Перспективы развития компьютерных сетей
История развития компьютерных сетей, направления повышения эффективности их использования. Достоинства и недостатки первых сетей, цели их создания. Классификация и особенности главных видов сетей. Топология и перспективы развития компьютерных сетей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 23.06.2012 |
Размер файла | 70,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основные данные о работе
Версия шаблона 1.1
Филиал Нижегородский
Вид работы Электронная письменная предзащита
Название дисциплины Информатика и ВТ
Тема
Перспективы развития компьютерных сетей
Работу выполнила
Кодочигова Галина Юрьевна
№ контракта 09200090601015
Содержание
Введение
1. История развития компьютерных сетей
2. Классификация и виды компьютерных сетей
3. Топология и перспективы развития компьютерных сетей
Заключение
Глоссарий
Список использованных источников
Введение
На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet, FidoNet, FREEnet и т.д. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E-Mail писем, электронных конференций и т.д.) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением.
Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право игнорировать и не применять их на практике.
Зачастую возникает необходимость в разработке принципиального решения вопроса по организации ИВС (информационно-вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса, отвечающей современным научно-техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений.
С распространением электронно-вычислительных машин нетрудно предсказать рост в потребности передачи данных. На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 процентов из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений, не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм и производителей, работающих под разным программным обеспечением.
Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право не принимать это к разработке и не применять их на практике. Поэтому необходимо разработать принципиальное решение вопроса по организации информационно-вычислительной сети на базе уже существующего компьютерного парка и программного комплекса, отвечающего современным научно-техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений. Некоторые приложения, которые нуждаются в системах связи, могут помочь понять основные проблемы, которые связаны с сетями связи.
Тема внедрения технических и автоматизирующих средств в человеческую жизнь стала особенно актуальна в наши дни. Распространение сетей Интернета дает огромные возможности. Интернет, или всемирная сеть, это колоссальный источник информации, возможность общаться, обмениваться опытом, совместно решать общие проблемы. Но главное в нем - информация.
Информация - это богатство. Компьютерная сеть и Интернет носит актуальный характер в современных условиях. На данном этапе информатизации общество "Компьютерная сеть и Интернет" рассматривается как глобальный вопрос.
Цель работы: составить хронологический процесс развития компьютерных сетей.
Задачи работы: - перечислить виды сетей
- рассмотреть процесс развития каждой из сетей в отдельности.
Предмет исследования: эволюция сетей, их виды, классификация, топология, домены, протоколы.
1.История развития компьютерных сетей
Еще в 60-е годы компьютеры использовались в режиме пакетной обработки данных: данные и программа их обработки вводились в ЭВМ с перфокарт, последовательно считывались, заносились в память, обрабатывались и результат выдавался в виде распечатки на бумажном носителе. Задачи разных программистов решались последовательно: после решения предыдущей обрабатывалась следующая за ней. Позднее с целью экономии времени на отладку программы и работу с ней стал использоваться интерактивный режим: с терминальной консоли с дисплеем программист обращался непосредственно в память машины для оперативного исправления ошибок в программе, изменения данных, вывода на экран результатов решения и т. д. Следующий шаг в направлении повышения эффективности использования ЭВМ - переход к режиму разделения времени - последовательное решение малых фрагментов задач многих программистов.
Сегодня порядка 50 миллионов персональных компьютеров в мире (из общего их числа несколько более 150 млн.) практически взаимодействуют друг с другом через компьютерные сети общего пользования. Всего крупных территориальных сетей в мире порядка 300, но гораздо более половины пользователей охватывает одна Internet.
А началось все еще во времена холодной войны, когда первая онлайновая система, ставшая прототипом более поздних компьютерных сетей, целенаправленно разрабатывалась в течение более десятилетия в интересах ПВО США как защита от налета бомбардировщиков со стороны Северного полюса. Именно северная граница США была защищена чрезвычайно слабо, а на восточном и западном побережьях было всего по нескольку РЛС.
Вскоре была создана коммерческая версия центральной ЭВМ - IBM 305 на четыре терминала, удаленных почти на километр. Первым широко известным примером гражданского применения онлайновой сетевой технологии была созданная в начале 60-х годов компаниями «Америкэн Эйрлайнз» и ИБМ система резервирования авиабилетов с 1200 телетайпными терминалами в агентствах. После этого в США начался бурный процесс создания территориальных компьютерных сетей.
В 1969 году в США была создана компьютерная сеть ARPAnet, объединяющая компьютерные центры министерства обороны и ряда академических организаций. Эта сеть была предназначена для узкой цели: главным образом для изучения того, как поддерживать связь в случае ядерного нападения и для помощи исследователям в обмене информацией. По мере роста этой сети создавались и развивались многие другие сети. Еще до наступления эры персональных компьютеров создатели ARPAnet приступили к разработке программы Internetting Project ("Проект объединения сетей"). Успех этого проекта привел к следующим результатам. Во-первых, была создана крупнейшая в США сеть internet (со строчной буквы i). Во-вторых, были опробованы различные варианты взаимодействия этой сети с рядом других сетей США. Это создало предпосылки для успешной интеграции многих сетей в единую мировую сеть. Такую "сеть сетей" теперь всюду называют Internet (в отечественных публикациях широко применяется и русскоязычное написание - Интернет).
В настоящее время на десятках миллионов компьютеров, подключенных к Интернету, хранится громадный объем информации (сотни миллионов файлов, документов и т. д.) и сотни миллионов людей пользуются информационными услугами глобальной сети.
Глобальное сообщество мировых сетей Internet базируется на идее «мозгового треста» - корпорации RAND, г. Менло-Парк, который еще в 1959 году предложил стратегическую идею надежного компьютерного обмена данными на случай разрушения части сети во время ядерной войны: сеть должна состоять из отдельных сегментов и не быть централизованной, а любое сообщение должно разделяться на фрагменты (пакеты) и передаваться в виде «датаграмм» по разным ветвям сети, собираясь в единое целое у абонента-получателя. Для этого каждый пакет снабжается адресом, и в случае, если он не дошел до получателя или был искажен в процессе передачи, то передается повторно. Пять лет понадобилось директору RAND Барану на пробивание этой идеи в AT&T и ВВС США. В 1969 г. Министерство обороны реализовало идею, профинансировав проект объединения оборонных и университетских компьютеров в сеть ARPANET, где вначале было всего четыре узла, а через три года уже 37. Оказалось, что основную часть трафика (потока данных) составляют не результаты вычислений, а почта и новости. В 1975 году период опытной эксплуатации сети был завершен, и сеть была передана под руководство Data Communication Division Министерства обороны США.
Модернизация протоколов разбиения на пакеты и управления адресацией в сети продолжалась, и к началу 80-х годов появились широко известные сегодня Trasmission Control Protocol и Internet Protocol - семейство TCP/IP. Начало глобальной сети США Internet датируется 1986 г., когда NSF (Национальный научный фонд) совместно с NASA создали научную компьютерную сеть на базе TCP/IP и объединили ее с ARPANET. Через три года организационно оформилось администрирование и координация развития датаграммной сети Internet в Европе.
Еще в середине 70-х, видимо, борясь с блокировками пакетов и зацикливаниями в датаграммной сети, в ARPANET экспериментировали с передачей данных по «виртуальным соединениям» - последовательной передачей пакетов по неизменному на время сессии маршруту. Это привело к реализации в конце 70-х в США, Канаде и Европе коммерческих сетей общего пользования с гарантированной высоконадежной передачей информации и регистрацией коммерческой статистики трафика. Позднее программное обеспечение этих сетей стало основой международного стандарта Х.25. Первой из них была TELENET, созданная в 1975 г. той же BBN, которая участвовала в разработке ARPANET.
По замыслу, Internet должна была стать логическим развитием ARPANET: от объединения различных компьютеров - к объединению различных сетей без нарушения их собственной внутренней организации.
Первая версия протокола управления передачей (транспортом пакетов) была документирована в конце 1974 года. В 1978 г. Transmission Control Protocol был разделен на два уровня: более сложный, гарантирующий надежную упорядоченную доставку пакетов в ARPANET (собственно ТСР), и межсетевой IP, обеспечивающий адресацию. Но только после экспериментального подключения в 1989 г. почты MCI и последующей организации доступа к онлайновому сервису Internet стала общедоступным.
Отечественные сети оборонного назначения создавались, видимо, одновременно с американскими. Но в силу разных причин до настоящего времени достижения «оборонки» в этой области практически не подпали под конверсию. Возможно потому, что у нас не было своего Роберта Кана - лидера оборонных проектов пакетных сетей, долго и упорно пробивавшего мечту о гражданской ARPANET. Но наши сети общественного пользования появились с почти 10-летним отставанием от Запада и базировались не на отечественных оборонных технологиях, а создавались совершенно независимо. Это 10-летнее отставание сохранялось до конца 80-х - начала 90-х годов: ведь зарубежная сетевая технология не стояла на месте, а передача ее в нашу страну (особенно - программного обеспечения) была жестко ограничена КОКОМом.
В нашей стране инициатива в реализации сетевого обмена информацией через общественные сети принадлежала ученым, которые получили финансовую поддержку ГКНТ (в определенном смысле это аналог NSF) и Академии наук СССР.
В 1979-1980 годах начались практические эксперименты по теледоступу отечественных ученых к зарубежным банкам данных - в первую очередь, к Lokheed Dialog (США) и Data Star (Швейцария). Терминальный узел, созданный в академическом Институте системного анализа РАН (в то время - ВНИИ системных исследований ГКНТ и АН СССР) использовали специалисты разных отраслей для связи с европейскими и североамериканскими сетями и банками данных через венский Международный институт прикладного системного анализа.
Этот узел и создавший его коллектив стал основой Национального центра автоматизированного обмена информацией (НЦАО) и образованного для реализации этих функций Института автоматизированных систем - ИАС (тогда - ВНИИПАС).
В начале 80-х годов этот институт был определен головным в стране по созданию компьютерной сети Академии наук СССР и академий наук союзных республик - АКАДЕМСЕТИ. Сеть базировалась на сетевом программном обеспечении типа Х.25, разработанном в латвийском академическом Институте электроники и вычислительной техники для реализации на малых универсальных ЭВМ типа СМ-4 (аналог - PDP 11/40). Просуществовавшая почти десятилетие, сеть едва ли способствовала действительному росту научных коммуникаций в академической среде: в стране не хватало вычислительной техники, особенно на окраинах страны, и после экспериментов по ежегодной демонстрации работоспособности сети в целом (по всем полутора десяткам узлов одновременно) многие институты отключали абонентские компьютеры от сети для использования их при плановых научных исследованиях, расчетах и моделировании.
Некоторую организационную дисциплину удалось навести, когда руководство Академии стало принимать заявки на загранкомандирования только в компьютерной форме - через АКАДЕМСЕТЬ.
Опыт создания АКАДЕМСЕТИ показал предпочтительность реализации сетевого программного обеспечения в виде специализированных аппаратно-программных средств и необходимости инициализации трафика на базе стремления пользователей к получению необходимой им информации. Но даже подбор абонентов на основе взаимной заинтересованности не вполне спасал. Операторы больших информационных хостов категорически возражали против введения каких-либо дополнительных коммуникационных пакетов в память их компьютеров, и подключение хостов к ИАСНЕТ осуществлялось через специализированные препроцессоры.
Со сходной проблемой, как сегодня известно, столкнулись еще в 1967 году энтузиасты - создатели ARPANET: предложение связать через сеть компьютеры университетов Западного и Восточного побережий были встречены безо всякого восторга, и для создания коммуникационной сети пришлось использовать малые интерфейсные процессоры обработки сообщений, не затрагивающие операционную систему хостовых машин.
В 80-е годы ИАС разработал центры коммутации Х.25 и терминальные концентраторы, позднее наладил их серийное производство, а также провел широкую организационно-разъяснительную работу (точнее - рекламу, в том числе - в форме обучения и тренинга ученых разных областей) среди потенциальных пользователей и крупнейших отечественных центров НТИ. В результате к 1986 г. была создана первая отечественная компьютерная сеть общего пользования ИАСНЕТ, охватившая не только Россию, но и бывшие союзные республики, а в следующем году оператор этой сети ИАС/НЦАО получил впервые в СССР от МСЭ (ITU) статус Признанной частной эксплуатирующей организации (RPOA), реализующей межсетевой протокол Х.25.
Почти до конца 80-х более 80% трафика в первой отечественной сети общего пользования ИАСНЕТ составляла научно-техническая информация - как зарубежная (через НЦАО, ставший первым международным сетевым шлюзом в стране), так и отечественная.
В те же 80-е в академическом Институте атомной энергии группа энтузиастов начала работу по созданию компьютерной сети для общения ученых-физиков. В отличие от ИАСНЕТ-пакетной сети Х.25 - они взяли за основу протоколы телеобработки в UNIX-компьютерах -UUCP. В результате этого начинания в 1991 г. в коммерческую эксплуатацию была введена сеть RELCOM - подмножество европейской коммерческой сети EUnet, которая является составной частью глобальной сети сетей - INTERNET. Собственно, сетью с полным набором IP-услуг RELCOM стал в 1994 году, до этого предоставляя только почтовые услуги владельцам компьютеров с операционной системой UNIX.
В основе архитектуры ВОС (OSI), реализация которой известна сегодня в виде сотен коммерческих сетей пакетной коммутации на базе сетевого протокола Х.25, лежит более универсальная концепция системной открытости (в смысле возможности включения новых аппаратно-программных сетевых подсистем). Однако к моменту ее появления в виде стандартов TCP/IP был уже распространен достаточно широко. Бесплатное распространение программного обеспечения через сеть дополнительно усилило рост популярности Internet, тем более что и плата за услуги сегодня существенно ниже, чем в сетях Х.25. Наконец, технология WWW дает Internet дополнительные преимущества в состязании с сетями Х.25.
Естественным образом ИАСНЕТ и АКАДЕМСЕТЬ включились в государственную программу создания единой Государственной автоматизированной системы НТИ (ГАСНТИ), предназначенной для обеспечения онлайнового доступа пользователей к хостам центров - генераторов научной информации.
Как уже упоминалось, с конца 70-х - начала 80-х годов прорабатывались возможности организации двустороннего трансграничного онлайнового обмена научной информацией из Москвы с восточноевропейскими столицами, в первую очередь, с Прагой и Софией, менее успешно - с Будапештом. По инициативе снизу затевался трехсторонний союз НЦАО: Москва-Прага-София.
Как нельзя кстати в середине 80-х была объявлена «Комплексная программа научно-технического прогресса стран - членов СЭВ» (КП НТП), охватывавшая 90 конкретных научно-технических проблем - от ядерной энергетики до систем управления воздушным движением.
ИАС стал головной организацией по созданию компьютерной сети соцстран, получал от государства ежегодно выделявшиеся средства на финансирование развития не только своего центрального коммутационного узла этой звездообразной сети девяти стран, но и создание и функционирование узлов у братьев по лагерю.
СЭВовская сеть заработала. Основными информационными хостами, подключенными к ней, стали московские ВИНИТИ, Государственная публичная научно-техническая библиотека, а также центр по социальным и политическим наукам - Институт научной информации по общественным наукам (ИНИОН). Важное место в этой системе занимал московский СЭВовский Международный центр научно-технической информации.
До последнего момента существования СЭВовской сети бурно набирали темп только Куба и Северная Корея - последние оплоты социализма.
В рамках программы КП НТП совместными усилиями участников были реализованы: система электронной почты, автоматизированная система обмена файлами, система компьютерных телеконференций, интеллектуальные интерфейсы. Были начаты работы по созданию и внедрению средств сопряжения с национальными сетями передачи данных, по автоматизированной системе-посреднику (intermediary system), созданы и отработаны системы сбора статистики (прообраз реализованных позднее рекомендаций Х.121), сделаны первые шаги в системах разграничения доступа и защиты информации. Уже во второй половине 80-х проявился казавшийся тогда неожиданным феномен: системы создавались для онлайнового доступа к удаленным банкам данных НТИ, а в общем объеме информационного трафика лавинообразно росла доля электронной почты (Е-mail) и передачи файлов (file transfer).
В самом начале создания ЦСАО геофизики из мировых центров данных Москвы и Колорадо обменивались файлами геофизических данных, в результате чего был подготовлен совместный справочник восьми мировых центров данных по наукам о Земле. В начале 80-х ЦСАО использовалась для обмена данными космических наблюдений между Институтом физики в Праге и Институтом космических исследований в Москве; для этого был разработан собственный протокол передачи файлов. В середине 80-х (в начале «перестройки») через ЦСАО был организован обмен данными наблюдения за ядерными испытаниями в рамках советско-американского проекта «Невада-Семипалатинск».
Позднее, в 1991 г., после землетрясения в Армении, канал Москва-Ереван сети ИАСНЕТ использовался советской госкомиссией и американскими группами гуманитарной помощи - другие каналы связи с районом бедствия были перегружены либо выведены из строя.
В самом начале 90-х годов в нашей стране обозначился взрывообразный рост количества сетей общего пользования, создававшихся в основном как частные сети совместных предприятий с участием крупных иностранных телекоммуникационных операторов. Одновременно расширялся обмен информацией с зарубежными странами: если в 80-е годы считалось, что по трансграничным каналам передачи данных между Востоком и Западом перекачивается информация на Восток, а оттуда ничего не дают взамен, то уже за апрель 1992 года через сеть ИАСНЕТ прошло около 17 тысяч запросов на информацию из России, и сеансы передачи информации на Запад через узел RADAUS и сети DATAPAK, TRT длились более тысячи часов. Это 10-15 процентов общей загрузки сети в тот же период, или 1/5 часть от внутрисетевого внутрироссийского трафика.
Пытаясь завладеть сферами влияния на российском рынке, зарубежные сети тем не менее активно сотрудничали между собой. Охотно создавали межсетевые шлюзы. Это выгодно обоим партнерам - автоматически возрастает количество пользователей, которым удобно через одну сеть работать с несколькими. Большинство же новых российских сетей предпочитали объединяться только с зарубежными.
Принято различать два типа телекоммуникационных операторов. К первому отнесем распорядителей телефонных, телеграфных и других «первичных» каналов. Ко второму - тех, кто оплачивает арендуемые у первых каналы. Последние предоставляют пользователям платить за время, когда телефонная или телеграфная линия занята или организует передачу данных с помощью устанавливаемых у себя (на биржах, в библиотеках, у частных лиц) модемов, пакетных адаптеров данных, центров коммутации. Именно ко второму типу операторов относились новые сети, да и пионер сетей ИАСНЕТ - тоже. Есть одно исключение - сеть РОСПАК, охватившая в начале 1992 года более 50 центров по России. Свои коммутационные узлы она организовала на базе штатных предприятий связи и использовала для создания международных магистралей передачи данных первичные каналы - собственность своего соучредителя - АО ИНТЕРТЕЛЕКОМ (ныне - РОСТЕЛЕКОМ), бывшие ранее госсобственностью, которой распоряжалось Минсвязи СССР. В каждом узле сети обеспечивалась возможность подключения от 8 до 40 локальных линий.
К 1992 году в Международном союзе электросвязи было зарегистрировано шесть российских сетей, которые получили техническую и юридическую возможность связываться с мировыми открытыми сетями через шлюзы Х.75. Всего к этому времени в стране функционировало порядка 30 территориальных компьютерных сетей.
Реализация в середине 90-х годов в глобальной сети Internet информационных WWW-серверов, система ссылок в которых основана на гипертекстовой технологии, совместно с использованием удачной поисковой системы Mosaic привели к упорядочиванию информационных массивов в сети Internet, существенному расширению возможности поиска нужной пользователю информации. И без того интенсивный рост числа пользователей этой сети перевалил за сотню тысяч в месяц. Общее количество пользователей Internet в мире исчислялось уже десятками миллионов, т. е. превысило общее число пользователей всех глобальных сетей Х.25.
Указанные обстоятельства, а также реализация к этому времени отечественной сетью Relcom онлайнового стека протоколов TCP/IP и существенно меньшая стоимость использования услуг сети Internet при возможности бесплатного получения программного обеспечения непосредственно через сеть вызвали чрезвычайно быстрый рост интереса отечественных пользователей к этой сети. Отечественные сети Х.25 были вынуждены начать предоставление IP-услуг наряду со своим традиционным сервисом. Те сетевые операторы, которые задержались с таким расширением номенклатуры услуг, начали терять пользователей.
Бурному развитию отечественных территориальных (глобальных) компьютерных сетей в первой половине 90-х годов в значительной мере способствовало определенное насыщение страны персональными компьютерами. Анализ объемов продаж ПЭВМ в стране в это время позволяет предположить, что общее число компьютеров в России достигло величины порядка 10 млн. штук. Биржевая и предпринимательская активность начала 90-х годов способствовала формированию социального заказа на развитие сетей. Чрезвычайно активным стал рынок модемного оборудования.
Был положен конец 10-15-летнему отставанию страны в области внедрения сетевых технологий.
Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN. Достоинством сетей с коммутацией каналов является их распространенность, что характерно особенно для аналоговых телефонных сетей. В последнее время сети ISDN во многих странах также стали также доступны корпоративному пользователю, а в России это утверждение относится пока только к крупным городам.
Известным недостатком аналоговых телефонных сетей является низкое качество составного канала, которое объясняется использованием телефонных коммутаторов старевших моделей, работающих по принципу частотного уплотнения каналов (FDM-технологии).
На такие коммутаторы сильно воздействуют внешние помехи (например, грозовые разряды или работающие электродвигатели), которые трудно отличить от полезного сигнала. Правда, в аналоговых телефонных сетях все чаще используются цифровые АТС, которые между собой передают голос в цифровой форме. Аналоговым в таких сетях остается только абонентское окончание. Чем больше цифровых АТС в телефонной сети, тем выше качество канала, однако до полного вытеснения АТС, работающих по принципу FDM-коммутации, в нашей стране еще далеко. Кроме качества каналов, аналоговые телефонные сети также обладают таким недостатком, как большое время установления соединения, особенно при импульсном способе набора номера, характерного для нашей страны.
Телефонные сети, полностью построенные на цифровых коммутаторах, и сети ISDN свободны от многих недостатков традиционных аналоговых телефонных сетей. Они предоставляют пользователям высококачественные линии связи, а время установления соединения в сетях ISDN существенно сокращено.
Однако даже при качественных каналах связи, которые могут обеспечить сети с коммутацией каналов, для построения корпоративных глобальных связей эти сети могут оказаться экономически неэффективными. Так как в таких сетях пользователи платят не за объем переданного графика, а за время соединения, то при графике с большими пульсациями и, соответственно, большими паузами между пакетами оплата идет во многом не за передачу, а за ее отсутствие. Это прямое следствие плохой приспособленности метода коммутации каналов для соединения компьютеров.
Тем не менее, при подключении массовых абонентов к корпоративной сети, например сотрудников предприятия, работающих дома, телефонная сеть оказывается единственным подходящим видом глобальной службы из соображений доступности и стоимости (при небольшом времени связи удаленного сотрудника с корпоративной сетью).
В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире, помимо сетей Х.25 он включает такие технологии, как Frame relay, SMDS и АТМ. Кроме этих технологий, разработанных специально для глобальных компьютерных сетей, можно воспользоваться услугами территориальных сетей ТСР/IР, которые доступны сегодня как в виде недорогой и очень распространенной сети Internet качество транспортных услуг которой пока практически не регламентируется и оставляет желать лучшего, так и в виде коммерческих глобальных сетей ТСР/1Р, изолированных от Internet и предоставляемых в аренду телекоммуникационными компаниями.
Высокая стоимость протяженных каналов передачи данных и сложность простого повышения скорости передачи данных за счет прокладки дополнительных волоконно-оптических жил обуславливает чрезвычайно экономное отношение к пропускной способности канала в глобальных сетях. Для нормальной работы приложений в таких условиях требуется применение методов обеспечения качества обслуживания (Quality of Service, QoS). Поэтому в большинстве технологий, специально разработанных для глобальных сетей передачи данных - Frame Relay, ATM, - механизмы QoS являются встроенными. Основной движущей силой развития сети являются приложения. В сети появляются новые высокоскоростные технологии. Перенос в компьютерные сети новых видов трафика, например IP-телефонии, аудио- и видеовещиния, привел к появлению новых требований, связанных с обеспечением низкого уровня задержек пакетов, поддержкой групповой доставки пакетов и т.д.
Интересна история появления первой распределенной сети, впоследствии превратившейся в сеть Internet. В разгар "холодной войны", в конце 60-х гг. по заказу министерства обороны США началась разработка сети, которая должна была связать между собой компьютеры военного ведомства, и в первую очередь компьютеры исследовательских центров, для ускорения научных исследований в интересах обороны. В январе 1969 г. была запущена система, связавшая между собой четыре компьютера в разных концах США (испытания длились 10 мин.). А через год новая информационная сеть, названная APRANet, уже приступила к работе. С каждым годом APRANet росла и развивалась. В сеть включались все новые и новые участники: право доступа в сеть начали требовать сначала все крупные лаборатории, потом - более мелкие, затем -учебные заведения... В 1973 году впервые через сеть оказались соединены компьютеры разных стран: сеть стала международной.
В итоге, когда в сеть оказались соединены тысячи компьютеров, стало ясно: необходимо полностью переработать механизм доступа в APRANet. Такой механизм, названный "протоколом TCP/IP" (Transmission Control Protocol/Internet Protocol), был введен в 1983 году.
Рождение протокола ТСР/IР, позволяющего пользователям с легкостью подключаться к сети при помощи обыкновенной телефонной линии, совпало с другим событием - разделением APRANet. Военные выделили часть компьютеров в новую сеть, получившую название MILNet, а остальное пространство Сети оставили на усмотрение жаждущей коммуникаций общественности. Так родился Internet.
14 апреля 1998 года история Internet вышла на второй виток: в США состоялся торжественный "запуск" новой сети, получившей название "Internet -2". Создателями новой сети стали крупнейшие учебные заведения, научные и исследовательские учреждения, крупные корпорации США.
Скорость передачи информации в Internet-2 просто потрясает воображение, - она превышает более чем в 1000 раз возможности самых быстрых каналов сегодняшней сети. Понятно, что с приходом Internet-2 такие понятия, как "компьютерное телевидение", передача "живого видео" в реальном времени и даже "Internet-кинематограф" переходит из области фантастики в разряд бытовых, привычных явлений.
2. Классификация и виды компьютерных сетей
Все многообразие компьютерных сетей можно классифицировать по различным признакам:
1) способ организации сети;
2) территориальная распространенность;
3) ведомственная принадлежность;
4) скорость передачи информации;
5) тип среды передачи;
6) топология;
7) организация взаимодействия компьютеров.
По способу организации сети подразделяются на реальные и искусственные.
Искусственные компьютерные сети (псевдосети) позволяют связывать компьютеры вместе через последовательные или параллельные порты и не нуждаются в дополнительных устройствах. Иногда связь в такой сети называют связью по нульмодему (не используется модем). Само соединение называют нуль-модемным. Искусственные сети используются, когда необходимо перекачать информацию с одного компьютера на другой. MS-DOS и Windows снабжены специальными программами для реализации нуль-модемного соединения. Основным недостатком этих компьютерных сетей является низкая скорость передачи данных и возможность соединения только двух компьютеров.
Реальные компьютерные сети позволяют связывать компьютеры с помощью специальных устройств коммутации и физической среда передачи данных. Основным недостаток реальных сетей является необходимость в дополнительных устройствах.
По территориальной распространенности компьютерные сети подразделяются на локальные, глобальные, и региональные.
Локальные компьютерные сети - это сети, перекрывающие территорию не более 10 кв.м. Они являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.
Региональные компьютерные сети - это сети, расположенные на территории города или области
Глобальные компьютерные сети (приложение А)- это сети, расположенные на территории государства или группы государств. Например, всемирная сеть Internet. Они являются открытыми и ориентированы на обслуживание любых пользователей.
Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.
По ведомственной принадлежности различают ведомственные и государственные сети.
Ведомственные компьютерные сети принадлежат одной организации и располагаются на ее территории.
Государственные компьютерные сети - сети, используемые в государственных структурах.
По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.
Низкоскоростные компьютерные сети - это сети, имеющие скорость передачи информации до 10 Мбит/с.
Среднескоростные компьютерные сети - это сети, имеющие скорость передачи информации до 100 Мбит/с.
Высокоскоростные компьютерные сети - это сети, имеющие скорость передачи информации свыше 100 Мбит/с.
По типу среды передачи компьютерные сети подразделяются на проводные-коаксиальные, на витой паре, оптоволоконные, беспроводные (с передачей информации по радиоканалам, в инфракрасном диапазоне).
С точки зрения организации взаимодействия компьютеров, сети делят на одноранговые и иерархические.
Все компьютеры одноранговой сети равноправны. Любой пользователь се-ти может получить доступ к данным, хранящимся на любом компьютере.
Одноранговые сети могут быть организованы с помощью таких операционных систем, как Windows'3.11, Novell Netware Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем и некоторых других.
Достоинства одноранговых сетей:
1. наиболее просты в установке и эксплуатации.
2. операционные системы DOS и Windows обладают всеми необходимыми функциями, позволяющими строить одноранговую сеть.
Недостаток: в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров.
В иерархической сети при установке сети заранее выделяются один или несколько компьютеров, управляющих обменом данных по сети и распределением ресурсов. Такой компьютер называют сервером. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией.
Сервер в иерархических сетях - это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более).
Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных.
К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:
1. необходимость дополнительной ОС для сервера.
2. более высокая сложность установки и модернизации сети.
3. необходимость выделения отдельного компьютера в качестве сервера
Различают две технологии использования сервера: технологию файл-сервера и архитектуру клиент-сервер (приложение Б).
В первой модели используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.
В системах с архитектурой клиент-сервер обмен данными осуществляется между приложением-клиентом и приложением-сервером. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль над доступом к ресурсам и данным. Рабочая станция получает только результаты запроса. Разработчики приложений по обработке информации обычно используют эту технологию.
Наконец появилась сетецентрическая концепция, в соответствии с которой пользователь имеет лишь дешевое оборудование для обращения к удаленным компьютерам, а сеть обслуживает заказы на выполнение вычислений и получения информации. То есть пользователю не нужно приобретать программное обеспечение для решения прикладных задач, ему нужно лишь платить за выполненные заказы. Подобные компьютеры называют тонкими клиентами или сетевыми компьютерами.
В зависимости от того, одинаковые или неодинаковые ЭВМ применяют в сети, различают сети однотипных ЭВМ, называемые однородными, и разнотипных ЭВМ - неоднородные (гетерогенные). В крупных автоматизированных системах, как правило, сети оказываются неоднородными.
В зависимости от прав собственности на сети последние могут быть сетями общего пользования (public) или частными (private). Среди сетей общего пользования выделяют телефонные сети ТфОП (PSTN - Public Switched Telephone Network) и сети передачи данных (PSDN- Public Switched Data Network).
Сети также различают в зависимости от используемых в них протоколов и по способам коммутации.
Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многоуровневые иерархии, которые представляют мощные средства для обработки огромных массивов данных и доступ к неограниченным информационным ресурсам.
Многотерминальные системы -- прообраз сети
Терминалы, выйдя за пределы вычислительного центра, рассредоточились по всему предприятию. Многотерминальный режим использовался не только в системах разделения времени, но и в системах пакетной обработки. При этом не только оператор, но и все пользователи получали возможность формировать свои задания и управлять их выполнением со своего терминала. Такие операционные системы получили название систем удаленного ввода заданий.
Терминальные комплексы могли располагаться на большом расстоянии от процессорных стоек, соединяясь с ними с помощью различных глобальных связей -- модемных соединений телефонных сетей или выделенных каналов. Для поддержки удаленной работы терминалов в операционных системах появились специальные программные модули, реализующие различные (в то время, как правило, нестандартные) протоколы связи. Такие вычислительные системы с удаленными терминалами сохраняя централизованный характер обработки данных, в какой-то степени являлись прообразом современных компьютерных сетей, а соответствующее системное программное обеспечение -- прообразом сетевых операционных систем.
Многотерминальные централизованные системы уже имели все внешние признаки локальных вычислительных сетей, однако по существу ими не являлись, так как сохраняли сущность централизованной обработки данных автономно работающего компьютера.
Особую роль играл так называемый мэйнфрейм (от англ. mainframe) -- высокопроизводительный компьютер со значительным объемом оперативной и внешней памяти, нередко многопроцессорный, выполняющий функции главного компьютера вычислительного центра или сервера в развитых локальных вычислительных сетях с большим числом периферийных компьютеров и терминалов (например, локальные сети больших организаций, фирм, учебных заведений; международные платежные системы). Обычно относится к классу больших или миникомпьютеров. Первоначально (в 1950-х) мейнфреймом («главной стойкой») называлась металлическая стойка с центральным процессором. Сегодня термин часто используется как синоним большого компьютера.
До начала 1980-х, когда наступила эра персональных компьютеров, мейнфреймы занимали господствующее положение на компьютерном рынке. Сегодня они используются, главным образом, в корпоративных вычислительных комплексах, на оборонных предприятиях, в научно-исследовательских институтах, в финансовой и промышленной сферах.
Крупным недостатком мейнфреймов в восьмидесятые годы стала их несовместимость с идеологией открытых систем и распределенной обработки данных, которые заложены в основу архитектуры персональных компьютеров. Однако в самом начале 90-х годов IBM, совершив эволюционный скачок, начала выпускать мейнфреймы с новой концептуальной архитектурой ESA/390 (Enterprise System Architecture -- архитектура систем предприятия). ESA/390 предлагает широкий спектр функциональных возможностей для использования мейнфрейма в качестве центра интеграции неоднородного вычислительного комплекса, причем в рамках такого комплекса возможна совместная работа со всеми альтернативными системами.
Лидирующие позиции на рынке мейнфреймов всегда занимала фирма IBM. Мейнфреймы выпускают также компании Unisys и Amdahl. В середине 90-х годов IBM добилась крупных коммерческих успехов на рынке мейнфреймов. Несмотря на высокую стоимость новых машин IBM ES/9000 (в среднем около 1 млн долларов), их нельзя было купить без очереди, а прибыль от их продаж ежегодно составляла 3-4 млрд. долларов.
Рядовой пользователь работу за терминалом мэйнфрейма воспринимал примерно так же, как сейчас воспринимает работу за подключенным к сети персональным компьютером. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него создавалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент и почти сразу же получить результат. (Некоторые далекие от вычислительной техники пользователи даже были уверены, что все вычисления выполняются внутри их дисплея.)
Глобальные сети
Разработка средств и методов передачи информации на большие расстояния сделала возможным появление глобальных сетей.
Глобальная сеть -- это объединение компьютеров, расположенных на большом расстоянии, для общего использования мировых информационных ресурсов.
Теоретические работы по созданию концепций сетевого взаимодействия велись почти с момента появления вычислительных машин, значимые практические результаты по объединению компьютеров в сети были получены лишь в конце 60-х, когда с помощью глобальных связей и техники коммутации пакетов удалось реализовать взаимодействие машин класса мэйнфреймов и суперкомпьютеров. Эти дорогостоящие компьютеры хранили уникальные данные и программы, обмен которыми позволил повысить эффективность их использования.
Но еще до реализации связей "компьютер-компьютер", была решена более простая задача -- организация связи "удаленный терминал-компьютер". Терминалы, находящиеся от компьютера на расстоянии многих сотен, а то и тысяч километров, соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса супер-ЭВМ.
И только потом были разработаны средства обмена данными между компьютерами в автоматическом режиме. На основе этого механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными, сетевые службы.
В 1969 году министерство обороны США инициировало работы по объединению в общую сеть суперкомпьютеров оборонных и научно-исследовательских центров. Эта сеть, получившая название ARPANET послужила отправной точкой для создания первой и самой известной ныне глобальной сети -- Internet. Сеть ARPANET объединяла компьютеры разных типов, работавшие под управлением различных ОС с дополнительными модулями, реализующими коммуникационные протоколы, общие для всех компьютеров сети. Такие ОС можно считать первыми сетевыми операционными системами.
Сетевые ОС в отличие от многотерминальных позволяли не только рассредоточить пользователей, но и организовать распределенное хранение и обработку данных между несколькими компьютерами, связанными электрическими связями. Любая сетевая операционная система, с одной стороны, выполняет все функции локальной операционной системы, а с другой стороны, обладает некоторыми дополнительными средствами, позволяющими ей взаимодействовать по сети с операционными системами других компьютеров. Программные модули, реализующие сетевые функции, появлялись в операционных системах постепенно, по мере развития сетевых технологий, аппаратной базы компьютеров и возникновения новых задач, требующих сетевой обработки.
В 1974 году компания IBM объявила о создании собственной сетевой архитектуры для своих мэйнфреймов, получившей название SNA (System Network Architecture, системная сетевая архитектура). В это же время в Европе активно велись работы по созданию и стандартизации сетей X.25.
Таким образом, хронологически первыми появились глобальные сети (Wide Area Networks, WAN), то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно, находящиеся в различных городах и странах. Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи и концепции современных вычислительных сетей, такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов и маршрутизация пакетов в составных сетях.
Локальная вычислительная сеть (ЛВС, локальная сеть, англ. Local Area Network, LAN) -- компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.
Типы серверов в локальных сетях
При этом каждый из серверов может быть реализован как на отдельном компьютере, так и в небольших по объему ЛВС, быть совмещенным на одном компьютере с каким-либо другим сервером. Север и ОС работают как единое целое. Без ОС даже самый мощный сервер представляет собой груду железа. ОС позволяет реализовать потенциал аппаратных ресурсов сервера. К наиболее распространенным сетевым ОС следует отнести:
1. Novell NetWare 4.0 и выше;
2. OS/2;
3. Unix;
4. Windows NT 4.0 и выше.
Последняя обеспечивает симметричную многопроцессорную обработку (системные задачи распределяются между всеми доступными процессорами), поддерживает множество аппаратных платформ ( Pentium, R4000, RISE и Digit Alpha), длина имени файла до 225 байт, размер файла и диска - до 16 эксабайт (миллиард гигабайт).
Преимущества сетей на основе сервера
Сравнения двух основных типов ЛВС проведем с точки зрения возможности разделения ресурсов, защиты данных, возможности резервного копирования, избыточности и аппаратной обеспеченности. Рассмотрим каждое из этих направлений более подробно.
Разделение ресурсов. Сервер спроектирован так, чтобы предоставить доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту. Администрирование и управление доступом к данным осуществляется централизованно, что обеспечивает их поиск и поддержку. (Так, в Widows NT разделение каталогов осуществляется через File Manager. Чтобы разрешить совместное использование каталога, надо выделить его в меню Disk и выбрать команду Shave As).
Защита. Это основной аргумент при выборе ЛВС на основе сервера. Проблемой безопасности может заниматься один администратор: он формирует политику безопасности и применяет ее в отношении каждого пользователя сети. Если в одноранговых сетях возможна защита только на уровне ресурсов, то в ЛВС на основе сервера основной является защита на уровне пользователя.
Резервное копирование данных. Поскольку важная информация расположена централизованно, т. е. сосредоточена на одном или нескольких серверах, то нетрудно обеспечить ее регулярное резервное копирование, что повысить надежность ее сохранения.
Избыточность. Благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени. Поэтому в случае повреждения основной области хранения данных информация не будет потеряна, так как легко воспользоваться ее резервной копией.
Аппаратное обеспечение. Так как PC не выполняет функций сервера, требования к его характеристикам зависят от потребностей самого пользователя. Он может иметь, по крайней мере, 486-й процессор и ОЗУ от 8 до 16 Мбайт.
Комбинированные сети
Существуют и комбинированные сети (приложение В), сочетающие лучшие качества одноранговых сетей и сетей на основе сервера. Многие администраторы считают, что такая сеть наиболее полно удовлетворяет их запросы, т. к. в ней могут функционировать оба типа ОС.
Сетевые ОС на основе Novell NetWare или Windows NT Server в этом случае отвечают за совместное использование основных приложений и данных. На рабочих станциях ЛВС устанавливают Windows NT WorkStation или Windows 95/98, которые будут управлять доступом к ресурсам выделенного сервера и в то же время предоставлять в совместное использование свои жесткие диски, а по мере необходимости разрешать доступ и к своим данным:
Структура комбинированной локальной сети
Комбинированные сети - наиболее распространенный тип ЛВС, но для их правильной и надежной защиты необходимы определенные знания и навыки планирования. Одноранговые сети и сети на основе серверов объединяет общая цель - это разделение ресурсов и коллективное их использование. А вот различия между одноранговыми сетями и ЛВС с выделенными серверами существенно определяют:
1. требования к аппаратному обеспечению ЛВС;
2. способ поддержки пользователей.
Постепенно различия между локальными и глобальными типами сетевых технологий стали сглаживаться. Изолированные ранее локальные сети начали объединяться друг с другом, при этом в качестве связующей среды использовались глобальные сети. Тесная интеграция локальных и глобальных сетей привела к значительному взаимопроникновению соответствующих технологий.
Подобные документы
Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат [134,0 K], добавлен 21.10.2013Функции компьютерных сетей (хранение и обработка данных, доступ пользователей к данным и их передача). Основные показатели качества локальных сетей. Классификация компьютерных сетей, их главные компоненты. Топология сети, характеристика оборудования.
презентация [287,4 K], добавлен 01.04.2015Особенности совместного использования информации на удаленных друг от друга компьютерах. Классификация, структура, юридические и негативные аспекты, новые возможности компьютерных сетей. Обзор вспомогательного программного обеспечения и оборудования.
реферат [41,0 K], добавлен 22.10.2010Понятие и характеристики компьютерных сетей. Классификация сетей по ряду признаков: по назначению, территориальной распространенности, по типу функционального взаимодействия, типу среды передачи, топологии сетей, скорости передач, по сетевым ОС.
презентация [510,5 K], добавлен 12.09.2011Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.
презентация [72,8 K], добавлен 04.05.2012Топология компьютерных сетей. Методы доступа к несущей в компьютерных сетях. Среды передачи данных, их характеристики. Структурная модель OSI, её уровни. Протокол IP, принципы маршрутизации пакетов. Физическая топология сети. Определение класса подсети.
контрольная работа [101,8 K], добавлен 14.01.2011Основные признаки классификации компьютерных сетей как нового вида связи и информационного сервиса. Особенности локальных и глобальных сетей. Объекты информационных сетевых технологий. Преимущества использования компьютерных сетей в организации.
курсовая работа [1,9 M], добавлен 23.04.2013Особенности, отличия, топология и функционирование локальных компьютерных сетей. Программное обеспечение информационно-вычислительных сетей. Основные протоколы передачи данных, их установка и настройка. Аутентификация и авторизация; система Kerberos.
курсовая работа [67,7 K], добавлен 20.07.2015Системы пакетной обработки данных. Появление первых глобальных и локальных компьютерных сетей. Классификационные признаки компьютерных сетей. Четыре основных вида компьютерных преступлений, их характеристика. Распространение вирусов через Интернет.
реферат [32,6 K], добавлен 29.03.2014Устройство компьютерных сетей. Системы для передачи информации, состоящие из терминалов, серверов и коммуникационной среды. Технические, программные и информационные средства сетей. Классификация компьютерных сетей. Сетевые операционные системы.
курсовая работа [3,7 M], добавлен 10.07.2014