех его волн появляются согласованно, и эта согласованность остается неизменной в течение достаточно длительного времени. Все обычные источники света эмиттируют некогерентное излучение, в котором нет согласованности между пиками и провалами различных волн. В некогерентном процессе световые волны излучаются независимо друг от друга, энергия излучаемого пучка рассеивается по пространству и быстро убывает по мере удаления от источника. При когерентном излучении волны испускаются не хаотично и могут усиливать друг друга. Лучи лазерного пучка почти параллельны между собой, поэтому он расходится незначительно даже на больших расстояниях от излучателя. Так, лазерный пучок диаметром 30 см направили на Луну, и он образовал на ее поверхности световое пятно диаметром всего 3 км (до Луны около 386 000 км; на таком расстоянии свет от обычного источника дал бы пятно диаметром 402 000 км). Вторая особенность лазерного излучения - монохроматичность, т.е. одноцветность; это значит, что от конкретного лазера исходят волны одной и той же длины. В свете почти всех существующих источников обычно присутствуют все длины волн видимого спектра и соответственно все цвета, поэтому такой свет нам кажется белым. Лишь немногие традиционные источники (например, лампы низкого давления, наполненные разреженными парами натрия) светят почти монохроматично, но их излучение некогерентно и малоинтенсивно.
Чтобы создать лазер - источник когерентного света необходимо:
1. Рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов.
2. Рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь.
3. Усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения полупрозрачного зеркала. Принцип действия. Свет - особая форма движущейся материи. Он соткан из отдельных сгустков, именуемых квантами. Атомы любого вещества, излучая (или поглощая) свет, испускают (или захватывают) только цельные кванты; в таких процессах (если нет каких-то особых условий) атомы не взаимодействуют с долями квантов. Длина волны (стало быть, цвет) излучения определяется энергией его кванта. Атомы, одинаковые по своей природе, излучают или поглощают кванты лишь конкретной длины волны. Это наглядно проявляется в свечении газоразрядных ламп с однородным наполнением (например, неоном), которые используются в декоративной иллюминации и рекламе. Когда атом излучает квант света, он расходует энергию; поглощая квант света, атом приобретает дополнительную энергию.
Поскольку энергия переносится к атому и от него порционно, то и сам атом может пребывать лишь в одном из дискретных энергетических состояний-либо в основном (с минимальной энергией), либо в каком-то из возбужденных. Атом, находящийся в основном состоянии, при поглощении кванта света переходит в возбужденное состояние; при излучении кванта света все происходит наоборот. Чем больше квантов вблизи атомов, тем больше и тех атомов, которые совершают подобные переходы - с повышением или понижением энергии. (Свет своим присутствием вынуждает атомы участвовать в энергетических переходах, поэтому такие процессы называют вынужденными - вынужденное поглощение и вынужденное излучение.) При вынужденном поглощении число квантов уменьшается и интенсивность света убывает, а энергия атомов возрастает. Если некоторое множество атомов, попав в освещение, вынужденно излучает суммарно больше, чем вынужденно поглощает, то возникает лазерный эффект - усиление света вынужденным излучением (данного множества атомов). Лазерная генерация может возникнуть только в том множестве микрочастиц, где возбужденных атомов больше, чем невозбужденных. Следовательно, такое множество надо заранее подготовить, т.е. предварительно накачать в него дополнительную энергию, черпая ее от какого-либо внешнего источника; эта операция так и называется - накачка. Типы лазеров различаются в основном по видам накачки. Накачкой могут служить: электромагнитное излучение с длиной волны, отличающейся от лазерной; электрический ток; пучок релятивистских (чрезвычайно быстрых) электронов; электрический разряд; химическая реакция в пригодной для генерации среде. Посеребренные торцы цилиндрического стержня из искусственного рубина служат зеркалами.
Типы лазеров:
- твердотельные лазеры с оптической накачкой;
- газовые лазеры;
- химические лазеры;
- полупроводниковые лазеры;
- лазеры на красителях.
3. Структурная схема лазерного принтера и ее особенности
В основе работы лазерного принтера лежит электрофотографический принцип формирования изображения.
В основе технологии лежит принцип сухого электростатического переноса. Суть этого принципа такова: источник света светит на предварительно заряженную поверхность светочувствительного вала (фотобарабана, фотовала). На тех местах, на которые попал свет, меняется заряд и к этим местам затем притягивается тонер. Затем этот тонер перетягивается за счет электростатики на бумагу, на которой попадает в печку, где и закрепляется, под действием высокой температуры и давления. Отпечатки, сделанные таким способом, не боятся влаги, устойчивы к истиранию и выцветанию. Качество такого изображения очень высоко.
Основными элементами принтера являются:
- Источник питания;
- Электронная плата, которая содержит:
- Управляющую микроэвм;
- ПЗУ;
- ОЗУ;
- Плата управления узлами принтера;
- Высоковольтный блок;
- Главный электродвигатель;
- Узел закрепления (фузер);
Особенности узла транспортировки бумаги
Бумага, помещенная в лоток, активирует датчик наличия бумаги PS201, который сообщает плате ECU о наличии бумаги, принтер входит в состояние готовности к приему данных.
Приняв данные в форматер, ECU включает лазер-сканер, главный двигатель и активирует соленоид подачи бумаги SL001. Планка подъемника бумаги подводит переднюю кромку бумаги к ролику подачи, ролик подачи делает один оборот, толкая бумагу вперед к роликам протяжки.
Тормозные площадки, имеющие коэффициент трения с бумагой выше, чем между листами бумаги, позволяют подать к роликам протяжки только один лист.
Ролики протяжки подводят переднюю кромку бумаги к датчику регистрации бумаги PS402, который информирует ECU, что бумага зарегистрирована и должна быть начата модуляция луча для начала процесса экспонирования. Датчик регистрации позволяет точно совместить изображение на барабане с листом бумаги.
Ролики протяжки продвигают бумагу далее к барабану и ролику переноса под ним.
После переноса изображения бумага попадает в печку и ее передняя кромка активирует датчик выхода PS401, сообщая плате ECU, что бумага дошла до печки. Ролики выхода направляют бумагу в выходной лоток и задняя кромка бумаги деактивирует датчик выхода, сообщая ECU, что бумага успешно покинула печку.
Условия выдачи ошибки пути бумаги
Процессором будет выдан сигнал ошибки бумаги в следующих случаях:
- бумага не достигла датчика регистрации PS402, после того, как соленоид подачи бумаги был активирован дважды в течение 2,8 с после начала первой активации;
- датчик регистрации не был деактивирован задней кромкой бумаги через 4,6 с после регистрации передней кромки;
- датчик выхода PS401 не детектировал переднюю кромку бумаги через 2,1 с после регистрации передней кромки;
- датчик выхода не детектировал заднюю кромку бумаги через 1,5 с после регистрации задней кромки бумаги датчиком PS402, либо датчик выхода не детектировал заднюю кромку бумаги через 10 с после прохождения передней кромки через датчик выхода;
- датчик выхода не детектировал переднюю кромку бумаги через 2,2 с после прохождения задней кромки бумаги через датчик регистрации;
- датчик регистрации и выхода бумаги детектировали бумагу сразу после включения принтера или в Initial Rotation Period.
Профилактика и диагностика неисправностей принтера
Для проведения профилактических работ с принтером необходимо выполнить его разборку сняв для этого наружный пластмассовый кожух. Отчистить внутренние поверхности принтера от пыли и тонера.
Резиновые ролики протереть жидкостью для профилактики резиновых поверхностей (например, Platenclene фирмы Automation Facilities), а зеркала - жидкостью для профилактики оптических поверхностей (Safeclens фирмы AF или аналогичные средства от Xerox, Katun).
Внутреннюю часть рамы принтера можно продуть компрессором. Пластиковые кожуха лучше всего отмываются жидким мылом либо специальными составами типа Foamclene (AF).
Основные виды неисправностей можно разделить на три группы:
1. неисправности электронной схемы
2. неисправности кинематики и механики
3. неисправности картриджа
Неисправности электронной схемы обусловлены в основном старением элементов.
Диагностика неисправности производится в следующей последовательности:
1. Проверяется исправность блока питания - наличие и соответствие питающих напряжений заданным.
2. Проверяется исправность датчиков и наличие сигналов на их выходе
3. Проверяется исправность контроллера (микро ЭВМ):
4. наличие питающих напряжений;
5. прохождение сигнала «Сброс»;
6. наличие тактовых импульсов на входе;
7. наличие и изменение сигналов на ША и ШД.
Для диагностики можно использовать индикацию кодов ошибок на лицевой панели.
Индикация кодов ошибок
Что показывают индикаторы принтера |
Описание ошибки |
|
ROM/RAM Error: ошибка распределения и чтения данных с компьютера. Заменить дополнительно установленную память принтера, заменить форматтер (схема формирования изображения) принтера. |
||
Fuser Error: ошибка термоэлемента принтера. Проверить контакты термоузла и термистора термоузла, заменить термоузел. |
||
Beam Error: общая неисправность принтера. Выключить-включить принтер, проверить подключение шлейфов лазер-сканера, проверить лазер-сканер, заменить DC-контроллер. |
||
Print Engine Error: общая ошибка вывода на печать. Отключить интерфейсный кабель LPT («Центроникс»), снять-поставить форматтер принтера, заменить форматтер, заменить DC-контроллер. |
||
Printer Laser/Scanner Error: ошибка лазер-сканера. Почти всегда - замена лазер-сканера. |
||
Firmware Error: фатальная ошибка форматтера. Замена форматтера |
||
DIMM Error: ошибка дополнительно установленной памяти. Замнить дополнительно установленную память. |
Основные неисправности кинематики и механики
Данные неисправности возникают как по причине нормального износа движущихся частей принтера, так и после профилактического обслуживания из-за небрежности инженера во время обратной сборки.
Размещено на Allbest.ru
Подобные документы
Принцип действия лазерного принтера. Особенности конструкции LaserJet III. Блок-схема лазерного принтера. Обслуживание лазерных принтеров и уход за ним. Диагностика неисправностей и ремонт лазерного принтера. Аппаратные неисправности принтера LaserJet III
курсовая работа [282,9 K], добавлен 26.12.2007Назначение, виды и характеристики принтеров. Принцип работы лазерного принтера. Конструктивные элементы его картриджа. Техническое обслуживание устройства. Поиск и устранение основных неисправностей. Алгоритм их поиска. Выбор метода диагностирования.
курсовая работа [924,6 K], добавлен 28.04.2014Основные характеристики принтера HP Laser Jet 4000: интерфейс, размер, комплектация. Блок-схема системы формирования изображения. Поиск неисправностей лазерного принтера. Расчет полной стоимости профилактического обслуживания и ремонта в фирме "ОАО ISIS".
курсовая работа [2,3 M], добавлен 29.04.2014Понятие и назначение периферийных устройств компьютера, их техническое обслуживание и ремонт. Особенности формирования изображения матричными и струйными принтерами. Строение и принцип работы лазерного принтера, способы проверки качества его печати.
дипломная работа [3,2 M], добавлен 26.11.2010Технические характеристики и принцип работы принтера "Epson Lx 350". Принцип работы устройства по структурной схеме. Выбор и инсталляция операционной системы и драйверов. Диагностика матричного принтера, возможные неисправности и способы их устранения.
курсовая работа [100,4 K], добавлен 07.12.2015История развития принтера - устройства для печати изображений либо текста на бумаге, его виды и принцип работы. Основные параметры струйного и лазерного принтера. Области администрирования, создание учётных записей пользователя, их блокировка и удаление.
дипломная работа [516,0 K], добавлен 03.11.2014Основные компоненты и принцип работы простейшего 3D принтера, построенного на основе картезианского робота. Мониторинг первого российского 3D принтера второго поколения PrintBox3D One. Установка программного обеспечения Repetier-Host и его настройка.
курсовая работа [4,9 M], добавлен 25.08.2015Характеристика устройства и технологии работы картриджей лазерных принтеров, оснащаемых небольшими микросхемами – чипами. Профессиональная регенерация (восстановление и заправка) картриджей. Программное обеспечение и прошивка картриджа лазерного принтера.
курсовая работа [5,2 M], добавлен 20.11.2010Выбор тонера, проблемы, возникающие при заправке картриджей. Разборка, заправка и сборка картриджа лазерного принтера. Устройство чернильного картриджа струйного принтера, свойства применяемых чернил. Заправка картриджей Epson, Hewlett Packard, Canon.
реферат [25,2 K], добавлен 30.04.2010Проблемы обеспечения целостности, сохранности и работоспособности вычислительной техники и информационных массивов. Диагностика и микродиагностика персонального компьютера. Технологическая карта полугодового обслуживания лазерного принтера и МФУ.
курсовая работа [49,3 K], добавлен 20.01.2016