Разработка математической модели процесса абсорбции методом Брандона
Особенности использовании метода Брандона в задаче построения модели. Определение величины частного коэффициента множественной корреляции. Использование параметров статистической модели для расчета абсорберов и для построения системы теплообмена.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 27.05.2012 |
Размер файла | 221,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
КУРСОВАЯ РАБОТА
Тема: Разработка математической модели процесса абсорбции методом Брандона.
Введение
Современные информационные технологии
Роль информационных технологий с каждым годом стремительно растет. Современные информационные технологии с их растущим потенциалом и быстро снижающимися издержками открывают большие возможности для новых форм организации труда и занятости в рамках как отдельных корпораций, так и общества в целом. Они привносят изменения не только во внутреннюю политику самых разных по уровню развития стран мира, но и в отношения между этими странами, в роль, которую играют в мировой системе международные организации, общественные движения, финансовые группы, преступные организации и отдельные лица. Спектр таких возможностей значительно расширяется - нововведения воздействуют на все сферы жизни людей, семью, образование, работу, географические границы человеческих общностей и т. д. Сегодня информационные технологии могут внести решающий вклад в укрепление взаимосвязи между ростом производительности труда, объемов производства, инвестиций и занятости. Новые виды услуг, распространяющиеся по сетям, в состоянии создать немало рабочих мест, что подтверждает практика последних лет.
До начала 1980-х годов информационные технологии были представлены главным образом большими ЭВМ и использовались для нужд лишь половины корпоративной "пирамиды", поскольку из-за их высокой себестоимости было невозможно автоматизировать решение управленческих задач. Автоматизация повторяющихся процессов обработки информации была сравнима с автоматизацией ручного труда на основе применения машин, заменивших людей. Согласно оценкам, с 1960 по 1980 г. свыше 12 млн. существовавших или потенциальных рабочих мест, связанных с обработкой информации, были автоматизированы посредством использования традиционных ЭВМ. Автоматизация рабочих мест, находившихся на нижних уровнях административной иерархии, привела к уменьшению размеров предприятий, но в то же время не вызвала кардинальных изменений в общей модели организации труда. В то время казалось маловероятным, что информационные технологии могут способствовать стабильному социально-экономическому развитию; наоборот, факты свидетельствовали о том, что их роль в повышении производительности труда, формировании моделей потребительского поведения, ориентированных на новые товары и услуги, создании новых рабочих мест в отраслях информационные технологии по сравнению с выбытием рабочих мест в отраслях - потребителях их продукции была в целом незначительной.
o Отрасль информационных технологий является одной из наиболее динамично развивающихся отраслей в мире. За последние 5 лет доходы отрасли росли в среднем на 10 процентов в год, при среднем темпе роста экономики 3-4 процента, что привело к увеличению доли отрасли в структуре ВВП как развитых, так и развивающихся стран. По прогнозам международных аналитических агентств, высокие темпы роста, около 9 процентов в год, сохранятся и в течение следующих пяти лет.
o Особенности отрасли информационных технологий позволяют перенести в другие страны не только разработку программного обеспечения, но и поддержку продуктов, а также ряд вспомогательных процессов. Большое количество международных ИТ-компаний, начиная со второй половины 90-х годов, открыло свои подразделения в Индии и Китае и перенесло выполнение части функций или целые бизнес-процессы в эти подразделения. Параллельно ИТ-компании развивающихся стран оказывают услуги клиентам в развитых странах с помощью удаленного доступа. Бесспорным лидером во всех сегментах оффшора пока является Индия, с общим объемом ИТ-экспорта около 15 млрд. долларов в 2003 году. В последнее время на рынок вышли страны Восточной Европы, ориентированные на рынок ЕС, а также Китай, который в основном ориентирован на близлежащие страны (Японию, Южную Корею, Гонкнг, Филиппины).
o Развитие телекоммуникаций и многократное снижение стоимости передачи данных стало критическим фактором, обеспечивающим рост рынка экспортируемых услуг. Наличие хорошей телекоммуникационной инфраструктуры по конкурентным ценам является необходимым фактором для того, чтобы страна могла претендовать на лидерские позиции на этом рынке.
Задание
Разработать математическую модель процесса абсорбции. Для получения статистической модели абсорбера использовать метод Брандона.
Влияющие факторы:
Твх.- температура на входе в абсорбер, C;
Плотность орошения, м?/м?;
Объем абсорбера, м?;
Выходные параметры:
Tвых.- температура на выходе из абсорбера C;
y- степень абсорбции, %
№ опыта |
Твх. ,°C |
Плотность орошения, м?/м? |
Объем абсорбера, м? |
Tвых., °C |
Y,% |
|
1 |
170 |
13 |
22 |
65 |
72.2 |
|
2 |
180 |
14 |
25 |
57 |
78.1 |
|
3 |
170 |
13 |
30 |
49 |
84.4 |
|
4 |
160 |
18 |
21 |
56 |
85.1 |
|
5 |
188 |
17 |
27 |
49.5 |
87.9 |
|
6 |
200 |
16 |
24 |
59 |
79.0 |
|
7 |
210 |
19 |
22 |
60 |
80.05 |
|
8 |
150 |
20 |
25 |
44 |
99.9 |
|
9 |
174 |
21 |
26 |
44.5 |
98.9 |
|
10 |
182 |
21 |
26 |
45.5 |
97.15 |
|
11 |
190 |
21 |
26 |
46.5 |
95.5 |
|
12 |
170 |
18 |
26 |
47.5 |
92.43 |
|
13 |
160 |
17 |
29 |
43 |
97.19 |
|
14 |
170 |
15 |
24 |
56 |
81.5 |
|
15 |
180 |
15 |
24 |
57.5 |
80.0 |
|
16 |
190 |
15 |
24 |
59 |
78.0 |
|
17 |
210 |
15 |
24 |
62 |
75.0 |
|
18 |
225 |
16 |
22 |
62 |
72.0 |
|
19 |
210 |
18 |
29 |
48 |
90.0 |
|
20 |
150 |
18 |
19 |
59 |
83.5 |
|
21 |
186 |
14 |
25 |
58 |
77.5 |
|
22 |
190 |
14 |
25 |
59 |
77.0 |
Практическая часть
Решение задачи на языке программирования VisualBasic 6.0
Dim a() As Single
Dim n As Integer, m As Integer
Sub mnk6(ftr As Integer, n1 As Integer, masX() As Single, masY() As Single, masYR() As Single, formula As String)
Dim matrYR() As Single, x() As Single, y() As Single, skwOtkl() As Single, i As Integer
Dim ka As Single, kb As Single, AB() As Single, minS As Single, indMin As Integer
ReDimmatrYR(1 To n1, 1 To 6) As Single, x(1 To n1) As Single, y(1 To n1) As Single, skwOtkl(1 To 6) As Single
ReDimAB(1 To 6, 1 To 2) As Single
'1 --- Уравнение y=a*x+b
For i = 1 To n1
x(i) = masX(i): y(i) = masY(i)
Next i
Call KoefAB(n1, x(), y(), ka, kb)
AB(1, 1) = ka: AB(1, 2) = kb
skwOtkl(1) = 0
For i = 1 To n1
matrYR(i, 1) = ka * masX(i) + kb
skwOtkl(1) = skwOtkl(1) + (masY(i) - matrYR(i, 1)) ^ 2
Next i
'2 --- Уравнениеy=1/(a*x+b)
For i = 1 To n1
x(i) = masX(i): y(i) = 1 / masY(i)
Next i
Call KoefAB(n1, x(), y(), ka, kb)
AB(2, 1) = ka: AB(2, 2) = kb
skwOtkl(2) = 0
For i = 1 To n1
matrYR(i, 2) = 1 / (ka * masX(i) + kb)
skwOtkl(2) = skwOtkl(2) + (masY(i) - matrYR(i, 2)) ^ 2
Next i
'3 --- Уравнение y=a/x+b
For i = 1 To n1
x(i) = 1 / masX(i): y(i) = masY(i)
Next i
Call KoefAB(n1, x(), y(), ka, kb)
AB(3, 1) = ka: AB(3, 2) = kb
skwOtkl(3) = 0
For i = 1 To n1
matrYR(i, 3) = ka / masX(i) + kb
skwOtkl(3) = skwOtkl(3) + (masY(i) - matrYR(i, 3)) ^ 2
Next i
'4 --- Уравнение y=b*x^a
For i = 1 To n1
x(i) = Log(masX(i)): y(i) = Log(masY(i))
Next i
Call KoefAB(n1, x(), y(), ka, kb)
AB(4, 1) = ka: AB(4, 2) = Exp(kb)
skwOtkl(4) = 0
For i = 1 To n1
matrYR(i, 4) = Exp(kb) * masX(i) ^ ka
skwOtkl(4) = skwOtkl(4) + (masY(i) - matrYR(i, 4)) ^ 2
Next i
'5 --- Уравнениеy=b*exp(a*x)
For i = 1 To n1
y(i) = Log(masY(i)): x(i) = masX(i)
Next i
Call KoefAB(n1, x(), y(), ka, kb)
AB(5, 1) = ka: AB(5, 2) = Exp(kb)
skwOtkl(5) = 0
For i = 1 To n1
matrYR(i, 5) = Exp(kb) * Exp(ka * masX(i))
skwOtkl(5) = skwOtkl(5) + (y(i) - matrYR(i, 5)) ^ 2
Next i
'6 --- Уравнениеy=a*log(x)+b
For i = 1 To n1
y(i) = masY(i): x(i) = Log(masX(i))
Next i
Call KoefAB(n1, x(), y(), ka, kb)
AB(6, 1) = ka: AB(6, 2) = kb
skwOtkl(6) = 0
For i = 1 To n1
matrYR(i, 6) = ka * Log(masX(i)) + kb
skwOtkl(6) = skwOtkl(6) + (y(i) - matrYR(i, 6)) ^ 2
Next i
indMin = 1
minS = skwOtkl(1)
For i = 2 To 6
If minS>skwOtkl(i) Then
indMin = i
minS = skwOtkl(i)
End If
Next i
If indMin = 1 Then
formula = CStr(AB(1, 1)) + "*x" + CStr(ftr) + "+" + CStr(AB(1, 2))
For i = 1 To n1
masYR(i) = matrYR(i, 1)
Next i
End If
If indMin = 2 Then
formula = "1/(" + CStr(AB(2, 1)) + "*x" + CStr(ftr) + "+" + CStr(AB(2, 2)) + ")"
For i = 1 To n1
masYR(i) = matrYR(i, 2)
Next i
End If
If indMin = 3 Then
formula = CStr(AB(3, 1)) + "/x" + CStr(ftr) + "+" + CStr(AB(3, 2))
For i = 1 To n1
masYR(i) = matrYR(i, 3)
Next i
End If
If indMin = 4 Then
formula = CStr(AB(4, 2)) + "*x" + CStr(ftr) + "^" + CStr(AB(4, 1))
For i = 1 To n1
masYR(i) = matrYR(i, 4)
Next i
End If
If indMin = 5 Then
formula = CStr(AB(5, 2)) + "*exp(" + CStr(AB(5, 1)) + "*x" + CStr(ftr) + ")"
For i = 1 To n1
masYR(i) = matrYR(i, 5)
Next i
End If
If indMin = 6 Then
formula = CStr(AB(6, 1)) + "*ln(x" + CStr(ftr) + ")+" + CStr(AB(6, 2))
For i = 1 To n1
masYR(i) = matrYR(i, 6)
Next i
End If
End Sub
Private Sub mnuComputation_Click()
Dim stroka As String, i As Integer, ind() As Integer, rabA() As Single, eta As Single, eps As Single
Dim SrZnachY As Single, NormY() As Single, msX() As Single, msY() As Single, formul() As String
Dim j As Integer, YRASCH() As Single, formulka As String, s1 As Single, s2 As Single, s3 As Single
ReDimind(1 To m) As Integer, rabA(1 To n, 1 To m + 1) As Single, NormY(1 To n, 1 To m) As Single
ReDimmsX(1 To n) As Single, msY(1 To n) As Single, msyr(1 To n) As Single, formul(1 To m) As String
ReDimYRASCH(1 To n) As Single
For i = 1 To m
List1.ListIndex = i - 1
stroka = Mid(List1.Text, 2, 7): ind(i) = CInt(stroka)
Next i
For j = 1 To m
For i = 1 To n
rabA(i, j) = a(i, ind(j))
rabA(i, m + 1) = a(i, m + 1)
Next i
Next j
SrZnach = 0
For i = 1 To n
SrZnachY = SrZnachY + rabA(i, m + 1)
Next i
SrZnachY = SrZnachY / n
formulka = "y=" + CStr(SrZnachY)
For i = 1 To n
YRASCH(i) = SrZnachY
NormY(i, 1) = a(i, m + 1) / SrZnachY
Next i
For j = 1 To m
For i = 1 To n
msX(i) = rabA(i, j)
msY(i) = NormY(i, j)
Next i
Call mnk6(ind(j), n, msX(), msY(), msyr(), formul(j))
For i = 1 To n
YRASCH(i) = YRASCH(i) * msyr(i)
Next i
If j < m Then
For i = 1 To n
NormY(i, j + 1) = NormY(i, j) / msyr(i)
Next i
End If
formulka = formulka + "*(" + formul(j) + ")"
Next j
Label1.Caption = "РЕЗУЛЬТАТЫРАСЧЕТА:"
Label5.Caption = "ПОДОБРАНАМОДЕЛЬ: " + vbCrLf
Label5.Caption = Label5.Caption + formulka
Label5.Visible = True
With MSFlexGrid1
.Cols = .Cols + 1: .Col = .Cols - 1: .Row = 0: .Text = "YR"
For i = 1 To n
.Row = i: .Text = CStr(YRASCH(i))
Next i
End With
s1 = 0: s2 = 0: s3 = 0
For i = 1 To n
s1 = s1 + (a(i, m + 1) - YRASCH(i)) ^ 2
s2 = s2 + (a(i, m + 1) - SrZnachY) ^ 2
s3 = s3 + Abs(a(i, m + 1) - YRASCH(i)) / Abs(a(i, m + 1))
Next i
eps = 100 / n * s3
eta = Sqr(1 - s1 / s2)
Text1.Text = CStr(eta)
Text2.Text = CStr(eps)
End Sub
Private Sub mnuExit_Click()
End
End Sub
Sub KoefAB(n As Integer, x() As Single, y() As Single, ka As Single, kb As Single)
Dim s1 As Single, s2 As Single, s3 As Single, s4 As Single
s1 = 0: s2 = 0: s3 = 0: s4 = 0
For i = 1 To n
s1 = s1 + x(i)
s2 = s2 + x(i) * x(i)
s3 = s3 + x(i) * y(i)
s4 = s4 + y(i)
Next i
ka = (n * s3 - s1 * s4) / (n * s2 - s1 * s1)
kb = (s2 * s4 - s1 * s3) / (n * s2 - s1 * s1)
End Sub
Private Function Opred(n1 As Integer, x1() As Single) As Single
Dim iAs Integer, j As Integer, d As Single
Dim e As Single, k As Integer, b1 As Integer, c As Integer
Dim a As Single, s As Single, g As Single, z As Integer
ReDimx(1 To n1, 1 To n1) As Single
z = 1
d = 1
For i = 1 To n1
For j = 1 To n1
x(i, j) = x1(i, j)
Next j
Next i
For k = 1 To n1 - 1
e = 0
For i = k To n1
For j = k To n1
If Abs(e) >= Abs(x(i, j)) Then GoTo m90
e = x(i, j): b1 = i: c = j
m90:
Next j
Next i
If k = b1 Then GoTo m120
For j = k To n1
s = x(k, j)
x(k, j) = x(b1, j)
x(b1, j) = s
Next j
z = -z
m120:
If k = c Then GoTo m150
For i = k To n1
s = x(i, k)
x(i, k) = x(i, c)
x(i, c) = s
Next i
z = -z
m150:
For i = k + 1 To n1
g = x(i, k) / x(k, k)
For j = k To n1
x(i, j) = x(i, j) - g * x(k, j)
Next j
Next i
Next k
For i = 1 To n1
d = d * x(i, i)
Next i
d = d * z
Opred = d
End Function
Function Rxy(n As Integer, x() As Single, y() As Single) As Single
Dim i As Integer, s1 As Single, s2 As Single, s3 As Single
Dim s4 As Single, s5 As Single
s1 = 0: s2 = 0: s3 = 0: s4 = 0: s5 = 0
For i = 1 To n
s1 = s1 + x(i)
s2 = s2 + x(i) ^ 2
s3 = s3 + x(i) * y(i)
s4 = s4 + y(i)
s5 = s5 + y(i) ^ 2
Next i
Rxy = (n * s3 - s1 * s4) / Sqr((n * s2 - s1 * s1) * (n * s5 - s4 * s4))
End Function
Private Sub mnuOpen_Click()
Dim s As String, i As Integer
CommonDialog1.Action = 1
s = CommonDialog1.FileName
Open s For Input As #1
Input #1, m, n
With MSFlexGrid1
.Cols = m + 2: .Rows = n + 1
.Col = 0: .Row = 0: .Text = "№"
For i = 1 To m
.Col = i: .Text = "X" + CStr(i)
Next i
.Col = m + 1: .Text = "Y"
ReDima(1 To n, 1 To m + 1) As Single
For i = 1 To n
.Col = 0: .Row = i: .Text = CStr(i)
For j = 1 To m + 1
Input #1, a(i, j)
.Col = j: .Text = CStr(a(i, j))
Next j
Next i
Close #1
End With
End Sub
Private Sub mnuRangir_Click()
Dim d() As Single, x1() As Single, y1() As Single
Dim dm1 As Single, dmk() As Single, dkk() As Single, KRxy() As Single
Dim i As Integer, j As Integer, a1() As Single, sz As String
ReDimd(1 To m + 1, 1 To m + 1) As Single, x1(1 To n) As Single, y1(1 To n) As Single
ReDimdmk(1 To m) As Single, dkk(1 To m) As Single, KRxy(1 To m) As Single
ReDima1(1 To m, 1 To m) As Single, smassiv(1 To m) As String
For i = 1 To m
smassiv(i) = "X" + CStr(i)
Next i
For i = 1 To m + 1
d(i, i) = 1
Next i
For j = 1 To m
For k = j + 1 To m + 1
For i = 1 To n
x1(i) = a(i, j): y1(i) = a(i, k)
Nexti
d(j, k) = Rxy(n, x1(), y1())
'транспонирование матрицы
d(k, j) = d(j, k)
Next k
Next j
'выводматрицы D
With MSFlexGrid2
.Cols = m + 1: .Rows = m + 1
For i = 1 To m + 1
For j = 1 To m + 1
.Col = j - 1: .ColWidth(.Col) = 1500: .Row = i - 1: .Text = CStr(d(i, j))
Next j
Next i
End With
'частнкоэффмножкоррел
Fori = 1 Tom
For j = 1 To m
a1(i, j) = d(i, j)
Next j
Next i
dm1 = Opred(m, a1())
For k = 1 To m
For i = 1 To m
k1 = 0
For j = 1 To m + 1
If j <> k Then
k1 = k1 + 1
a1(i, k1) = d(i, j)
End If
Next j
Next i
dmk(k) = Opred(m, a1())
Next k
For k = 1 To m
k1 = 0
For i = 1 To m + 1
If i<> k Then
k1 = k1 + 1: k2 = 0
For j = 1 To m + 1
If j <> k Then
k2 = k2 + 1
a1(k1, k2) = d(i, j)
End If
Next j
End If
Next i
dkk(k) = Opred(m, a1())
Next k
With MSFlexGrid3
.Rows = m: .Cols = 2: .FixedRows = 0: .FixedCols = 0
For i = 1 To m
.Row = i - 1
.Col = 0: .Text = "Ryx" + CStr(i) + "="
KRxy(i) = dmk(i) / Sqr(dm1 * dkk(i))
.Col = 1: .ColWidth(.Col) = 1500: .Text = CStr(KRxy(i))
Next i
End With
'сортировка
List1.Clear
For i = 1 To m - 1
k = i
For j = iTo m
If Abs(KRxy(k)) > Abs(KRxy(j)) Then k = j
Next j
sz = smassiv(k)
smassiv(k) = smassiv(i)
smassiv(i) = sz
Next i
For i = m To 1 Step -1
List1.AddItem (smassiv(i))
Next i
EndSub
Получение статистической модели абсорбера с помощью Метода Брандона
Сложный технологический процесс можно рассматривать как многомерный объект, на который действуют вектор входных параметров X и вектор управления Z. Выходные параметры составляют вектор выходных параметров Y. Общий вид статистической модели такого объекта в векторной форме
Y=f(X,Z). (9)
Для построения статистической модели абсорберов по данным таблицы 2 использовался метод Брандона (см. Приложение 2).
Сущность метода заключается в следующем. Предполагается, что функция F(x1,x2,…,xm) в формуле (9) является произведением функций от входных параметров, т.е.
, (10)
где yрi - расчетное значение i -го выходного параметра;
- средняя величина экспериментальных значений i - говыход-ного параметра;
n - количество опытов в исходной выборке.
При использовании метода Брандона важен порядок следования функций в уравнении (10). Чем больше влияние оказывает фактор на выходной параметр, тем меньшим должен быть его порядковый номер в указанном уравнении. Поэтому задача построения модели по методу Брандона разбивается на два этапа:
1. ранжирование влияющих факторов.
2. выбор вида зависимости и построение статистической модели.
Оценить степень влияния k-го фактора на выходной параметр можно по величине частного коэффициента множественной корреляции:
(11)
где - величина частного коэффициента корреляции, учитывающая влияние k-го фактора на выходной параметр y при условии, что влияние всех прочих факторов исключено; D- определитель матрицы, построенной из парных коэффициентов корреляции. Матрица имеет вид
Dm+1,k - определитель матрицы с вычеркнутыми m+1 строкой и k-м столбцом;
Dk,k , Dm+1,m+1 - определители матриц с вычеркнутыми k-м и (m+1)-м столбцом и строкой соответственно.
Порядок расположения влияющих факторов в уравнении (10) определяют в соответствии с убыванием величины частных коэффициентов корреляции. В уравнении (10) каждая из функций f1(x1),f2(x2),…fm(xm) принимается либо линейной, либо нелинейной (степенной, показательной, экспоненциальной и т.д.) брандон множественная корреляция абсорбер
Перед определением вида первой зависимости следует представить исходные экспериментальные значения выходного параметра в каждом опыте yэj в безразмерной форме yэ0j :
(12)
где yср- средняя величина выходного параметра.
Таким образом, исходными данными для поиска первой зависимости будут нормированные значения вектора выходных параметров и опытные значения первого влияющего фактора. Поиск зависимости yр1=f1(x1) может осуществляться по-разному.
Выбрав зависимость yр1=f1(x1), определяют остаточный показатель yэ1 для каждого наблюдения:
. (13)
Предполагая, что yэ1 не зависит от x1 ,а зависит от x2,…,xm , выбирают зависимость от второго фактора. Получив расчетную зависимость yр2=f2(x2 ), находят остаточный показатель yэ2 для каждого наблюдения:
(14)
Выполнив аналогичные действия для каждого k-го влияющего фактора, получают регрессионную зависимость для рассмотренного выходного параметра. Порядок расположения факторов для этой зависимости определен на этапе ранжирования и отличается от порядка факторов в уравнении (10). Совокупность зависимостей по каждому выходному параметру представляет собой статистическую модель многомерного технологического объекта.
Для определения адекватности модели используют оценки адекватности - корреляционное соотношение з и среднюю относительную оценку е:
(15)
(16)
В данной работе для построения статистической модели абсорберов 1 и 2 применялись электронные таблицы Excel. В статистической модели имелось 3 входных параметра - Tвх, плотность орошения П и объем абсорбера Vабс. Поскольку для рассматриваемой модели имели место два выходных параметра - Твых и степень абсорбции y, требовалось получить две отдельных статистических модели.
Для построения матрицы коэффициентов парной корреляции использовалась надстройка «Анализ данных» - «Корреляция». Для нахождения определителей матриц D использовалась стандартная функция МОПРЕД(массив).
После ранжирования факторов осуществлен подбор зависимостей выходных параметров от влияющих факторов, зависимости определялись с применением линий тренда на графике функций yэj=fj(xj)(выбраны зависимости, имеющие наибольшую величину досто-верности аппроксимации R^2).
Результаты:
1. Твых: результат ранжирования факторов: x1-Vабс; x2-П; x3-Твх.
f1(Vабс)=-0,001*(Vабс)^2+0,0152*Vабс+1,2384;
f2(П)=-0,0311*П+1,5259 ;
f3(Твх)=0,7074*exp(0,0019*Твх);
Твых=53,95*(-0,001*(Vабс)^2+0,0152*Vабс+1,2384)*
*(-0,0311*П+1,5259)*(0,7074*exp(0,0019*Твх)).
з=0,9802;
е=1,9 %.
2. y: результат ранжирования факторов: x1-П; x2-Vабс; x3-Твх.
f1(П)=0,0015*П?-0,0208*П+0,9224 ;
f2(Vабс)=0,0178*Vабс+0,5546;
f3(Tвх)=-0,3571*ln(Tвх)+2,8582;
y=84,4*(0,0015*П?-0,0208*П+0,9224)*(0,0178*Vабс+0,5546)*
*(-0,3571*ln(Tвх)+2,8582);
з=0,9743;
е=1,33 %.
Обе модели адекватно описывают процесс.
В соответствии с Заданием для абсорбера 1 определены значения входных параметров: Твх=180°C, П=18 м?/м?, Vабс=25 м?. В соответствии с разработанной статистической моделью для абсорбера 1 получены значения выходных параметров: Твых=51,6°C, y=87,57.
В соответствии с Заданием для абсорбера 2 определены значения входных параметров: Твх=175°C, П=18 м?/м?, Vабс=26 м?. В соответствии с разработанной статистической моделью для абсорбера 2 получены значения выходных параметров: Твых=49,2°C, y=90,02.
Полученные значения выходных параметров использовались для расчета абсорберов и для построения системы теплообмена.
Рекомендуемая литература
1. ГайковА.В. Системный анализ и принятие решений. Практикум по программированию на языке VisualBasic : учебное пособие. / Гайков А.В., Суханов М.Б., Холоднов В.А. - СПб.: СПбГТИ(ТУ), 2006. - 183 с.
2. Дукин А.Н. Самоучитель VisualBasic 2010 / А.Н. Дукин, А.А.Пожидаев. - СПб.: БХВ-Петербург, 2010. - 560 с.
3. Майо Дж. Самоучитель MicrosoftVisualStudio 2010 - СПб.: БХВ-Петербург, 2011. - 464 с.
4. НемнюгинС.А. TurboPascal. Программирование на языке высокого уровня: Учебник для вузов. 2-е изд. - СПб.: Питер, 2008. - 544 с.
5. Фараонов В. TurboPascal: Учебное пособие. 2-е изд. - СПб.: Питер, 2012. - 368 с.
Размещено на Allbest.ru
Подобные документы
Анализ матрицы коэффициентов парной корреляции. Выбор факторных признаков для построения двухфакторной регрессионной модели. Оценка параметров регрессии по методу наименьших квадратов. Нахождение определителей матриц. Применение инструмента Регрессия.
контрольная работа [1,0 M], добавлен 13.01.2013Подбор параметров линейной функции. Вычисление значения функции в заданных промежуточных точках с использованием математических пакетов. Исследование математической модели решения задачи. Составление программы для вычисления коэффициента корреляции.
курсовая работа [2,3 M], добавлен 21.10.2014Разработка математической модели системы. Моделирование работы конвейера сборочного цеха в течении 8 часов. Определение вероятности пропуска секции. Расчет количества скомплектованных изделий за 8 часов. Исследование системы на имитационной модели.
контрольная работа [98,3 K], добавлен 24.09.2014Присвоение значений параметров передаточных функций разомкнутой и замкнутой САР в виде полиномов и типовых динамических звеньев разомкнутой системы. Разработка математической модели электротехнической системы в символьном и символьно-цифровом виде.
практическая работа [456,4 K], добавлен 05.12.2009Общая характеристика системы массового обслуживания, исходные данные для ее создания. Особенности построения алгоритма имитационной модели задачи о поступлении заявок (клиентов) в канал (парикмахерскую). Описание функционирования математической модели.
курсовая работа [154,1 K], добавлен 19.05.2011Идентификация объектов методом наименьших квадратов. Анализ коэффициентов парной, частной и множественной корреляции. Построение линейной модели и модели с распределенными параметрами. Итерационный численный метод нахождения корня (нуля) заданной функции.
курсовая работа [893,3 K], добавлен 20.03.2014Исследование метода математического моделирования чрезвычайной ситуации. Модели макрокинетики трансформации веществ и потоков энергии. Имитационное моделирование. Процесс построения математической модели. Структура моделирования происшествий в техносфере.
реферат [240,5 K], добавлен 05.03.2017Этапы построения математической модели статического объекта, использование полиномов Чебышева. Характеристика и основное предназначение программы Matlab. Анализ функциональной модели Брюле, Джонсоном и Клетским. Методы исследования динамических объектов.
курсовая работа [1,3 M], добавлен 21.05.2012Создание математической модели бистабильной системы "нагреватель-охлаждающая жидкость". Решение задачи Коши для дифференциального уравнения второго порядка. Обзор особенностей компьютерного построения модели динамической системы развития двух популяций.
контрольная работа [1,1 M], добавлен 20.10.2014Определение параметров линейной зависимости из графика. Метод парных точек. Метод наименьших квадратов. Блок-схема программного комплекса в Microsoft Visual Studio и Microsoft Excel. Инструкция пользователя, скриншоты. Общий вид программного кода.
курсовая работа [2,1 M], добавлен 29.11.2014