Интерфейс ATA
ATA - параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. Этапы его развития. Расширения и версии стандарта ATA, скорость передачи и свойства. Преимущества и недостатки внутренней и внешней разводки.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.12.2012 |
Размер файла | 817,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОУ ВПО «ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
ВОТКИНСКИЙ ФИЛИАЛ
КАФЕДРА «ОРГАНИЗАЦИЯ ВЫЧИСЛИТЕЛЬРЫХ ПРОЦЕССОВ
И СИСТЕМ УПРАВЛЕНИЯ»
КУРСОВАЯ РАБОТА
ПО ДИСЦИПЛИНЕ «ИНТЕРФЕЙСЫ ПЕРИФЕРИЙНЫХ УСТРОЙСТВ»
тема: «Интерфейс ATA»
Выполнил: студент группы Д 5-78-1
С.В. Шалавин
г. Воткинск
2010 г.
Введение
Рис. 1. Разъемы ATA-контроллера на материнской плате
ATA (англ. Advanced Technology Attachment -- присоединение по передовой технологии) -- параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру.
Предварительное название интерфейса было PC/AT Attachment («Соединение с PC/AT»), так как он предназначался для подсоединения к 16-битной шине ISA, известной тогда как шина AT. В окончательной версии название переделали в «AT Attachment» для избежания проблем с торговыми марками.
Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (англ. Integrated Drive Electronics -- «электроника, встроенная в привод»). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения, как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST-412. Это позволило улучшить характеристики накопителей (за счёт меньшего расстояния до контроллера), упростить управление им (так как контроллер канала IDE абстрагировался от деталей работы привода) и удешевить производство (контроллер привода мог быть рассчитан только на «свой» привод, а не на все возможные; контроллер канала же вообще становился стандартным). Следует отметить, что контроллер канала IDE правильнее называть хост-адаптером, поскольку он перешёл от прямого управления приводом к обмену данными с ним по протоколу.
В стандарте АТА определён интерфейс между контроллером и накопителем, а также передаваемые по нему команды.
Интерфейс имеет 8 регистров, занимающих 8 адресов в пространстве ввода-вывода. Ширина шины данных составляет 16 бит. Количество каналов, присутствующих в системе, может быть больше 2. Главное, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. К каждому каналу можно подключить 2 устройства (master и slave), но в каждый момент времени может работать лишь одно устройство.
Рис. 2. Шлейфы ATA с кабельной выборкой: 40-проводной сверху, 80-проводной снизу
Стандарт EIDE (англ. Enhanced IDE -- «расширенный IDE»), появившийся вслед за IDE, позволял использование приводов ёмкостью, превышающей 528 Мб, вплоть до 8,4 Гб. Хотя эти аббревиатуры возникли как торговые, а не официальные названия стандарта, термины IDE и EIDE часто употребляются вместо термина ATA. После введения в 2003 году стандарта Serial ATA («последовательный ATA»), традиционный ATA стали именовать Parallel ATA, имея в виду способ передачи данных по параллельному 40- или 80-жильному кабелю.
Поначалу этот интерфейс использовался с жёсткими дисками, но затем стандарт был расширен для работы и с другими устройствами, в основном -- использующими сменные носители. К числу таких устройств относятся приводы CD-ROM и DVD-ROM, ленточные накопители, а также дискеты большой ёмкости, такие, как ZIP и магнитооптические диски (LS-120/240). Кроме того, из файла конфигурации ядра FreeBSD можно сделать вывод, что на шину ATAPI подключали даже FDD (дискета). Этот расширенный стандарт получил название Advanced Technology Attachment Packet Interface (ATAPI), в связи с чем полное наименование стандарта выглядит как ATA/ATAPI.
Первоначальные расширения ATA для работы с приводами CD-ROM не обладали полной совместимостью и являлись фирменными. В результате, для подключения CD-ROM было необходимо устанавливать отдельную плату расширения, специфичную для конкретного производителя, например для Panasonic (существовало не менее 5 специфичных вариантов ATA, предназначенных для подключения CD-ROM). Некоторые варианты звуковых карт, например Sound Blaster, оснащались именно такими портами.
Другим важным этапом в развитии ATA стал переход от PIO (англ. Programmed input/output -- программный ввод/вывод) к DMA (англ. Direct memory access -- прямой доступ к памяти). При использовании PIO считыванием данных с диска управлял центральный процессор компьютера, что приводило к повышенной нагрузке на процессор и замедлению работы в целом. По причине этого компьютеры, использовавшие интерфейс ATA, обычно выполняли операции, связанные с диском, медленнее, чем компьютеры, использовавшие SCSI и другие интерфейсы. Введение DMA существенно снизило затраты процессорного времени на операции с диском.
В данной технологии потоком данных управляет сам накопитель, считывая данные в память или из памяти почти без участия процессора, который выдаёт лишь команды на выполнение того или иного действия. При этом жёсткий диск выдаёт сигнал запроса DMARQ на операцию DMA контроллеру. Если операция DMA возможна, контроллер выдаёт сигнал DMACK и жёсткий диск начинает выдавать данные в 1-й регистр (DATA), с которого контроллер считывает данные в память без участия процессора.
Операция DMA возможна, если режим поддерживается одновременно BIOS, контроллером и операционной системой, в противном случае возможен лишь режим PIO.
В дальнейшем развитии стандарта (АТА-3) был введён дополнительный режим UltraDMA 2 (UDMA 33).
Этот режим имеет временные характеристики DMA Mode 2, однако данные передаются и по переднему, и по заднему фронту сигнала DIOR/DIOW. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на чётность CRC, что повышает надёжность передачи информации.
В истории развития ATA был ряд барьеров, связанных с организацией доступа к данным. Большинство из этих барьеров, благодаря современным системам адресации и технике программирования, были преодолены. К их числу относятся ограничения на максимальный размер диска в 504 МиБ, около 8 ГиБ, около 32 ГиБ, и 128 ГиБ. Существовали и другие барьеры, в основном связанные с драйверами устройств, и организацией ввода/вывода в операционных системах, не соответствующих стандартам ATA.
Оригинальная спецификация АТА предусматривала 28-битный режим адресации. Это позволяло адресовать 228 (268 435 456) секторов по 512 байт каждый, что давало максимальную ёмкость в 137 Гб. В стандартных PC BIOS поддерживал до 8,46 Гб, допуская максимум 1024 цилиндра, 256 головок и 63 сектора. Это ограничение на число цилиндров/головок/секторов CHS (Cyllinder-Head-Sector) в сочетании со стандартом IDE привело к ограничению адресуемого пространства в 528 Мб. Для преодоления этого ограничения была введена схема адресации LBA (Logical Block Address), что позволило адресовать до 7,88 ГиБ. Со временем и это ограничение было снято, что позволило адресовать сначала 32 ГиБ, а затем и все 128 ГиБ, используя все 28 разрядов (в АТА-4) для адресации сектора. Запись 28-битного числа организована путём записи его частей в соответствующие регистры накопителя (с 1 по 8 бит в 4-й регистр, 9-16 в 5-й, 17-24 в 6-й и 25-28 в 7-й).
Адресация регистров организована при помощи трёх адресных линий DA0-DA2. Первый регистр с адресом 0 является 16-разрядным и используется для передачи данных между диском и контроллером. Остальные регистры 8-битные и используются для управления.
Новейшие спецификации ATA предполагают 48-битную адресацию, расширяя таким образом возможный предел до 144 петабайт.
Эти ограничения на размер могут проявляться в том, что система думает, что объём диска меньше его реального значения, или вовсе отказывается загружаться и виснет на стадии инициализации жёстких дисков. В некоторых случаях проблему удаётся решить обновлением BIOS. Другим возможным решением является использование специальных программ, таких, как Ontrack DiskManager, загружающих в память свой драйвер до загрузки операционной системы. Недостатком таких решений является то, что используется нестандартная разбивка диска, при которой разделы диска оказываются недоступны, в случае загрузки, например, с обычной DOS-овской загрузочной дискеты. Впрочем, многие современные операционные системы (начиная от Windows NT4 SP3) могут работать с дисками большего размера, даже если BIOS компьютера этот размер корректно не определяет.
Интерфейс ATA
Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате (в более старых компьютерах этот контроллер размещался на отдельной плате расширения), а один или два других подключаются к дискам. В один момент времени шлейф P-ATA передаёт 16 бит данных. Иногда встречаются шлейфы IDE, позволяющие подключение трёх дисков к одному IDE каналу, но в этом случае один из дисков работает в режиме read-only.
Таб. 1. Разводка Parallel ATA
Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 (UDMA4) появилась его 80-проводная версия. Все дополнительные проводники -- это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки. Ёмкостная связь является проблемой при высоких скоростях передачи, поэтому данное нововведение было необходимо для обеспечения нормальной работы установленной спецификацией UDMA4 скорости передачи 66 МБ/с (мегабайт в секунду). Более быстрые режимы UDMA5 и UDMA6 также требуют 80-проводного кабеля.
Хотя число проводников удвоилось, число контактов осталось прежним, как и внешний вид разъёмов. Внутренняя же разводка, конечно, другая. Разъёмы для 80-проводного кабеля должны присоединять большое число проводников заземления к небольшому числу контактов заземления, в то время как в 40-проводном кабеле проводники присоединяются каждый к своему контакту. У 80-проводных кабелей разъёмы обычно имеют различную расцветку (синий, серый и чёрный), в отличие от 40-проводных, где обычно все разъёмы одного цвета (чаще чёрные).
Стандарт ATA всегда устанавливал максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах, или подключение нескольких приводов к одному компьютеру, и почти полностью исключает возможность использования дисков PATA в качестве внешних дисков. Хотя в продаже широко распространены кабели большей длины, следует иметь в виду, что они не соответствуют стандарту. То же самое можно сказать и по поводу «круглых» кабелей, которые также широко распространены. Стандарт ATA описывает только плоские кабели с конкретными характеристиками полного и ёмкостного сопротивлений. Это, конечно, не означает, что другие кабели не будут работать, но, в любом случае, к использованию нестандартных кабелей следует относиться с осторожностью.
Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master), а другое ведомым (англ. slave). Обычно ведущее устройство идёт перед ведомым в списке дисков, перечисляемых BIOS'ом компьютера или операционной системы. В старых BIOS'ах (486 и раньше) диски часто неверно обозначались буквами: «C» для ведущего диска и «D» для ведомого.
Если на шлейфе только один привод, он в большинстве случаев должен быть сконфигурирован как ведущий. Некоторые диски (в частности, производства Western Digital) имеют специальную настройку, именуемую single (то есть «один диск на кабеле»). Впрочем, в большинстве случаев единственный привод на кабеле может работать и как ведомый (такое часто встречается при подключении CD-ROM'а на отдельный канал).
Настройка, именуемая cable select (то есть «выбор, определяемый кабелем», кабельная выборка), была описана как опциональная в спецификации ATA-1 и стала широко распространена начиная с ATA-5, поскольку исключает необходимость переставлять перемычки на дисках при любых переподключениях. Если привод установлен в режим cable select, он автоматически устанавливается как ведущий или ведомый в зависимости от своего местоположения на шлейфе. Для обеспечения возможности определения этого местоположения шлейф должен быть с кабельной выборкой. У такого шлейфа контакт 28 (CSEL) не подключен к одному из разъёмов (серого цвета, обычно средний). Контроллер заземляет этот контакт. Если привод видит, что контакт заземлён (то есть на нём логический 0), он устанавливается как ведущий, в противном случае (высокоимпедансное состояние) -- как ведомый.
Во времена использования 40-проводных кабелей широко распространилась практика осуществлять установку cable select путём простого перерезания проводника 28 между двумя разъёмами, подключавшимися к дискам. При этом ведомый привод оказывался на конце кабеля, а ведущий в середине. Такое размещение в поздних версиях спецификации было даже стандартизировано. К сожалению, когда на кабеле размещается только одно устройство, такое размещение приводит к появлению ненужного куска кабеля на конце, что нежелательно -- как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах.
80-проводные кабели, введённые для UDMA4, лишены указанных недостатков. Теперь ведущее устройство всегда находится в конце шлейфа, так что, если подключено только одно устройство, не получается этого ненужного куска кабеля. Кабельная же выборка у них «заводская» -- сделанная в самом разъёме просто путём исключения данного контакта. Поскольку для 80-проводных шлейфов в любом случае требовались собственные разъёмы, повсеместное внедрение этого не составило больших проблем. Стандарт также требует использования разъёмов разных цветов, для более простой идентификации их как производителем, так и сборщиком. Синий разъём предназначен для подключения к контроллеру, чёрный -- к ведущему устройству, серый -- к ведомому.
Термины «ведущий» и «ведомый» были заимствованы из промышленной электроники (где указанный принцип широко используется при взаимодействии узлов и устройств), но в данном случае являются некорректными, и потому не используются в текущей версии стандарта ATA. Более правильно называть ведущий и ведомый диски соответственно device 0 (устройство 0) и device 1 (устройство 1). Существует распространённый миф, что ведущий диск руководит доступом дисков к каналу. На самом деле управление доступом дисков и очерёдностью выполнения команд осуществляет контроллер (которым, в свою очередь, управляет драйвер операционной системы). То есть фактически оба устройства являются ведомыми по отношению к контроллеру.
интерфейс стандарт накопитель
Версии стандарта ATA, скорость передачи и свойства
В приводимой далее таблице приведены названия версий стандарта ATA и поддерживаемые ими режимы и скорость передачи. Следует отметить, что скорость передачи, указываемая для каждого стандарта (например, 66,7 МБ/с для UDMA4, именуемого обычно «Ultra-DMA 66») указывает максимальную теоретически возможную скорость в кабеле. Это просто два байта, умноженные на фактическую частоту, и предполагает, что каждый цикл используется для передачи пользовательских данных. На практике скорость, естественно, меньше.
Перегрузка на шине, к которой подключён ATA-контроллер, также может ограничивать максимальный уровень передачи. Например, максимальная пропускная способность шины PCI, работающей на частоте 33 МГц и имеющей разрядность 32 бита, составляет 133 МБ/с, и эта скорость делится между всеми подключёнными к шине устройствами.
Более того, по данным на октябрь 2005 года, не существует ATA-дисков, имеющих устойчивую скорость передачи выше 60 МБ/с. Да и эти тесты не дают реальной картины, поскольку спроектированы так, что при их работе практически не встречается задержек на поиск или время ожидания. В большинстве реальных ситуаций эти два фактора являются во многом определяющими; третьим по важности фактором является пропускная способность шины ATA. Следовательно, скорости свыше 66 МБ/с только тогда оказывают реальное влияние на производительность, когда диск все операции ввода/вывода производит со своим внутренним кешем -- ситуация достаточно необычная, особенно в виду того, что данные в этом случае обычно уже кешированы операционной системой
Заключение
В 90-ые годы ATA широко использовался в PC. В настоящее время он вытесняется своим последователем - SATA.
Список используемой литературы
1. Скотт Мюллер. Модернизация и ремонт ПК-- 17-е изд. -- М.: Вильямс, 2007. -- С. 573--623. -- ISBN 0-7897-3404-4
2. http://ru.wikipedia.org/wiki/ATA
Размещено на Allbest.ru
Подобные документы
Универсальная последовательная шина USB - универсальный порт для подключения устройств к персональному компьютеру и организации обмена между ними. Особенности спецификаций USB от версии 1.0 до версии 3.0. Архитектура, правила подключения, совместимость.
курсовая работа [2,6 M], добавлен 23.11.2013Знакомство с технологией диагностики неисправностей и восстановления работоспособности оптических приводов после отказа, рассмотрение особенностей. Характеристика методов типового обслуживания привода CD-ROM. Анализ способов подключения интерфейса SCSI.
курсовая работа [2,3 M], добавлен 12.11.2013Высокие скорость передачи данных и помехоустойчивость, способностью обнаруживать любые возникающие ошибки как основные характеристики полевой шины CAN (сеть контроллеров). Регламентация международными стандартами интерфейса. Описание стандарта, протокол.
курсовая работа [878,3 K], добавлен 01.02.2013Общая характеристика дисковых приводов и оптических носителей информации, история их появления и развития. Особенности их конструкции. Приводы CD и DVD. Интерфейсы, форматы и стандарты, устройство и принцип работы. Форматы BLU-RAY и HD-DVD. Образы дисков.
курсовая работа [990,2 K], добавлен 12.11.2013Исследование показателей емкости винчестера, скорости вращения магнитных дисков, объема кэш-памяти, типов интерфейса подключения (IDE, SCSI, SATA) и разновидностей накопителей с целью выбора качественного жесткого диска для домашнего использования.
контрольная работа [93,1 K], добавлен 18.06.2011Архитектура и функционирование твердотельных накопителей. Устройство SSD-накопителей, характеристика интерфейсов для их подключения, принципы работы и внутренняя структура, основные элементы. Устройство NAND-памяти и использование в ней нанотехнологий.
курсовая работа [2,1 M], добавлен 01.06.2014Жесткий диск как основное устройство для хранения информации. Основные характеристики и общий вид внешнего и внутреннего диска. Интерфейс, емкость, физический размер, скорость вращения шпинделя и передачи данных. Установка и обслуживание жестких дисков.
контрольная работа [885,7 K], добавлен 21.09.2013Физические основы устройства DVD-дисков и приводов, скорость передачи данных и время доступа. Современные форм-факторы DVD-приводов и основные принципы записи на диски. Стандарты компрессии звука и видео. Совместимость и защита интеллектуального права.
курсовая работа [57,2 K], добавлен 04.11.2010История развития Windows: покупка лицензии на ОВОS, выпуск версии МS-DOS 1.0, графической оболочки Microsoft Windows 1.0 и поддержка расширенной памяти. Графический пользовательский интерфейс (GUI) и комбинация DOS-Windows. Windows NT и поздние версии.
реферат [25,1 K], добавлен 13.01.2010Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.
презентация [1,2 M], добавлен 11.12.2013