Средства биометрической идентификации пользователей

Основы биометрической идентификации. Главные особенности метода аутентификации. Идентификация по рисунку папиллярных линий, радужной оболочке и капиллярам сетчатки глаз. Идентификация по почерку и динамике подписи. Перспективы биометрических технологий.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 18.06.2012
Размер файла 46,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Институт государственного управления, права и инновационных технологий

«Средства биометрической идентификации пользователей»

Реферат

Специализация: «Организация и технология защиты информации»

Москва 2012

Введение

По мере развития компьютерных сетей и расширения сфер автоматизации ценность информации неуклонно возрастает. Государственные секреты, наукоемкие ноу-хау, коммерческие, юридические и врачебные тайны все чаще доверяются компьютеру, который, как правило, подключен к локальным и корпоративным сетям. Популярность глобальной сети Интернет, с одной стороны, открывает огромные возможности для электронной коммерции, но, с другой стороны, создает потребность в более надежных средствах безопасности для защиты корпоративных данных от доступа извне. В настоящее время все больше компаний сталкиваются с необходимостью предотвратить несанкционированный доступ к своим системам и защитить транзакции в электронном бизнесе.

Практически до конца 90-х годов основным способом персонификации пользователя было указание его сетевого имени и пароля. Справедливости ради нужно отметить, что подобного подхода по-прежнему придерживаются во многих учреждениях и организациях. Опасности, связанные с использованием пароля, хорошо известны: пароли забывают, хранят в неподходящем месте, наконец, их могут просто украсть. Некоторые пользователи записывают пароль на бумаге и держат эти записи рядом со своими рабочими станциями. Как сообщают группы информационных технологий многих компаний, большая часть звонков в службу поддержки связана с забытыми или утратившими силу паролями.

Известно, что систему можно обмануть, представившись чужим именем. Для этого необходимо лишь знать некую идентифицирующую информацию, которой, с точки зрения системы безопасности, обладает один-единственный человек. Злоумышленник, выдав себя за сотрудника компании, получает в свое распоряжение все ресурсы, доступные данному пользователю в соответствии с его полномочиями и должностными обязанностями. Результатом могут стать различные противоправные действия, начиная от кражи информации и заканчивая выводом из строя всего информационного комплекса.

Разработчики традиционных устройств идентификации уже столкнулись с тем, что стандартные методы во многом устарели. Проблема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к информации более несостоятельно. Ведь для получения доступа к серверу иногда совсем не обязательно входить в помещение, где он стоит. Причиной тому - ставшая всеобъемлющей концепция распределенных вычислений, объединяющая и технологию клиент-сервер, и Интернет. Для решения этой проблемы требуются радикально новые методы, основанные на новой идеологии. Проведенные исследования показывают, что ущерб в случаях несанкционированного доступа к данным компаний может составлять миллионы долларов.

Есть ли выход из этой ситуации? Оказывается, есть, и уже давно. Просто для доступа к системе нужно применять такие методы идентификации, которые не работают в отрыве от их носителя. Этому требованию отвечают биометрические характеристики человеческого организма. Современные биометрические технологии позволяют идентифицировать личность по физиологическим и психологическим признакам. Кстати, биометрия известна человечеству очень давно - еще древние египтяне использовали идентификацию по росту.

Основы биометрической идентификации

Главная цель биометрической идентификации заключается в создании такой системы регистрации, которая крайне редко отказывала бы в доступе легитимным пользователям и в то же время полностью исключала несанкционированный вход в компьютерные хранилища информации. По сравнению с паролями и карточками такая система обеспечивает гораздо более надежную защиту: ведь собственное тело нельзя ни забыть, ни потерять. Биометрическое распознавание объекта основано на сравнении физиологических или психологических особенностей этого объекта с его характеристиками, хранящимися в базе данных системы. Подобный процесс постоянно происходит в мозгу человека, позволяя узнавать, например, своих близких и отличать их от незнакомых людей.

Биометрические технологии можно разделить на две большие категории - физиологические и психологические (поведенческие). В первом случае анализируются такие признаки, как черты лица, структура глаза (сетчатки или радужной оболочки), параметры пальцев (папиллярные линии, рельеф, длина суставов и т.д.), ладонь (ее отпечаток или топография), форма руки, рисунок вен на запястье или тепловая картина. Психологические характеристики - это голос человека, особенности его подписи, динамические параметры письма и особенности ввода текста с клавиатуры.

Биометрические идентификаторы хорошо работают только тогда, когда оператор может проверить две вещи: во-первых, что биометрические данные получены от конкретного лица именно во время проверки, а во-вторых, что эти данные совпадают с образцом, хранящимся в картотеке. Биометрические характеристики являются уникальными идентификаторами, но вопрос их надежного хранения и защиты от перехвата по-прежнему остается открытым.

Биометрические идентификаторы обеспечивают очень высокие показатели: вероятность несанкционированного доступа - 0,1 - 0,0001 %, вероятность ложного задержания - доли процентов, время идентификации - единицы секунд, но имеют более высокую стоимость по сравнению со средствами атрибутной идентификации. Известны разработки СКУД, основанные на считывании и сравнении конфигураций сетки вен на запястье, образцов запаха, преобразованных в цифровой вид, анализе носящего уникальный характер акустического отклика среднего уха человека при облучении его специфическими акустическими импульсами и т.д.

На выбор метода, наиболее подходящего в той или иной ситуации, влияет целый ряд факторов. Предлагаемые технологии отличаются по эффективности, причем их стоимость в большинстве случаев прямо пропорциональна уровню надежности. Так, применение специализированной аппаратуры иной раз повышает стоимость каждого рабочего места на тысячи долларов.

Физиологические особенности, например, папиллярный узор пальца, геометрия ладони или рисунок (модель) радужной оболочки глаза - это постоянные физические характеристики человека. Данный тип измерений (проверки) практически неизменен, так же, как и сами физиологические характеристики. Поведенческие же характеристики, например, подпись, голос или клавиатурный почерк, находятся под влиянием как управляемых действий, так и менее управляемых психологических факторов. Поскольку поведенческие характеристики могут изменяться с течением времени, зарегистрированный биометрический образец должен при каждом использовании обновляться. Биометрия, основанная на поведенческих характеристиках, дешевле и представляет меньшую угрозу для пользователей; зато идентификация личности по физиологическим чертам более точна и дает большую безопасность. В любом случае оба метода обеспечивают значительно более высокий уровень идентификации, чем пароли или карты.

Любая биометрическая технология применяется поэтапно:

- сканирование объекта;

- извлечение индивидуальной информации;

- формирование шаблона;

- сравнение текущего шаблона с базой данных.

Методика биометрической аутентификации заключается в следующем. Пользователь, обращаясь с запросом к СКУД на доступ, прежде всего, идентифицирует себя с помощью идентификационной карточки, пластикового ключа или личного идентификационного номера. Система по предъявленному пользователем идентификатору находит в своей памяти личный файл (эталон) пользователя, в котором вместе с номером хранятся данные его биометрии, предварительно зафиксированные во время процедуры регистрации пользователя. После этого пользователь предъявляет системе для считывания обусловленный носитель биометрических параметров. Сопоставив полученные и зарегистрированные данные, система принимает решение о предоставлении или запрещении доступа.

Таким образом, наряду с измерителями биометрических характеристик СКУД должны быть оборудованы соответствующими считывателями идентификационных карточек или пластиковых ключей (или цифровой клавиатурой).

Основные биометрические средства защиты информации, предоставляемые сегодня российским рынком обеспечения безопасности, приведены в табл. 1, технические характеристики некоторых биометрических систем представлены в табл. 2.

Таблица 1 - Современные биометрические средства защиты информации

Наименование

Производитель

Биопризнак

Примечание

SACcat

SAC Technologies

Рисунок кожи пальца

Приставка к компьютеру

TouchLock, TouchSafe,

Identix

Рисунок кожи

СКУД объекта

TouchNet

пальца

Eye Dentification

Eyedentify

Рисунок сетчатки

СКУД объекта

System 7,5

глаза

(моноблок)

Ibex 10

Eyedentify

Рисунок сетчатки глаза

СКУД объекта (порт, камера)

eriprint 2000

Biometric Identification

Рисунок кожи пальца

СКУД универсал

ID3D-R Handkey

Recognition Systems

Рисунок ладони руки

СКУД универсал

HandKey

Escape

Рисунок ладони руки

СКУД универсал

ICAM 2001

Eyedentify

Рисунок сетчатки глаза

СКУД универсал

Secure Touch

Biometric Access Corp.

Рисунок кожи пальца

Приставка к компьютеру

BioMouse

American Biometric Corp

Рисунок кожи пальца

Приставка к компьютеру

Fingerprint Identification Unit

Sony

Рисунок кожи пальца

Приставка к компьютеру

Secure Keyboard Scanner

National Registry Inc.

Рисунок кожи пальца

Приставка к компьютеру

Рубеж

НПФ «Кристалл»

Динамика подписи, спектр голоса

Приставка к компьютеру

Дакточип Delsy

Элсис, НПП Электрон (Россия), Опак

(Белоруссия), Р&Р (Германия)

Рисунок кожи пальца

Приставка к компьютеру

BioLink U-Match Mouse, Мышь SFM-

2000A

BioLink Technologies

Рисунок кожи пальца

Стандартная мышь со встроенным сканером отпечатка пальца

Биометрическая система защиты компьютерной информации Дакто

ОАО «Черниговский завод радиоприборов»

Биологически активные точки и папиллярные линии кожи

Отдельный блок

Биометрическая система контроля Iris

Access 3000

LG Electronics, Inc

Рисунок радужной оболочки глаза

Интеграция со считывателем карт

Говоря о точности автоматической аутентификации, принято выделять два типа ошибок Ошибки 1-го рода («ложная тревога») связаны с запрещением доступа законному пользователю. Ошибки 1-го рода («пропуск цели») - предоставление доступа незаконному пользователю. Причина возникновения ошибок состоит в том, что при измерениях биометрических характеристик существует определенный разброс значений. В биометрии совершенно невероятно, чтобы образцы и вновь полученные характеристики давали полное совпадение. Это справедливо для всех биометрических характеристик, включая отпечатки пальцев, сканирование сетчатки глаза или опознание подписи. Например, пальцы руки не всегда могут быть помещены в одно и то же положение, под тем же самым углом или с тем же самым давлением. И так каждый раз при проверке.

Таким образом, биометрический процесс (под ним здесь понимается автоматизация оценки биометрических характеристик) констатирует уровень надежности, который гарантирует система в выявлении истинности проверяемого лица. Процесс не заявляет, что предъявленные характеристики являются точной копией образцов, а говорит о том, что вероятность того, что пользователь именно то лицо, за которое себя выдает, составляет величину X %. Всегда ожидается (предполагается), что автоматический процесс должен обеспечить вероятность правильного распознавания равную пли очень близкую к 100 %. Таким образом, намек на то, что здесь могут быть элементы ошибки, заставляет некоторых думать, что биометрия не может играть существенной роли в организации входного контроля. Анализ показывает, что хотя ни одна система аутентификации не обеспечивает 100 %-ной надежности и что биометрический процесс не дает точного совпадения характеристик, все же он дает чрезвычайно высокий уровень точности. Некоторые зарубежные охранные структуры к разработчикам (производителям) СКУД применяют априори заданные требования, при выполнении которых последние могут рассчитывать на продажу своих систем.

Уровень надежности, дозволенный для системы контроля доступа, может быть совершенно различным, однако уровень ложных отказов истинным пользователям не вызывает какого-либо беспокойства, в то время как уровень фальшивых доступов фактически должен быть доведен до нуля

Таблица 2 - Технические характеристики некоторых биометрических систем

Модель

Принцип действия

Вероятность

Вероятность

Время

ложного задержания,

ложного допуска, %

идентификации, с

Eye Dentify

Параметры глаза

0,001

0,4

1,5-4

Iriscan

Параметры зрачка

0,00078

0,00068

2

Identix

Отпечаток пальца

0,0001

1,0

0,5

Startek BioMet

Отпечаток пальца

0,0001

1,0

1

Partners Recognition

Геометрия руки

0,1

0,1

1

Systems

Геометрия руки

0,1

0,1

1

«Кордон»

Отпечаток пальца

0,0001

1,0

1

DS-100

Отпечаток пальца

0,001

-

1-3

TouchSafe Personal(8)

Отпечаток пальца

2

0,001

1

Eyedentify ICAM 2001 (Eyedentify)

Параметры сетчатки глаза

0,4

0,0001

1,5-4

Iriscan (Iriscan)

Параметры радужной оболочки глаза

0,00078

2

FingerScan (Identix)

Отпечаток пальца

1,0

0,0001

0,5

TouchSafe (Identix)

Отпечаток пальца

2,0

0,001

1

TouchNet (Identix)

Отпечаток пальца

1,0

0,001

3

Startek

Отпечаток пальца

1,0

0,0001

1

1D3D-R NDKEY

(Recognition Systems)

Геометрия руки

0,1

0,1

1

U.areU.

(Digital Persona)

Отпечаток пальца

3,0

0,01

1

Fill (Sony, I/O

Software)

Отпечаток пальца

0,1

1,0

0,3

BioMause (ABC)

Отпечаток пальца

-

0,2

1

Кордон (Россия)

Отпечаток пальца

1,0

0,0001

1

DS-100 (Россия)

Отпечаток пальца

-

0,001

1... 3

BioMet

Геометрия руки

0,1

0,1

1

Veriprint 2100

Отпечаток пальца

0,001

0,01

1

(Biometric ID)

Развитие биометрических устройств идет по нескольким направлениям, но общие для них черты - это непревзойденный на сегодня уровень безопасности, отсутствие традиционных недостатков парольных и карточных систем защиты и высокая надежность. Успехи биометрических технологий связаны пока главным образом с организациями, где они внедряются в приказном порядке, например, для контроля доступа в охраняемые зоны или идентификации лиц, привлекших внимание правоохранительных органов. Корпоративные пользователи, похоже, еще не осознали потенциальных возможностей биометрии в полной мере. Часто менеджеры компаний не рискуют развертывать у себя биометрические системы, опасаясь, что из-за возможных неточностей в измерениях пользователи будут получать отказы в доступе, на который у них есть права. Тем не менее новые технологии все активнее проникают на корпоративный рынок. Уже сегодня существуют десятки тысяч компьютеризованных мест, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений, доступ к которым контролируется устройствами, сканирующими уникальные физиологические или поведенческие характеристики индивидуума.

Методы аутентификации

Как известно, аутентификация подразумевает проверку подлинности субъекта, которым в принципе может быть не только человек, но и программный процесс. Вообще говоря, аутентификация индивидов возможна за счет предъявления информации, хранящейся в различной форме. Это может быть:

пароль, личный номер, криптографический ключ, сетевой адрес компьютера в сети;

смарт-карта, электронный ключ;

внешность, голос, рисунок радужной оболочки глаз, отпечатки пальцев и другие биометрические характеристики пользователя.

Аутентификация позволяет обоснованно и достоверно разграничить права доступа к информации, находящейся в общем пользовании. Однако, с другой стороны, возникает проблема обеспечения целостности и достоверности этой информации. Пользователь должен быть уверен, что получает доступ к информации из заслуживающего доверия источника и что данная информации не модифицировалась без соответствующих санкций.

Поиск совпадения "один к одному" (по одному атрибуту) называется верификацией. Этот способ отличается высокой скоростью и предъявляет минимальные требования к вычислительной мощности компьютера. А вот поиск "один ко многим" носит название идентификации. Реализовать подобный алгоритм обычно не только сложно, но и дорого. Сегодня на рынок выходят биометрические устройства, использующие для верификации и идентификации пользователей компьютеров такие индивидуальные характеристики человека, как отпечатки пальцев, черты лица, радужную оболочку и сетчатку глаза, форму ладони, особенности голоса, речи и подписи. На стадии тестирования и опытной эксплуатации находятся системы, позволяющие выполнять аутентификацию пользователей по тепловому полю лица, рисунку кровеносных сосудов руки, запаху тела, температуре кожи и даже по форме ушей.

Любая биометрическая система позволяет распознавать некий шаблон и устанавливать аутентичность конкретных физиологических или поведенческих характеристик пользователя. Логически биометрическую систему можно разделить на два модуля: модуль регистрации и модуль идентификации. Первый отвечает за то, чтобы обучить систему идентифицировать конкретного человека. На этапе регистрации биометрические датчики сканируют необходимые физиологические или поведенческие характеристики человека и создают их цифровое представление. Специальный модуль обрабатывает это представление с тем, чтобы выделить характерные особенности и сгенерировать более компактное и выразительное представление, называемое шаблоном. Для изображения лица такими характерными особенностями могут стать размер и относительное расположение глаз, носа и рта. Шаблон для каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации отвечает за распознавание человека. На этапе идентификации биометрический датчик снимает характеристики человека, которого нужно идентифицировать, и преобразует эти характеристики в тот же цифровой формат, в котором хранится шаблон. Полученный шаблон сравнивается с хранимым, чтобы определить, соответствуют ли эти шаблоны друг другу.

Например, в ОС Microsoft Windows для аутентификации пользователя требуется два объекта - имя пользователя и пароль. При использовании в процессе аутентификации отпечатков пальцев имя пользователя вводится для регистрации, а отпечаток пальца заменяет пароль (рис. 1). Эта технология использует имя пользователя в качестве указателя для получения учетной записи пользователя и проверки соответствия "один к одному" между шаблоном считанного при регистрации отпечатка и шаблоном, ранее сохраненным для данного имени пользователя. Во втором случае введенный при регистрации шаблон отпечатка пальца необходимо сопоставить со всем набором сохраненных шаблонов.

При выборе способа аутентификации имеет смысл учитывать несколько основных факторов:

ценность информации;

стоимость программно-аппаратного обеспечения аутентификации;

производительность системы;

отношение пользователей к применяемым методам аутентификации;

специфику (предназначение) защищаемого информационного комплекса.

Очевидно, что стоимость, а следовательно, качество и надежность средств аутентификации должны быть напрямую связаны с важностью информации. Кроме того, повышение производительности комплекса, как правило, также сопровождается его удорожанием.

Статические и динамические методы аутентификации

В настоящее время существует множество методов биометрической аутентификации, которые делятся на две группы, рассмотренные ниже.

1. Статические методы

Статические методы биометрической аутентификации основываются на физиологической (статической) характеристике человека, то есть уникальной характеристике, данной ему от рождения и неотъемлимой от него;

Рассмотрим методы аутентификации этой группы:

По отпечатку пальца. В основе этого метода лежит уникальность для каждого человека рисунка паппилярных узоров на пальцах. Отпечаток, полученный с помощью специального сканера, преобразуется в цифровой код (свертку), и сравнивается с ранее введенным эталоном. Данная технология является самой распространненой по сравнению с другими методами биометрической атунтификации;

По форме ладони. Данный метод, построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки по которому формируется свертка и распознается человек;

По расположению вен на лицевой стороне ладони. С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается и по схеме расположения вен формируется цифровая свертка;

По сетчатке глаза. Вернее этот способ идентификации по рисунку кровеносных сосудов глазного дна. Для того, чтобы этот рисунок стал виден - человеку нужно посмотреть на удаленную световую точку, и таким образом подсвеченное глазное дно сканируется специальной камерой.

По радужной оболочке глаза. Рисунок радужной оболочки глаза также является уникальной характеристикой человека, причем для ее сканирования достаточно портативной камеры со специализированный программным обеспечением, позволяющим захватывать изображение части лица, из которого выделяется изображение глаза, из которого в свою очередь выделяется рисунок радужной оболочки, по которому строится цифровой код для идентификации человека;

По форме лица. В данном методе идентификации строится трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т.д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т.д)

По термограмме лица. В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы, используются специальные камеры инфракрасного диапазона. В отличие от предыдущего - этот метод позволяет различать близнецов.

По ДНК. Преимущества данного способы очевидны, однако используемые в настоящее время методы получения и обработки ДНК - работают настолько долго, что такие системы используются только для специализированных экспертиз.

Другие методы. На самом деле в данной статье описаны только самые распространенные методы, существуют еще такие уникальные способы - как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т.д.

Идентификация по рисунку папиллярных линий

Весь процесс идентификации занимает не более нескольких секунд и не требует усилий от тех, кто использует данную систему доступа. Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Хотя процент ложных отказов при идентификации составляет около 3 %, ошибка ложного доступа - меньше 0,00001 % (1 на 1 000 000). Существует два основных алгоритма сравнения полученного кода с имеющимся в базе шаблоном: по характерным точкам и по рельефу всей поверхности пальца. В первом случае выявляются характерные участки и запоминается их взаиморасположение. Во втором случае запоминается вся «картина» в целом. В современных системах используется также комбинация обоих алгоритмов, что позволяет повысить уровень надежности системы. Традиционно американские компании занимают лидирующие позиции в разработке биометрических систем безопасности, в этом направлении успешно работают такие фирмы, как Identix, T-Netix, American Biometric Company, National Registry, sagem, Morpho, Verditicom, Infenion. Из российских компаний-разработчиков идентификационных устройств по папиллярным узорам пальцев заслуживает внимания компания «Биолинк».

С целью идентификации личности по рисунку папиллярных линий пальца проверяемый набирает на клавиатуре свой идентификационный номер и помещает указательный палец на окошко сканирующего устройства. При совпадении получаемых признаков с эталонными, предварительно заложенными в память ЭВМ и активизированными при наборе идентификационного номера, подается команда исполнительному устройству.

Дактилоскопия построена на двух основных качествах, присущих папиллярным узорам кожи пальцев и ладоней:

- стабильность рисунка узора на протяжении всей жизни человека;

- уникальность рисунка, что означает отсутствие двух индивидуумов с одинаковыми дактилоскопическими отпечатками.

Говоря о надежности аутентификационной процедуры по отпечаткам пальцев, необходимо рассмотреть также вопрос о возможности их копирования и использования другими лицами для получения несанкционированного доступа. В качестве одной из возможностей по обману терминала специалисты называют изготовление искусственной кисти с требуемыми отпечатками пальцев (или изъятия «подлинника» у законного владельца). Но существует и способ борьбы с такой фальсификацией. Для этого в состав терминального оборудования должны быть включены инфракрасный детектор, который позволит зафиксировать тепловое излучение от руки (или пальца), и (или) фотоплетизмограф, который определяет наличие изменений отражения света от поверхности потока крови.

Другим способом подделки является непосредственное нанесение папиллярного узора пальцев законного пользователя на руки злоумышленника с помощью специальных пленок или пленкообразующих составов.

Известны три основных подхода к реализации систем идентификации по отпечаткам пальцев. Самый распространенный на сегодня способ строится на использовании оптики - призмы и нескольких линз со встроенным источником света.

Свет, падающий на призму, отражается от поверхности, соприкасаемой с пальцем пользователя, и выходит через другую сторону призмы, попадая на оптический сенсор (обычно, монохромная видеокамера на основе ПЗС-матрицы), где формируется изображение. Недостатки такой системы: отражение сильно зависит от параметров кожи - сухости, присутствия масла, бензина, других химических элементов.

Другой способ использует методику измерения электрического поля пальца с использованием полупроводниковой пластины. Когда пользователь устанавливает палец в сенсор, он выступает в качестве одной из пластин конденсатора. - Недостатки такой системы: отражение сильно зависит от параметров кожи - сухости, присутствия масла, бензина, других химических элементов.

Другая пластина конденсатора - это поверхность сенсора, которая состоит из кремниевого чипа, содержащего 90 тыс. конденсаторных пластин с шагом считывания 500 точек на дюйм. В результате получается 8-битовое растровое изображение гребней и впадин пальца.- Недостатки метода - кремниевый чип требует эксплуатации в герметичной оболочке, а дополнительные покрытия уменьшают чувствительность системы.

Третий метод. В основе их системы TactileSense - электрооптический полимер. Этот материал чувствителен к разности электрического поля между гребнями и впадинами кожи. Градиент электрического поля конвертируется в оптическое изображение высокого разрешения, которое затем переводится в цифровой формат, который уже можно передавать в ПК по параллельному порту или USB-интерфейсу.

Полученный одним из описанных методов аналоговый видеосигнал преобразуется в цифровую форму, после чего из него извлекается набор характеристик, уникальных для этого отпечатка пальца. Эти данные однозначно идентифицируют личность. Данные сохраняются и становятся уникальным шаблоном отпечатка пальца конкретного человека. При последующем считывании новые отпечатки пальцев сравниваются с хранимыми в базе.

В самом простом случае при обработке изображения на нем выделяются характерные точки (например, координаты конца или раздвоения папиллярных линий, места соединения витков). Можно выделить до 70 таких точек и каждую из них охарактеризовать двумя, тремя или даже большим числом параметров. В результате можно получить от отпечатка пальца до пятисот значений различных характеристик.

Более сложные алгоритмы обработки соединяют характерные точки изображения векторами и описывают их свойства и взаимоположение.

Хранение данных и сравнение при идентификации происходит в компьютере. Практически каждый производитель аппаратной части вместе с системой поставляет и уникальное программное обеспечение, адаптированное чаще всего под Windows NT.

Идентификация по радужной оболочке глаз

С помощью этих алгоритмов необработанные видеоизображения глаза преобразуются в уникальный идентификационный двоичный поток Iris-код, полученный в результате определения позиции радужки, ее границы и выполнения других математических операций для описания текстуры радужки в виде последовательности чередования фаз, похожей на штрих-код.

Полученный таким образом Iris-код используется для поиска совпадений в базах данных (скорость поиска - около 1 млн. сравнения Iris-кодов в 1 с) и для подтверждения или неподтверждения заявленной личности.

Преимущество сканеров для радужной оболочки глаза состоит в том, что они не требуют от пользователя сосредоточения на цели, так как образец пятен на радужной оболочке находится на поверхности глаза.

Дифференциатор ключей для идентификации личности по рисунку радужной оболочки глаза осуществляет поиск в базе данных для нахождения соответствующего идентификационного кода. При этом база данных может состоять из неограниченного числа записей кодов IrisCode.

Идентификация по капиллярам сетчатки глаз

При идентификации по сетчатке глаза измеряется угловое распределение кровеносных сосудов на поверхности сетчатки относительно слепого пятна глаза и другие признаки. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Замеры ведутся по 320 точкам фотодатчиками и результирующий аналоговый сигнал с помощью микропроцессора преобразуется в цифровой вид.

С точки зрения безопасности данная система выгодно отличается от всех других, использующих биометрические терминалы, не только малым значением коэффициентов ошибок как l-ro, так и 2-го рода, но и использованием специфического аутентификациоиного атрибута, который практически невозможно негласно подменить для обмана системы при проверке.

К недостаткам подобных систем следует отнести психологический фактор: не всякий человек отважится посмотреть в неведомое темное отверстие, где что-то светит в глаз. К тому же надо следить за положением глаза относительно отверстия, поскольку подобные системы, как правило, чувствительны к неправильной ориентации сетчатки.

Идентификация по геометрии и тепловому изображению лица

Техническая реализация метода - более сложная (с математической точки зрения) задача, чем распознавание отпечатков пальцев, и, кроме того, требует более дорогостоящей аппаратуры (нужна цифровая видео- или фотокамера и плата захвата видеоизображения). У этого метода есть один существенный плюс: для хранения данных об одном образце идентификационного шаблона требуется совсем немного памяти, так как человеческое лицо можно «разобрать» на относительно небольшое количество участков, неизменных у всех людей. Например, для вычисления уникального шаблона, соответствующего конкретному человеку, требуется всего от 12 до 40 характерных участков.

Обычно камера устанавливается на расстоянии нескольких десятков сантиметров от объекта. Получив изображение, система анализирует различные параметры лица (например, расстояние между глазами и носом). Большинство алгоритмов позволяет компенсировать наличие у исследуемого индивида очков, шляпы и бороды. Для этой цели обычно используется сканирование лица в инфракрасном диапазоне, но пока системы такого типа не дают устойчивых и очень точных результатов.

В настоящее время существует четыре основных метода распознавания лица, различающихся сложностью реализации и целью применения:

- «eigenfaces»;

- анализ «отличительных черт»;

- анализ на основе «нейронных сетей»;

- метод «автоматической обработки изображения лица».

«Eigenface»-пер. «собственное лицо»- Для режима установления подлинности, в котором изображение используется для проверки идентичности, «живой» шаблон сравнивается с уже зарегистрированным шаблоном с целью определения коэффициента различия.

Метод анализа «отличительных черт»- В технологии «отличительных черт» используются десятки характерных особенностей различных областей лица, причем с учетом их относительного местоположения. Индивидуальная комбинация этих параметров определяет особенности каждого конкретного лица. В методе, основанном на нейронной сети, характерные особенности обоих лиц - зарегистрированного и проверяемого сравниваются на совпадение. «Нейронные сети» используют алгоритм, устанавливающий соответствие уникальных параметров лица проверяемого человека и параметров шаблона, находящегося в базе данных, при этом применяется максимально возможное число параметров. По мере сравнения определяются несоответствия между лицом проверяемого и шаблона из базы данных, затем запускается механизм, который с помощью соответствующих весовых коэффициентов определяет степень соответствия проверяемого лица шаблону из базы данных.

Метод автоматической обработки изображения лица - наиболее простая технология, использующая расстояния и отношение расстояний между легко определяемыми точками лица, такими, как глаза, конец носа, уголки рта.

Идентификация по геометрии кисти руки

биометрический технология идентификация аутентификация

Математическая модель идентификации по данному параметру требует немного информации - всего 9 байт, что позволяет хранить большой объем записей и быстро осуществлять поиск. Наиболее популярное устройство Handkey сканирует как внутреннюю, так и боковую сторону ладони, используя для этого встроенную видеокамеру и алгоритмы сжатия. При этом оценивается более 90 различных характеристик, включая размеры самой ладони (три измерения), длину и ширину пальцев, очертания суставов и т.п. Через прорези в ее поверхности оптические сенсорные ячейки сканируют четыре кольца. Эти ячейки определяют стартовые точки по двум парам пальцев - указательному и среднему, безымянному и мизинцу. Каждый палец сканируется по всей длине, при этом замеряется длина, изгиб и расстояние до «соседа».

В настоящее время идентификация пользователей по геометрии руки используется в законодательных органах, международных аэропортах, больницах, иммиграционных службах и т.д. Достоинства идентификации по геометрии ладони сравнимы с достоинствами идентификации по отпечатку пальца с точки зрения надежности, хотя устройство для считывания отпечатков ладоней занимает больше места.

Динамические методы

Динамические методы биометрической аутентификации основываются на поведенческой (динамической) характеристике человека, то есть построенны на особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия.

Рассмотрим методы аутентификации этой группы:

По рукописному почерку. Как привило для этого вида идентификации человека используется его роспись (иногда написание кодового слова). Цифровой код индентификации формируется, в зависимости от необходимой степени защиты и наличия оборудования (графический планшет, экран корманного компьютера Palm и т.д.), двух типов:

По самой росписи, то есть для идентификации используется просто степень совпадения двух картинок;

По росписи и динамическим характеристикам написания, то есть для идентификации строится свертка, в которую входит информация по непосредственно подписи, временным характеристикам нанесения росписи и статистическим характеристикам динамики нажима на поверхность.

По клавиатурному почерку. Метод в целом аналогичен вышеописанному, но вместо росписи используется некое кодовое слово (когда для этого используется личный пароль пользователя, такую аутентификацию называют двухфакторной) и не нужно никакого специального оборудования, кроме стандартной клавиатуры. Основной харатеристикой по которой строится свертка для идентификации - динамика набора кодового слова; Идентификация по ритму работы на клавиатуре основана на измерении временных интервалов между двумя последовательными ударами по клавишам при печатании знаков.

По голосу. Одна из старейших технологий, в настоящее время ее развитие ускорилось - так как предполагается ее широкое использование в построении «интеллектуальных зданий». Существует достаточно много способов построения кода идентификации по голосу, как правило это различные сочетания частотных и статистических характеристик голоса; Причинами внедрения этих систем являются повсеместное распространение телефонных сетей и практика встраивания микрофонов в компьютеры и периферийные устройства. В качестве недостатков таких систем можно назвать факторы, влияющие на результаты распознавания: помехи в микрофонах, влияние окружающей обстановки на результаты распознавания (шум), ошибки при произнесении, различное эмоциональное состояние проверяемого в момент регистрации эталона и при каждой идентификации, использование разных устройств регистрации при записи эталонов и идентификации, помехи в низкокачественных каналах передачи данных и т.п.

Другие методы. Для данной группы методов также описаны только самые распространенные методы, существуют еще такие уникальные способы - как идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т.д.

Общей характеристикой, используемой для сравнения различных методов и способов биометрической идентификации - являются статистические показатели - ошибка первого рода (не пустить в систему «своего») и ошибка второго рода (пустить в систему чужого).

Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов, из-за сильной зависимости от оборудования на котором они реализованы.

По показателям ошибок второго рода общая сортировка методов биометрической аутентификации выглядит так (от лучших к худшим):

ДНК;

Радужная оболочка глаза, сетчатка глаза;

Отпечаток пальца, термография лица, форма ладони;

Форма лица, расположение вен на кисти руки и ладони;

Подпись;

Клавиатурный почерк;

Голос.

Отсюда становится видно, что, с одной стороны статические методы идентификации существенно лучше динамических, а с другой стороны существенно дороже.

Идентификация по почерку и динамике подписи

Основой аутентификации личности по почерку и динамике написания контрольных фраз (подписи) является уникальность и стабильность динамики этого процесса для каждого человека, характеристики которой могут быть измерены, переведены в цифровой вид и подвергнуты компьютерной обработке. Таким образом, при аутентификации для сравнения выбирается не продукт письма, а сам процесс.

Разработка аутентификационных автоматов на базе анализа почерка (подписи - как варианта объекта исследования), предназначенных для реализации контрольно-пропускной функции, была начата еще в начале 1970-х г. В настоящее время на рынке представлено несколько эффективных терминалов такого типа.

Подпись - такой же уникальный атрибут человека, как и его физиологические характеристики. Кроме того, это и более привычный для любого человека метод идентификации, поскольку он, в отличие от снятия отпечатков пальцев, не ассоциируется с криминальной сферой. Одна из перспективных технологий аутентификации основана на уникальности биометрических характеристик движения человеческой руки во время письма. Обычно выделяют два способа обработки данных о подписи: простое сравнение с образцом и динамическую верификацию. Первый весьма ненадежен, так как основан на обычном сравнении введенной подписи с хранящимися в базе данных графическими образцами. Из-за того, что подпись не может быть всегда одинаковой, этот метод дает большой процент ошибок. Способ динамической верификации требует намного более сложных вычислений и позволяет в реальном времени фиксировать параметры процесса подписи, такие, как скорость движения руки на разных участках, сила давления и длительность различных этапов подписи. Это дает гарантии того, что подпись не сможет подделать даже опытный графолог, поскольку никто не в состоянии в точности скопировать поведение руки владельца подписи. Пользователь, используя стандартный дигитайзер и ручку, имитирует свою обычную подпись, а система считывает параметры движения и сверяет их с теми, что были заранее введены в базу данных. При совпадении образа подписи с эталоном система прикрепляет к подписываемому документу информацию, включающую имя пользователя, адрес его электронной почты, должность, текущее время и дату, параметры подписи, содержащие несколько десятков характеристик динамики движения (направление, скорость, ускорение) и другие. Эти данные шифруются, затем для них вычисляется контрольная сумма, и далее все это шифруется еще раз, образуя так называемую биометрическую метку. Для настройки системы вновь зарегистрированный пользователь от пяти до десяти раз выполняет процедуру подписания документа, что позволяет получить усредненные показатели и доверительный интервал. Впервые данную технологию использовала компания РепОр.

Идентификацию по подписи нельзя использовать повсюду, в частности, этот метод не подходит для ограничения доступа в помещения или для доступа в компьютерные сети. Однако в некоторых областях, например в банковской сфере, а также всюду, где происходит оформление важных документов, проверка правильности подписи может стать наиболее эффективным, а главное, необременительным и незаметным способом. До сих пор финансовое сообщество не спешило принимать автоматизированные методы идентификации подписи для кредитных карточек и проверки заявления, потому что подписи все еще слишком легко подделать. Это препятствует внедрению идентификации личности по подписи в высокотехнологичные системы безопасности.

Устройства идентификации по динамике подписи используют геометрические или динамические признаки рукописного воспроизведения подписи в реальном масштабе времени. Подпись выполняется пользователем на специальной сенсорной панели, с помощью которой осуществляется преобразование изменений приложенного усилия нажатия на перо (скорости, ускорения) в электрический аналоговый сигнал. Электронная схема преобразует этот сигнал в цифровой вид, приспособленный для машинной обработки. При формировании «эталона» необходимо учитывать, что для одного и того же человека характерен некоторый разброс характеристик почерка от одного акта к другому. Чтобы определить эти флуктуации и назначить рамки, пользователь при регистрации выписывает свою подпись несколько раз. В результате формируется некая «стандартная модель» (сигнатурный эталон) для каждого пользователя, которая записывается в память системы.

В качестве примера реализации такого метода идентификации можно рассматривать систему Automatic Personal Verification System, разработанную американской корпорацией NCR Corp. Эта система на испытаниях продемонстрировала следующие результаты: коэффициент ошибок 1-го рода - 0,015%, 2-го рода - 0,012% (в случае, если злоумышленник не наблюдал процесс исполнения подписи законным пользователем) и 0,25 % (если он наблюдал).

Системы аутентификации по почерку поставляются на рынок, например, фирмами Inforete и De La Rue Systems (США), Thompson T1TN (Франция) и рядом других. Английская фирма Quest Micropad Ltd выпустила устройство QSign, особенностью которого является то, что сигнатурный эталон может храниться как в памяти системы, так и в памяти идентификационной карточки пользователя. Пороговое значение коэффициентов ошибок может изменяться в зависимости от требуемой степени безопасности. Подпись выполняется обычной шариковой ручкой или карандашом на специальной сенсорной панели, входящей в состав терминала.

Основное достоинство подписи по сравнению с использованием, например, дактилоскопии в том, что это распространенный и общепризнанный способ подтверждения своей личности (например, при получении банковских вкладов). Этот способ не вызывает «технологического дискомфорта», как бывает в случае снятия отпечатков пальцев, что ассоциируется с деятельностью правоохранительных органов. В то же время подделка динамики подписи - дело очень трудновыполнимое (в отличие, скажем, от воспроизведения рисунка подписи). Причем благодаря росписи не на бумаге, а на сенсорной панели, значительно затрудняется копирование злоумышленником ее начертания.

Идентификация по ритму работы на клавиатуре основана на измерении временных интервалов между двумя последовательными ударами по клавишам при печатании знаков.

Идентификация но голосу и особенностям речи

Биометрический подход, связанный с идентификацией голоса, удобен в применении. Однако основным и определяющим недостатком этого подхода является низкая точность идентификации. Например, человек с простудой или ларингитом может испытывать трудности при использовании данных систем. Причинами внедрения этих систем являются повсеместное распространение телефонных сетей и практика встраивания микрофонов в компьютеры и периферийные устройства. В качестве недостатков таких систем можно назвать факторы, влияющие на результаты распознавания: помехи в микрофонах, влияние окружающей обстановки на результаты распознавания (шум), ошибки при произнесении, различное эмоциональное состояние проверяемого в момент регистрации эталона и при каждой идентификации, использование разных устройств регистрации при записи эталонов и идентификации, помехи в низкокачественных каналах передачи данных и т.п.

При рассмотрении проблемы аутентификации по голосу важными вопросами с точки зрения безопасности являются следующие:

- Как бороться против использования магнитофонных записей парольных фраз, перехваченных во время установления контакта законного пользователя с аутентификационным терминалом?

- Как защитить систему от злоумышленников, обладающих способностью к имитации голоса, если им удастся узнать парольную фразу?

Ответом на первый вопрос является генерация системой псевдослучайных паролей, которые повторяются вслед за ней пользователем, а также применение комбинированных методов проверки (дополняя вводом идентификационной карточки или цифрового персонального кода).

Ответ на второй вопрос не так однозначен. Человек вырабатывает свое мнение о специфике воспринимаемого голоса путем оценки некоторых его характерных качеств, не обращая внимание при этом на количественную сторону разнообразных мелких компонент речевого сигнала. Автомат же наоборот, не обладая способностью улавливать обобщенную характеристику голоса, свой вывод делает, основываясь на конкретных параметрах речевого сигнала и производя их точный количественный анализ.

Специфическое слуховое восприятие человека приводит к тому, что безупречное воспроизведение профессиональными имитаторами голосов возможно лишь тогда, когда подражаемый субъект характеризуется ярко выраженными особенностями произношения (интонационной картиной, акцентом, темпом речи и т.д.) или тембра (гнусавостью, шепелявостью, картавостью и т.д.). Именно этим следует объяснить тот факт, что даже профессиональные имитаторы оказываются не в состоянии подражать ординарным, не примечательным голосам.

В противоположность людям распознающие автоматы, свободные от субъективного отношения к воспринимаемым образам, производят аутентификацию (распознавание) голосов объективно, на основе строго детерминированных и априори заданных признаков. Обладая «нечеловеческим» критерием оценки схожести голосов, системы воспринимают голос человека через призму своих признаков. Вследствие этого, чем сложнее и «непонятнее» будет совокупность признаков, по которым автомат распознает голос, тем меньше будет вероятность его обмана. В гоже время, несмотря на то, что проблема имитации очень важна и актуальна с практической точки зрения, она все же далека от окончательного решения. Прежде всего, до конца не ясен ответ на вопрос, какие именно параметры речевого сигнала наиболее доступны подражанию и какие из них наиболее трудно поддаются ему.

Выбор параметров речевого сигнала способных наилучшим образом описать индивидуальность голоса является, пожалуй, самым важным этапом при построении систем автоматической аутентификации по голосу. Такие параметры сигнала, называемые признаками индивидуальности, помимо эффективности представления информации об особенностях голоса диктора, должны обладать рядом других свойств. Во-первых, они должны быть легко измеряемы и мало зависеть от мешающих факторов окружающей среды (шумов и помех). Во-вторых, они должны быть стабильными во времени. В-третьих, не должны поддаваться имитации.

Постоянно ведутся работы по повышению эффективности систем идентификации по голосу. Известны системы аутентификации по голосу, где применяется метод совместного анализа голоса и мимики, ибо, как оказалось, мимика говорящего характерна только ему и будет отличаться от говорящего те же слова мимики другого человека.

Разрабатываются комбинированные системы, состоящие из блоков идентификации и верификации голоса. При решении задачи идентификации находится ближайший голос (или несколько голосов) из фонотеки, затем в результате решения задачи верификации подтверждается или опровергается принадлежность фонограммы конкретному лицу. Система практически используется при обеспечении безопасности некоторых особо важных объектов.

В последнее время ведутся активные разработки по усовершенствованию и модификации голосовых систем идентификации личности, поиск новых подходов для характеристики человеческой речи, комбинации физиологических и поведенческих факторов.

Задача повышения надежности распознавания может быть решена за счет привлечения грамматической и семантической информации в системах распознавания речи. Для решения этой задачи разработана (при участии экспертов: лингвистов, рядовых носителей языка) модель входного языка, учитывающая особенности их грамматического и семантического поведения (28 основных грамматических классов, около 300 грамматических разрядов слов), ее компьютерное воплощение - лингвистическая база знаний (ЛБЗ) и лингвистический процессор (ЛП). В состав ЛБЗ входят: обширный грамматический словарь - объемом около 100000 единиц; словари словосочетаний; словари униграмм и лексических биграмм; грамматические таблицы и словарь моделей управления. Программы синтактико-семантического анализа, входящие в состав ЛП, обеспечивают: быстрое отсеивание маловероятных вариантов распознавания (локальный анализ), учет обнаруженных при анализе грамматических событий, характеризующих регулярность грамматической структуры и степень грамматичности предложения в целом или отдельных групп (и тем самым возможность выбора в качестве окончательного результата распознавания неграмматичных, но допустимых в речи вариантов). Для решения многокритериальной задачи выбора окончательного варианта были разработаны специальные эвристики метауровня. Лингвистический модуль (ЛБЗ и ЛП) позволяет повысить надежность акустического и фонетического распознавания с 94-95 до 95-97 %.


Подобные документы

  • Особенности статических методов биометрического контроля. Аутентификация по рисунку папиллярных линий, радужной оболочке глаз, геометрии лица и кисти руки, почерку и динамике подписи, голосу и особенностям речи. Биометрические технологии будущего.

    реферат [35,9 K], добавлен 16.12.2012

  • Понятие процесса биометрической аутентификации. Технология и вероятность ошибок аутентификации по отпечатку пальца, радужной оболочке или по сетчатке глаза, по геометрии руки и лица человека, по термограмме лица, по голосу, по рукописному почерку.

    презентация [1,2 M], добавлен 03.05.2014

  • Назначение, классификация и состав системы контроля управления доступом. Основные характеристики биометрических средств идентификации личности. Идентификация пользователя по радужной оболочке глаз. Разработка алгоритма функционирования устройства.

    дипломная работа [1,1 M], добавлен 25.11.2014

  • Классификация и основные характеристики биометрических средств идентификации личности. Особенности реализации статических и динамических методов биометрического контроля. Средства авторизации и аутентификации в электронных системах охраны и безопасности.

    курсовая работа [1,7 M], добавлен 19.01.2011

  • Анализ биометрических систем идентификации личности по отпечаткам пальцев, форме кисти руки, оболочке глаза. Лицо как биометрический идентификатор. Анализ рынка систем распознавания личности. Оценка эффективности систем идентификации по геометрии лица.

    курсовая работа [1,8 M], добавлен 30.05.2013

  • Проблемы использования паролей на предприятии. Общие понятия и технологии идентификации и аутентификации. Принцип работы и структура программного средства SecureLogin от компании ActiveIdentity. Автоматическая генерация пароля, фишинг и фарминг.

    курсовая работа [2,5 M], добавлен 22.01.2015

  • Разработка предложений по внедрению биометрической аутентификации пользователей линейной вычислительной сети. Сущность и характеристика статических и динамических методов аутентификации пользователей. Методы устранения угроз, параметры службы защиты.

    курсовая работа [347,3 K], добавлен 25.04.2014

  • Основы биометрической идентификации. Возможность использования нейросетей для построения системы распознавания речи. Разработка программного обеспечения для защиты от несанкционированного доступа на основе спектрального анализа голоса пользователя.

    дипломная работа [2,8 M], добавлен 10.11.2013

  • Использование электронных ключей как средства аутентификации пользователей. Анализ методов идентификации и аутентификации с точки зрения применяемых в них технологий. Установка и настройка средств аутентификации "Rutoken", управление драйверами.

    курсовая работа [4,6 M], добавлен 11.01.2013

  • Общие принципы работы систем биометрической идентификации личности. Программные инструменты для разработки приложения, осуществляющего идентификацию пользователя на основе его клавиатурного почерка. Проектирование базы данных и структуры нейронной сети.

    дипломная работа [1,3 M], добавлен 20.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.