Ассоциативные сети

Термины, используемые для описания многих видов абстрактных данных в информатике и в теории искусственного интеллекта. Понятие ассоциативных сетей, анализ их адекватности. Механизм представления знаний - системы фреймов. Сравнение сетей и фреймов.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 31.05.2012
Размер файла 28,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Следуя Нильсону, я буду использовать термин структурированный объект по отношению к любой схеме представления, базовые блоки которой аналогичны узлам и дугам в теории графов или слотам и заполнителям структур записей. Я буду систематически сравнивать этот вид представления со схемами, производными от правил формальных грамматик или формализмов разнообразных логик. Представление с помощью структурированных объектов является весьма удобным средством для группирования информации более или менее естественным путем.

В предыдущей главе уже отмечалось, что порождающие правила очень подходят для представления связей состояния некоторой проблемы с действиями, которые необходимо предпринять для продвижения к искомому решению. Однако иногда для решения проблемы больший интерес представляет не ответ на вопрос "Что делать, если...?", а свойства и взаимоотношения между сложными объектами в предметной области. Представлять знания о таких объектах и событиях и их взаимосвязях (таких как тип -- подтип, часть -- целое, до -- после и т.д.) с помощью формальных правил далеко не всегда удобно. В этой и следующей главах мы рассмотрим способы, удобные для представления структурированных знаний, и остановимся на тех трудностях, с которыми столкнулись исследователи на практике. Формальный аппарат, который будет использован в данной главе, базируется на различных видах графов, узлы которых хранят информацию о сущностях в форме записей, а дуги определяют взаимоотношения между этими сущностями. В следующей главе мы рассмотрим объектно-ориентированный подход к представлению знаний, который влечет за собой определенную методологию разработки и соответствующий стиль программирования.

1 Графы, деревья и сети

Для описания многих видов абстрактных данных в информатике вообще и в теории искусственного интеллекта, в частности, очень широко используется терминология, заимствованная из теории графов. Следующие определения приведены здесь для того, чтобы показать, как эти заимствованные термины трактуются при описании структурированных объектов, что несколько отличается от их трактовки в "родной"математической сфере.

Все определения сформулированы в предположении, что существуют два вида примитивов -- узлы и связи. Узлы представляют собой исходящие и целевые пункты для связей и обычно каким-либо образом промаркированы. Связи также могут быть промаркированы, но это не обязательно. Все зависит от того, имеем ли мы дело со связями одного вида или разных. В общепринятой терминологии теории графов узлы называются "вершинами", а связи -- "ребрами графа", или "дугами".

В теории графов сетью называется взвешенный ориентированный граф, т.е. граф, в котором каждой связи сопоставлено определенное число. Обычно этими числами оценивается "стоимость" пути вдоль этой связи или длина связи, как на карте дорог. В каждом конкретном случае применения графа как формального средства описания проблемы эти числа могут трактоваться по-своему [с. 183, 1].

Следующее определение сети более близко к специфике задач искусственного интеллекта, которыми мы сейчас занимаемся.

Связи в сети практически всегда являются ориентированными, поскольку отношения, представленные взвешенными связями, не должны быть симметричными.

Для представления иерархических классификаций и сетей применяются деревья. Например, на 3 показано дерево классификации болезней по расположению пораженного органа. Корневой узел дерева представляет множество всех болезней, а его наследники -- группы болезней, соответствующие основному пораженному органу. Каждый из этих узлов будет иметь своих наследников, представляющих более узкие группы болезней, и т.д. Терминальные узлы дерева будут представлять конкретные заболевания.

Термин ассоциативные сети лучше отражает характер использования такого рода формальных структур для тех задач, которые мы рассматриваем. Поскольку аппарат ассоциативных сетей все шире используется для моделирования объектов и их взаимосвязей в конкретных предметных областях, что необходимо для построения экспертных систем, ниже мы рассмотрим их более детально[с. 208, 1].

2 Ассоциативные сети

Систематические исследования методики использования сетей для представления знаний начались с исследования методов представления семантики естественного языка [Quillian, 1968]. Квиллиан предположил, что наша способность понимать язык может быть охарактеризована, хотя бы в принципе, некоторым множеством правил. Он предположил, что процесс восприятия текста включает в себя "создание некоторого рода мысленного символического представления". Исходя из этого, он занялся изучением вопроса, как смысл отдельных слов может быть сохранен в компьютере, чтобы компьютер смог использовать их по тому же принципу, что и человек. Квиллиан был не первым, кто обратил внимание на важность обобщенного, абстрактного знания для понимания естественного языка. Еще ранее к такому же заключению пришли исследователи, занимавшиеся проблемами машинного перевода. Но Квиллиан первым предложил использовать для моделирования человеческой памяти сетевые структуры, в которых узлы и связи между ними представляли бы концепты и отношения между концептами. Он же предложил работающую модель извлечения информации из памяти[с. 131, 2].

Если мы стремимся создать программу, устойчивую к модификации данных, т.е. сохраняющую работоспособность при множестве таких модификаций, то нам непременно понадобится какое-либо средство проверки целостности знаний. Это, в свою очередь, накладывает определенные ограничения на методы представления знаний: знания должны быть организованы таким образом, чтобы упростить проверку их целостности. Именно такая цель преследовалась при создании тех видов структуры представления знаний, которые мы будем рассматривать в этой главе.

Разделение видов узлов и когнитивная экономия

Два аспекта модели памяти, предложенной Квиллианом, оказали особенно существенное влияние на последующее развитие исследований в области применения систем семантических сетей.

Во-первых, он ввел разделение между видами узлов, представляющих концепты. Один вид узлов он назвал узлами-типами. Такой узел представляет концепт, связанный с конфигурацией других узлов, узлов-лексем. Конфигурация узлов-лексем образует определение концепта узла-типа. Это в определенной степени напоминает толковый словарь, в котором каждое понятие (элемент словаря) определяется другими понятиями, также присутствующими в этом словаре, причем их смысл толкуется с помощью еще каких-либо понятий в этом словаре. Таким образом, смысл узла-лексемы определяется ссылкой на соответствующие узлы-типы.

Например, можно определить смысл слова "машина" как конструкцию из связанных компонентов, которые передают усилие для выполнения некоторой работы. Это потребует присоединения узла-типа для слова "машина" к узлам-лексемам, представляющим слова "конструкция", "компонент" и т.д. Однако в дополнение к связям, сформированным для определения смысла, могут существовать и связи к другим узлам-лексемам, например "телетайп" или "офис". Эти связи представляют знание о том, что телетайпы являются одним из видов машин, которые используется в офисе.

Другое интересное свойство модели памяти получило наименование когнитивной экономии. Суть его поясним на примере. Если известно, что машина -- это конструкция, состоящая из взаимодействующих деталей, а телетайп -- это тоже машина, то можно сделать вывод, что телетайп -- это тоже конструкция. Таким образом, нет смысла в явном виде хранить эту информацию, присоединяя ее к узлу "телетайп". Указывая, что этот узел сохраняет определенные свойства, заданные связями узла "машина", мы можем сэкономить память и сохранить при этом возможность извлечь всю необходимую информацию, если только будем способны построить правильную схему влияния одних узлов на другие[с. 96, 2].

Эта схема, которую в настоящее время принято называть схемой наследования свойств, получила широкое распространение в представлении знаний. Наследование свойств является типичным примером сохранения объема памяти за счет снижения производительности, которое должен учитывать разработчик схемы представления знаний. Мы увидим в дальнейшем, что такой подход влечет за собой появление множества нетривиальных проблем, в частности, если допустить возможность исключений в наследовании, т.е. существование таких узлов-лексем, которые не наследуют все свойства своего узла-типа. Кроме того, хотя смысл понятий полностью определен в пределах сети, но для каждого отдельного понятия он "размазывается", т.е. отдельные части определения связываются с разными узлами. В нашем примере определение понятия "телетайп" только частично хранится в соответствующем узле, а остальная часть определения находится в узле "машина".Таким образом, помимо антагонизма "объем памяти/производительность", появляется еще и антагонизм между модульностью определения и разумностью этого определения с точки зрения пользователя. Тем не менее, если эта идея будет корректно реализована, программа всегда будет знать, как отыскать отдельные части определения некоторой сущности и собрать их воедино. Главное же преимущество состоит в том, что в узле можно хранить произвольное количество семантической информации, например данные о диапазонах значений свойств, которыми могут обладать узлы-лексемы определенного типа. В чистом виде такая организация памяти не практикуется при использовании формализмов вроде продукционных систем, поскольку придется выполнять трудоемкий анализ целостности информации в рабочей памяти либо с привлечением специальных правил, описывающих такую целостность, либо с помощью самих правил поиска решений. В любом случае это потребует значительных вычислительных ресурсов.

3 Анализ адекватности ассоциативных сетей

Основную операцию извлечения информации в той модели обработки, которая следует из предложенной Квиллианом модели памяти, можно охарактеризовать как распространяющуюся активность. Идея состоит в том, что если желательно знать, является ли телетайп машиной, то необходимо искать, т.е. распространить "активность" некоторого вида во всех направлениях -- как от узла-типа " телетайп", так и от узла-типа "машина". Если где-то эти две волны встретятся, то таким образом будет установлено существование связи между этими двумя концептами, т.е. определен путь на графе от одного узла к другому. Такая распространяющаяся в разных направлениях активность реализуется передачей маркеров вдоль именованных связей. Мы еще раз вернемся к этой, на первый взгляд, простой, но довольно продуктивной идее при обсуждении нейронных сетей[с. 48, 3].

Интересно отметить, что идеи Квиллиана не получили широкого распространения в качестве модели психологической организации и функционирования памяти человека. При проверке адекватности этой модели Коллинс и Квиллиан измеряли время, которое требовалось испытуемым для ответа на вопрос о принадлежности определенного понятия к некоторой категории и о его свойствах [Collins and Quillian, 1969]. Оказалось, что время, затрачиваемое на поиск ответа, действительно увеличивается по мере увеличения количества узлов в сети, описывающей связи между понятиями. Однако такая зависимость имела место только в отношении положительных ответов. Существовали определенные подозрения, что применение предложенной модели для случая отрицательных ответов натолкнется на определенные трудности. И последующие эксперименты, проведенные другими исследователями, эти подозрения подтвердили.

Существует довольно обширный перечень проблем, при решении которых представление, базирующееся на формализме ассоциативных сетей, оказывается весьма полезным. В 1970-х годах было опубликовано множество работ, в которых анализировались различные виды такого формализма. Наиболее удачной из них, на наш взгляд, является работа Вудса [Woods, 1975]. Использование узлов и связей в сети для представления понятий и отношений между ними может показаться само собой разумеющимся, но опыт показал, что на этом пути неосторожного путника поджидает множество ловушек.

В различных вариантах спецификаций структуры сети далеко не всегда четко определяется смысл маркировки узлов. Так, если рассмотреть узел-тип, имеющий маркировку "телетайп", то часто бывает непонятно, представляет ли этот узел понятие "телетайп", или класс всех агрегатов типа "телетайп", или какой-либо конкретный телетайп. Аналогично, и узел-лексема также открыт для множества толкований -- определенный телетайп, какой-то телетайп, произвольные телетайпы и т.д. Разные толкования влекут за собой и разный характер влияния этого узла на другие в сети, а это играет весьма важную роль в дальнейшем анализе.

Поиск пересечения неизбежно "тянет за собой" проблему преодоления комбинаторного взрыва, о которой шла речь в главе 2. Поэтому создается впечатление, что организация памяти в терминах множества узлов, для которых в качестве главного вида процесса извлечения используется распространяющаяся по всем направлениям активность, приведет к образованию системы с труднопредсказуемым поведением. Например, весьма вероятно, что при отрицательных ответах на запросы придется выполнить огромное количество элементарных действий, поскольку нужно убедиться, что не существует пересекающихся путей на графе сети между двумя заданными узлами.

Из сказанного выше ясно, что первоначальные виды формализмов ассоциативных сетей страдают минимум двумя недостатками.

Сети являются логически неадекватными, поскольку в них нельзя представить множество различий, представимых в логическом исчислении, например различие между определенным телетайпом, любым единственным телетайпом, всеми телетайпами, ни одним телетайпом и т.д. Смысл или значение, которые ассоциируются с узлами и связями в сети, часто сложным образом связаны с такими характеристиками системы, как способность к извлечению информации и анализу взаимовлияний. Такое смешение семантики с деталями реализации является результатом того, что сети одновременно являются и средством представления знаний, и средством извлечения из них нужной информации, и средством конструирования заключений, основанных на знаниях, причем везде используется один и тот же набор ассоциативных механизмов. Естественно, что при этом различия между тремя означенными сторонами модели представления смазываются, теряют четкость.

Сети являются эвристически неадекватными, поскольку поиск информации в ней сам по себе знаниями не управляется. Другими словами, этот механизм не предполагает наличия какого-либо знания о том, как искать нужную нам информацию в представленных знаниях. Эти два недостатка иногда "усиливают" друг друга самым неприятным образом. Например, если невозможно представить логическое отрицание или исключение (логическая неадекватность), это приведет к определенным "провалам" в знаниях, которые к тому же нельзя ликвидировать эвристически, прекратив поиск в этом направлении (эвристическая неадекватность) [с. 201, 4].

4 Представление типовых объектов и ситуаций

В этом разделе мы рассмотрим более простой механизм представления знаний, названный системой фреймов. Этот механизм появился в результате стремления объединить декларативные знания об объектах, о событиях и их свойствах и процедурные знания о методах извлечения информации и достижения целей. Предполагалось, что механизм фреймов поможет избежать ряда проблем, связанных с представлением на основе семантических сетей. Основные понятия концепции фреймов

Становление теории систем фреймов во многом обязано ряду интуитивных предположений, касающихся механизмов психологической деятельности человека. В частности, предполагается, что представление понятий в мозге не требует строгого формулирования набора свойств, которыми должна обладать та или иная сущность, чтобы можно было рассматривать ее в качестве представителя определенной категории сущностей. Многие из тех категорий, которыми мы пользуемся, не имеют четкого определения, а базируются на довольно расплывчатых понятиях. Создается впечатление, что человек более всего обращает внимание на те бросающиеся в глаза свойства, которые ассоциируются с объектами, наиболее ярко представляющими свой класс.Такие объекты были названы "прототипическими объектами", или прототипами. В частности, "прототипическая" птица, например воробей, может летать, а потому у нас есть основание полагать, что это -- свойство всех птиц, хотя и существуют редкие виды птиц, которые этим свойством не обладают, например пингвины. Именно в этом смысле воробей является лучшим экземпляром категории "птицы", чем пингвин, поскольку он представляет более типические свойства объектов своего класса. Несмотря на существование видов птиц, являющихся исключением в своем классе, мы можем сформулировать обобщенное свойство объектов этого класса следующим образом: "птицы летают"[с. 74, 5].

Теперь обратимся к объектам другого рода-- математическим, например многоугольникам. По отношению к этой категории объектов у нас также имеется интуитивное представление о типичности. Например, рассматривая четырехугольники, представленные на 5, вряд ли кто будет оспаривать утверждение, что "типичность" объектов увеличивается по мере перехода от фигур, расположенных слева, к фигурам, расположенным справа. Четырехугольник, не обладающий выпуклостью, кажется нам менее типическим, чем выпуклый, а прямоугольник кажется более типическим, чем выпуклый четырехугольник с различными внутренними углами, возможно потому, что площадь фигуры коррелируется в нашем сознании с длиной периметра, а эта связь лучше проявляется при равных значениях внутренних углов.

В системе фреймов предпринимается попытка судить о классе объектов, используя представление знаний о прототипах, которые хорошо представляют большинство разновидностей объектов данного класса, но должны быть каким-то образом скорректированы, для того чтобы представить всю сложность, присущую реальному миру. Так, если мне ничего не известно о площади более или менее прямоугольного участка земли, но известны длины сторон, то я могу оценить площадь, полагая, что внутренние углы контура этого участка почти равны. В худшем случае, если мои предположения о равенстве углов окажутся уж слишком далеки от действительности, то оценка площади будет завышенной, но такая ситуация типична для подавляющего большинства эвристических механизмов.

При решении практических проблем мы встречаемся с изобилием исключений из правил, а границы между разными классами оказываются очень размытыми. Системы фреймов оказываются полезными по той причине, что они дают нам в руки средства структурирования эвристических знаний, связанных с приложением правил и классификацией объектов. При использовании фреймов эвристические знания не "размазываются" по программному коду приложения, но и не собираются воедино в виде метазнаний, а распределяются между теми видами объектов, к которым они приложимы, и существуют на уровне управления в иерархии представления таких объектов.

Фреймы и графы Минский в своей работе определил фрейм как "структуру данных для представления стереотипных ситуаций". Эту структуру он наполнил самой разнообразной информацией: об объектах и событиях, которые следует ожидать в этой" ситуации, и о том, как использовать информацию, имеющуюся во фрейме. Идея состояла в том, чтобы сконцентрировать все знания о данном классе объектов или событий в единой структуре данных, а не распределять их между множеством более мелких структур вроде логических формул или порождающих правил. Такие знания либо сосредоточены в самой структуре данных, либо доступны из этой структуры (например, хранятся в другой структуре, связанной с фреймом).

Таким образом, по существу, фрейм оказался тем средством, которое помогло связать декларативные и процедурные знания о некоторой сущности в структуру записей, которая состоит из слотов и наполнителей (filler). Слоты играют ту же роль, что и поля в записи, а наполнители -- это значения, хранящиеся в полях. Однако, как будет сказано ниже, фреймы отличаются от привычных программных структур вроде записей в языке PASCAL.

Каждый фрейм имеет специальный слот, заполненный наименованием сущности, которую он представляет. Другие слоты заполнены значениями разнообразных атрибутов, ассоциирующихся с объектом. Это могут быть и процедуры, которые необходимо активизировать всякий раз, когда осуществляется доступ к фрейму или его обновление. Идея состоит в том, чтобы выполнение большей части вычислений, связанных с решением проблемы, явилось побочным эффектом передачи данных во фрейм или извлечения данных из него[с. 81, 2].

Фрейм также можно рассматривать как сложный узел в особого вида ассоциативной сети. Как правило, фреймы организованы в виде "ослабленной иерархии" (или "гетерархии"), в которой фреймы, расположенные ниже в сети, могут наследовать значения слотов разных фреймов, расположенных выше. (Гетерархия -- это "запутанная иерархия", т.е. ациклический граф, в котором узлы могут иметь более одного предшественника.)

Фундаментальная идея состоит в том, что свойства и процедуры, ассоциированные с фреймами в виде свойств узлов, расположенных выше в системе фреймов, являются более или менее фиксированными, поскольку они представляют те вещи или понятия, которые в большинстве случаев являются истинными для интересующей нас сущности, в то время как фреймы более нижних уровней имеют слоты, которые должны быть заполнены наиболее динамической информацией, подверженной частым изменениям. Если такого рода динамическая информация отсутствует из-за неполноты наших знаний о наиболее вероятном состоянии дел, то слоты фреймов более нижних уровней заполняются данными, унаследованными от фреймов более верхних уровней, которые носят глобальный характер. Данные, которые передаются в процессе функционирования системы от посторонних источников знаний во фреймы нижних уровней, имеют более высокий приоритет, чем данные, унаследованные от фреймов более верхних уровней[с. 186, 6].

Среди связей в системе фреймов особо нужно выделить связи между экземплярами и классами и связи между классами и суперклассами. Узел Компьютер имеет связь с узлом Машина, которая представляет отношение "класс-суперкласс", а узел sol2, представляющий конкретный компьютер (тот, на котором я работаю), имеет связь с узлом Компьютер, которая представляет отношение "экземпляр-класс". Свойства и отношения, которые в типичной семантической сети кодируются маркировкой связей между узлами, теперь кодируются с помощью представления слот-заполнитель. Кроме того, со слотами может быть ассоциирована любая дополнительная информация, например процедуры вычисления значения этого слота в случае отсутствия явного его заполнения, процедуры обновления значения слота при изменении значения другого слота, ограничения на величины, хранящиеся в слотах, и т.д. Значения по умолчанию и демоны

Представьте себя на некоторое время в роли агента по оценке недвижимости. Вы должны оценить примерную стоимость на рынке земельных участков, полной информацией о которых не располагаете. Большинство участков имеет, как правило, форму выпуклых прямоугольников, поэтому можно оценить стоимость участков, предполагая, что те, о которых идет речь, также имеют подобную форму, если только у вас нет конкретной информации об обратном.

Перейдем к следующему уровню в иерархии фреймов. Для фрейма Четырехугольник совершенно очевидно нужно установить значение 4 в слот Количество сторон. Это значение будет наследоваться фреймами на каждом из последующих уровней иерархии. Вычислять площадь и цену всех фигур, представленных фреймами последующих уровней, можно тем же способом, что и для многоугольника. Поэтому описанные выше демоны также могут быть унаследованы всеми последующими фреймами.

Но для четырехугольника можно примерно оценить площадь, даже не располагая информацией о значениях внутренних углов контура, а зная только длины сторон. Вполне приемлемые результаты можно получить с помощью следующего эвристического способа: среднюю длину стороны для одной пары противолежащих сторон умножить на среднюю длину стороны для другой пары. Этот метод даст существенную ошибку только для четырехугольников, не являющихся выпуклыми, а такое встречается очень редко.

Эта эвристика может быть реализована в виде демона по требованию, подсоединенного к слоту Площадь фрейма Четырехугольник. Такой демон должен выполнять следующее:

· если имеется информация о величинах углов четырехугольника и длинах сторон, то вызывать демон фрейма Многоугольник и выполнять точное вычисление площади;

· если имеется только информация о длинах сторон четырехугольника, то выполнять вычисление по приближенному эвристическому методу;

· если отсутствует любая информация о параметрах четырехугольника, не выполнять никаких вычислений[7].

Фреймы, представляющие все последующие разновидности четырехугольников, наследуют значение из слота Количество сторон фрейма Четырехугольник. Но в каждом из этих фреймов можно реализовать свою процедуру вычисления площади, лучше учитывающую особенности именно данного вида фигур. Например, площадь трапеции можно вычислить как произведение высоты на среднюю длину оснований, а фреймы прямоугольника и квадрата могут унаследовать эту процедуру у параллелограмма, площадь которого равна произведению основания на высоту.

Этот простой пример демонстрирует, как, используя значения по умолчанию и демоны, можно заполнить слоты иерархической системы фреймов, причем этот механизм оказывается более удобным, чем тот, который используется в структурах записей языка PASCAL. Данные, процедуры и определения оформляются в виде единого пакета и образуют отдельный модуль для каждого фрейма, причем разные модули могут совместно использовать данные и процедуры, пользуясь механизмом наследования.

Реализация фреймов и наследования в языке CLIPS

Хотя язык CLIPS и не поддерживает в явном виде формализм семантических сетей и фреймов, их можно неявно определить, используя имеющуюся в CLIPS конструкцию def class. Мы более подробно поговорим об этой конструкции в следующей главе, поскольку ее основное назначение -- реализация объектно-ориентированного подхода [7].

ассоциативная сеть информатика фрейм

5 Сравнение сетей и фреймов

Подводя итог всему сказанному выше об ассоциативных сетях и фреймах, отметим, что в большинстве предлагаемых структур сетей не удалось дать четкий ответ на два важных вопроса.

· Что же действительно стоит за узлами и связями в сети?

· Как можно эффективно обрабатывать информацию, хранящуюся в такой структуре?

В большинстве последних исследований, касающихся представления знаний, предпочтение отдается фреймам. Такой подход дает вполне удовлетворительные ответы на сформулированные выше вопросы. Семантика узлов и связей четко прослеживается благодаря разделению узлов на узлы-типа и узлы-лексемы и ограничению количества связей. Эффективность обработки обеспечивается подключением к узлам специфических процедур, на которые возлагается вычисление значений переменных в ответ на запросы или при обновлении значений других свойств узла.

Использование фреймов в качестве основной структуры данных, хранящей информацию о типичных объектах и событиях, в настоящее время широко распространено в практике создания приложений искусственного интеллекта (см. об этом в главах 13 и 16). Большинство программных инструментальных средств, предназначенных для построения экспертных систем, обеспечивает тем или иным способом организацию базы знаний на основе фреймов (см. об этом подробнее в главах 17 и 18). Во многих случаях желательно оценить, какими возможностями обладает механизм представления гипотез с помощью фреймов в части использования таких данных, как совокупность симптомов или результатов наблюдений за поведением объектов. Сопоставление этих данных с информацией, хранящейся в слотах фреймов, предоставляет свидетельство в пользу гипотез, представленных фреймом, а также позволяет формулировать определенные предположения относительно других данных, например предположить существование дополнительных симптомов, присутствие или отсутствие которых сможет подтвердить (или опровергнуть) анализируемую гипотезу [8].

Естественно, для того чтобы реализовать систему фреймов в виде, пригодном для работы с конечным пользователем, требуется разработать программную оболочку и средства пользовательского интерфейса. Хотя к слотам отдельных фреймов и могут быть подключены специальные процедуры, эти локальные модули не способны взять на себя все заботы об организации вычислительного процесса в системе. Необходимо иметь в той или иной форме специальный интерпретатор, который будет формировать и обрабатывать запросы и принимать решение, при каких условиях можно считать достигнутой цель, сформулированную в запросе. Поэтому чаще всего фреймы используются в сочетании с другими средствами представления знаний, в частности в сочетании с порождающими правилами. В следующей главе мы рассмотрим стиль программирования, который в определенной степени избавляет структурированные объекты от необходимости пользоваться внешними средствами контроля, поскольку позволяет объектам пересылать сообщения друг другу и инициировать таким образом более сложные вычисления [8].

Заключение

Интеллектуальная информационная система - это компьютерная модель интеллектуальных возможностей человека в целенаправленном поиске, анализе и синтезе текущей информации об окружающей действительности для получения о ней новых знаний и решения на этой основе различных жизненно важных задач.

Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Чаще всего интеллектуальные системы применяют для решения задач, основная сложность которых связана с использованием слабо-формализованных знаний специалистов - практиков и где смысловая или логическая обработка информации преобладает над вычислительной. Например, понимание естественного языка, принятия решений в сложной ситуации, управление диспетчерским пультами. Системы, ядром которых является база знаний или модель предметной области, описанная на языке сверхвысокого уровня, приближенном к собственному, называют интеллектуальными. Такой язык сверхвысокого уровня называют языком представления знаний.

Перспективным путём совершенствования и дальнейшего развития экспертных систем является создание инструментальных средств, базирующихся на совместном использовании различных моделей представления знаний: продукционных, семантических, фреймов и логических моделей. Все эти модели являются математическим средством построения перспективных интеллектуальных автоматизированных систем обработки информации и управления.

Используемая литература

1. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы. Уч.- М.: Финансы и статистика, 2004.- 424 с.

2. Арсеньев С. Н., Шелобов С. И., Давыдова Т.Ю. «Принятие решений. Интегрированные информационные системы». Учебное пособие для ВУЗов. М.:Юнити-Дана, 2003.-270 с.

3. Джексон П. Введение в экспертные системы/ Учебное пособие - М.: «Вильямс», 2001 - 624с.

4. Леденева Т.М.,Подвольный С.Л.Системы искусственного интеллекта и принятия решений: учебное пособие; Уфа: УГАТУ, 2005. - 246 с.

5. Поспелов Г. С. «Искусственный интеллект. Новые информационные технологии» - М.: «Наука 2006г.» - 158 с.

6. Системы управления базами данных и знаний. Справ. Изд./А.Н. Наумов, А.М. Вендров, В.К. Иванов и др.; Под ред. А.Н. Наумова. - Финансы и статистика, 2001.- 201 с.

7. http://otherreferats.allbest.ru/programming/00070373_0.html

8. http://256bit.ru/Expert/Glava%206/Index1.htm

Размещено на Allbest.ru


Подобные документы

  • Представление знаний в когнитологии, информатике и искусственном интеллекте. Связи и структуры, язык и нотация. Формальные и неформальные модели представления знаний: в виде правил, с использованием фреймов, семантических сетей и нечетких высказываний.

    контрольная работа [29,9 K], добавлен 18.05.2009

  • Изучение фреймового способа представления знаний, его специфики и основных характеристик. Обзор других методов представления знаний, их плюсы и минусы. Иерархическая структура данных фрейма. Механизм управления выводом с помощью присоединенной процедуры.

    реферат [2,6 M], добавлен 22.12.2014

  • Понятие искусственного интеллекта в робототехнике и мехатронике. Структура и функции интеллектуальной системы управления. Классификация и типы знаний, представление их с помощью логики предикатов. Суть семантических сетей, фреймовое представление знаний.

    курс лекций [1,1 M], добавлен 14.01.2011

  • Значение сетевых структур в системах искусственного интеллекта, их применение для построения семантических сетей, фреймов и других логических конструкций. Составление программного кода на языке программирования Pascal, тестирование с ручном просчетом.

    курсовая работа [1,2 M], добавлен 31.07.2010

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

  • Потребность отражения человеческих знаний в памяти компьютера. Модели представления знаний. Продукционные и формально-логические модели. Исчисление предикатов первого порядка. Основные свойства теории фреймов. Аналитическая платформа Deductor.

    курсовая работа [538,2 K], добавлен 09.04.2015

  • Проектирование экспертной системы выбора нейронной сети. Сущность семантических сетей и фреймов. MatLab и системы Фаззи-регулирования. Реализация программы с использованием пакета fuzzy logic toolbox системы MatLab 7. Составление продукционных правил.

    курсовая работа [904,4 K], добавлен 17.03.2016

  • Фреймовые модели представления знаний. Разработка структуры фреймов для реализации экспертной системы. Разработка экспертной системы с фреймовой моделью представления знаний. Редактирование базы фактов кандидатов и описание режима консультации.

    курсовая работа [1,3 M], добавлен 13.10.2012

  • Искусственные нейросетевые системы как перспективное направление в области разработки искусственного интеллекта. Назначение нейро-нечётких сетей. Гибридная сеть ANFIS. Устройство и принцип работы нейро-нечётких сетей, применение в экономике и бизнесе.

    контрольная работа [102,5 K], добавлен 21.06.2012

  • Классы и группы моделей представления знаний. Состав продукционной системы. Классификация моделей представления знаний. Программные средства для реализации семантических сетей. Участок сети причинно-следственных связей. Достоинства продукционной модели.

    презентация [380,4 K], добавлен 14.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.