Структура и виды баз данных

Исследование системы управления базами данных. Обзор поддержки программными средствами представления, соответствующего реальности. Изучение особенностей обработки, добавления, изменения, сортировки информации. Анализ концепций реляционной модели данных.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.05.2012
Размер файла 364,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru/

Размещено на http://allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство образования

Государственное образовательное учреждение высшего профессионального образования

«Ижевский государственный технический университет»

Кафедра «Экономика предприятия»

КУРСОВАЯ РАБОТА

по дисциплине «Учебный практикум на компьютере»

Выполнили ст. Флорова В.А, Индрякова А.Р.

Принял Аверьянов В.Е

Ижевск, 2011

Содержание

Введение

1. Теоретический вопрос: Что такое база данных

2. Структура базы данных

3. Отношения между таблицами

4. Нормализация баз данных

5. Ключи и индексы

Заключение

Список литературы

ВВЕДЕНИЕ

Базы данных (БД) составляют в настоящее время основу компьютерного обеспечения информационных процессов, входящих практически во все сферы человеческой деятельности.

Действительно, процессы обработки информации имеют общую природу и опираются на описание фрагментов реальности, выраженное в виде совокупности взаимосвязанных данных. Базы данных являются эффективным средством представления структур данных и манипулирования ими. Концепция баз данных предполагает использование интегрированных средств хранения информации, позволяющих обеспечить централизованное управление данными и обслуживание ими многих пользователей. При этом БД должна поддерживаться в среде ЭВМ единым программным обеспечением, называемым системой управления базами данных (СУБД). СУБД вместе с прикладными программами называют банком данных.

Одно из основных назначений СУБД - поддержка программными средствами представления, соответствующего реальности.

Предметной областью называется фрагмент реальности, который описывается или моделируется с помощью БД и ее приложений. В предметной области выделяются информационные объекты - идентифицируемые объекты реального мира, процессы, системы, понятия и т.д., сведения о которых хранятся в БД.

В мире существует множество систем управления базами данных. Несмотря на то, что они могут по-разному работать с разными объектами и предоставляют пользователю различные функции и средства, большинство СУБД опираются на единый устоявшийся комплекс основных понятий. В качестве такого объекта мы выберем СУБД Microsoft Access, входящую в пакет Microsoft Office.

1. Теоретический вопрос: Что такое база данных

Можно с большой степенью достоверности утверждать, что большинство приложений, которые предназначены для выполнения хотя бы какой-нибудь полезной работы, тем или иным образом используют структурированную информацию или, другими словами, упорядоченные данные. Такими данными могут быть, например, списки заказов на тот или иной товар, списки предъявленных и оплаченных счетов или список телефонных номеров ваших знакомых. Обычное расписание движения автобусов в вашем городе - это тоже пример упорядоченных данных.

При компьютерной обработке информации упорядоченные каким либо образом данные принято хранить в базах данных - особых файлах, использование которых вместе со специальными программными средствами позволяет пользователю как просматривать необходимую информацию, так и, по мере необходимости, манипулировать ею, например, добавлять, изменять, копировать, удалять, сортировать и т.д.

Таким образом, дать простое определение базы данных можно следующим образом. База данных - это набор информации, организованной тем, или иным способом. Пожалуй, одним из самых банальных примеров баз данных может быть записная книжка с телефонами ваших знакомых. Наверное, у вас есть сейчас или когда-либо была эта полезная вещь. Этот список фамилий владельцев телефонов и их телефонных номеров, представленный в вашей записной книжке в алфавитном порядке, представляет собой, вообще говоря, проиндексированную базу данных. Использование индекса - в данном случае фамилии (или имени) позволяет вам достаточно быстро отыскать требуемый номер телефона. База данных (БД) -- совокупность определенным образом организованной информации на какую-то тему (в рамках некоторой предметной области).

Например:

-база данных книжного фонда библиотеки;

-база данных кадрового состава учреждения;

-база данных законодательных актов в области уголовного права;

-база данных современной эстрадной песни.

Конечно, вся эта информация может храниться и на бумаге (например, книжный каталог библиотеки). Но современным средством хранения и обработки баз данных является, безусловно, компьютер. В дальнейшем мы будем иметь в виду только компьютерные БД.

Базы данных бывают фактографическими и документальными.

В фактографических БД содержатся краткие сведения об описываемых объектах, представленные в строго определенном формате. Из приведенных выше примеров две первые БД скорее всего будут организованы как фактографические. В БД библиотеки о каждой книге хранятся библиографические сведения: год издания, автор, название и пр. Разумеется текст книги в ней содержаться не будет. В БД отдела кадров учреждения хранятся анкетные данные сотрудников: фамилия, имя, отчество; год и место рождения.

Базы данных в третьем и четвертом примерах наверняка будут организованы как документальные. Первая из них будет включать в себя тексты законов; вторая -- тексты и ноты песен; биографическую и творческую справочную информацию о композиторах, поэтах, исполнителях; звуковые записи и видеоклипы. Следовательно, документальная БД содержит обширную информацию самого разного типа: текстовую, графическую, звуковую, мультимедийную.

Современные информационные технологии постепенно стирают границу между фактографическими и документальными БД. Существуют средства, позволяющие легко подключать любой документ (текстовый, графический, звуковой) к фактографической базе данных.

Сама по себе база данных не может обслужить запросы пользователя на поиск и обработку информации. БД -- это только «информационный склад». Обслуживание пользователя осуществляет информационная система.

Информационная система -- это совокупность базы данных и всего комплекса аппаратно-программных средств для ее хранения, изменения и поиска информации, для взаимодействия с пользователем.

Примерами информационных систем являются системы продажи билетов на пассажирские поезда и самолеты. WWW -- это тоже пример глобальной информационной системы.

Далее будет идти речь будет только о фактографических базах данных. Дадим более строгое определение компьютерной БД, чем то, что приводилось выше.

База данных -- организованная совокупность данных, предназначенная для длительного хранения во внешней памяти ЭВМ и постоянного применения. Для хранения БД может использоваться как один компьютер, так и множество взаимосвязанных компьютеров.

Если различные части одной базы данных хранятся на множестве компьютеров, объединенных между собой сетью, то такая БД называется распределенной базой данных.

2. Структура базы данных

Телефонный справочник представляет собой так называемую “плоскую” базу данных, в которой вся информация располагается в единственной таблице. Каждая запись в этой таблице содержит идентификатор конкретного человека - имя и фамилию и его номер телефона. Таким образом таблица состоит из записей, информация в которых разделена на несколько частей - полей. В данном случае полями являются “ФИО” и “Номер телефона”, как показано на рис.1.1.

Рис.1.1. Таблица, запись и поле.

В отличие от плоских, реляционные базы данных состоят из нескольких таблиц, связь между которыми устанавливается с помощью совпадающих значений одноименных полей.

Здесь следует отметить, что использование реляционной модели баз данных не является единственно возможным способом представления информации. В настоящее время существует несколько различных моделей представления данных, которые, однако, пока не получили такого широкого распространения среди разработчиков и пользователей, как реляционная модель. То есть при разработке систем управления базами данных реляционная модель практически является стандартом.

В качестве примера реляционной базы данных можно привести поставляемую вместе с Visual Basic базу данных BIBLIO.MDB, содержащую библиографическую информацию о книгах по программированию, их авторах и издательствах, эти книги опубликовавших.

Так как Visual Basic использует ту же систему управления базами данных (MS Jet Engine), что и MS Access, то несмотря на наличие в Visual Basic средств работы со многими форматами БД, все таки в приложениях предпочтительно использовать файлы баз данных в формате MS Access. Эти файлы имеют расширение MDB и здесь в основном будут описаны приемы работы с файлами именно такого формата.

Перейдем теперь к исследованию базы данных с библиографией. Для этого откройте файл BIBLIO.MDB при помощи MS Access или VisData.

Содержимое файла базы данных BIBLIO.MDB показано на рис.1.2. В базу данных входят таблицы (Tables), запросы (Queries), формы (Forms), отчеты (Reports), макросы (Macros) и модули (Modules). Макросы, формы и модули нам не интересны, так как это вотчина разработчиков, применяющих Visual Basic for Applications или, сокращенно, VBA.

Рис.1.2. Содержимое файла BIBLIO.MDB

Из рисунка видно, что база данных состоит из таблиц: PUBLISHERS, AUTHORS и TITLES. Каждая из таблиц содержит информацию об объектах одного типа. Из названий таблиц становиться понятно, что данные в каждой таблице принадлежат одной и той же группе объектов. Каждая строка в этих таблицах однозначно определяет один объект из соответствующей группы. Вообще, база данных может состоять из одной или нескольких таблиц. Запись, в свою очередь, состоит из нескольких полей, каждое из которых содержит элемент данных об объекте.

Типы данных, которые можно поместить в таблицу, зависят от формата файла базы данных.

Таблица PUBLISHERS (Издатели) содержит информацию об издательствах (имя компании, ее адрес, телефон, факс и др.). На рис. 1.3 и 1.4 показаны структура таблицы PUBLISHERS и ее содержимое в табличном виде.

Рис.1.3.и 1.4. Структура таблицы PUBLISHERS.

Таблица AUTHORS (Авторы) содержит информацию о авторах - ФИО и год рождения. Структура этой таблицы и ее содержимое показаны на рис.1.5 и 1.6 соответственно.

Рис.1.5. Структура таблицы AUTHORS

Рис.1.6. Содержимое таблицы AUTHORS

Таблица TITLES (Заголовки) содержит данные о самих книгах - название книги, год издания, код ISBN, издатель, краткое описание и др. Структура таблицы TITLES и ее содержимое показаны на рис.1.7 и 1.8 соответственно.

Рис.1.7. Структура таблицы TITLES

Рис.1.8. Содержимое таблицы TITLES

Из рис.1.2 видно, что в базе данных BIBLIO.MDB присутствует еще и таблица TITLE AUTHOR. На первый взгляд непонятно зачем она нужна. Ведь в базе данных есть таблица TITLES с заголовками книг и таблица AUTHORS с данными об авторах. Однако все же эта таблица нужна и для чего она так необходима станет понятно, когда в дальнейшем будем рассматривать отношения между таблицами.

3. Отношения между таблицами

база программный реляционный сортировка

Отношения между таблицами устанавливают связь между данными находящимися в разных таблицах базы данных.

Отношения между таблицами определяются отношением между группами объектов соответствующего типа. Например, один автор может написать несколько книг и издать их в разных издательствах. Или издательство может опубликовать несколько книг разных авторов. Таким образом, между авторами и названиями книг существует отношение один-ко-многим, а между издательствами и авторами существует отношение много-комногим.

Рис.1.9. Отношения между таблицами базы данных BIBLIO.MDB.

Отношение один-к-одному:

Если между двумя таблицами существует отношение один-к-одному, то это означает, что каждая запись в одной таблице соответствует только одной записи в другой таблице.

Примером такого отношения может служить отношение между таблицами. Таблица AUTHORS (Авторы) рассмотрена выше (рис. 1.5 и 1.6) и содержит краткую информацию о авторах (ФИО и год рождения). Таблица PERSON (Личность) содержит персональную информацию о авторах (домашний адрес, телефон, образование и др.) Структура таблицы PERSON показана на рис.1.10. Следует отметить, что в базе данных BIBLIO.MDB никакой таблицы PERSON нет и мы упоминаем о ней только как о иллюстрации отношения между таблицами - один-к-одному.

Рис.1.10. Структура таблицы PERSON

Между таблицами AUTHORS и PERSON существует отношение один-к-одному, так как одна запись, идентифицирующая автора, однозначно соответствует только одной записи в таблице PERSON, содержащей персональные данные об авторе.

Связь между таблицами определяется с помощью совпадающих полей: Au_ID в таблице AUTHORS и в таблице PERSON.

Отношение один-ко-многим

Хорошим примером отношения между таблицами один-ко-многим является отношение между авторами и названиями книг (таблицы AUTHORS и TITLES), так как каждый автор может иметь отношение к созданию нескольких книг. Связь между таблицами AUTHORS и TITLES осуществляется с помощью совпадающих полей Au_ID в обеих таблицах.

Аналогичное отношение существует между издательствами и названиями изданных книг, организацией и работающими в ней сотрудниками, автомобилем и деталями, из которых он состоит и т.п. Понятно, что подобный тип отношения между таблицами наиболее часто встречается при проектировании структуры баз данных.

Отношение много-к-одному

Отношение много-к-одному полностью аналогично рассмотренному выше отношению один-ко-многим.

-отношение много-ко-многим

При отношении между двумя таблицами много-ко-многим каждая запись в одной таблице связана с несколькими записями в другой таблице и наоборот. Иллюстрацией такого отношения может служить отношение между таблицами PUBLISHERS и AUTHORS. С одной стороны, каждое издательство может публиковать книги разных авторов и с другой стороны - каждый автор может публиковаться в разных издательствах.

Для удобства работы с таблицами, имеющими отношение много-ко-многим, обычно в базу данных добавляют еще одну таблицу, которая находится в отношении один-ко-многим и много-к-одному к соответствующим таблицам. В случае базы данных BIBLIO.MDB такой таблицей является TITLE AUTHOR.

4. Нормализация баз данных

Рассмотрим процесс нормализации базы данных на примере базы данных BIBLIO.MDB. Вообще говоря, все данные о книгах, авторах и издательствах можно разместить в одной таблице, названной, например, BIBLIOS. Структура этой таблицы показана на рис. 1.11. В принципе, можно работать и с такой таблицей. С другой стороны понятно, что такая структура данных является неэффективной. В таблице BIBLIOS будет достаточно много повторяющихся данных, например сведения об издательстве или авторе будут повторяться для каждой опубликованной книги. Такая организация данных приведет к следующим проблемам, с которыми столкнется конечный пользователь вашей программы:

Наличие повторяющихся данных приведет к неоправданному увеличению размера файла базы данных. Кроме нерационального использования дискового пространства, это также вызовет заметное замедление работы приложения.

Ввод пользователем большого количества повторяющейся информации неизбежно приведет к возникновению ошибок.

Изменение, например, номера телефона издательства потребует значительных усилий по корректировке каждой записи, содержащей данные об издателе.

Рис.1.11. Структура таблицы BIBLIOS.

Если, при проектировании приложения для работы с базами данных, вы организуете свои данные таким нерациональным образом, то в дальнейшем вам, скорее всего, больше не поручат решение аналогичных задач.

Чтобы избежать всех этих проблем, надо стремиться максимально уменьшить количество повторяющейся информации. Процесс уменьшения избыточности информации в базе данных посредством разделения ее на несколько связанных друг с другом таблиц и называется нормализацией данных.

Вообще говоря, существует строгая теория нормализации данных, в рамках которой разработаны алгоритмы уменьшения избыточности информации, определены несколько уровней нормализации и установлены критерии, определяющие соответствие данных определенному уровню нормализации. Знакомство с теорией нормализации данных выходит за рамки этих уроков и тем читателям, которым интересно побольше узнать об этом, можно посоветовать обратиться к специальной литературе.

Для того, чтобы построить достаточно эффективную структуру данных, достаточно придерживаться нескольких простых правил:

1. Определите таблицы таким образом, чтобы записи в каждой таблице описывали объекты одного и того же типа. В нашем случае библиографические данные можно разместить в трех таблицах:

PUBLISHERS - содержит информацию об издательствах;

AUTHORS - содержит информацию об авторах книг;

TITLES - содержит информацию об изданных книгах.

2. Если в вашей таблице появляются поля, содержащие аналогичные данные, разделите таблицу.

3. Не запоминайте в таблице данных, которые могут быть вычислены при помощи данных из других таблиц.

4. Используйте вспомогательные таблицы. Например, если в вашей таблице есть поле Страна, то может быть стоит ввести вспомогательную таблицу Country, которая будет содержать соответствующие записи.

5. Ключи и индексы

Как было отмечено выше при описании отношений между таблицами, в реляционных базах данных таблицы связываются друг с другом посредством совпадающих значений ключевых полей. Ключевым полем может быть практически любое поле в таблице. Ключ может быть первичным (primary) или внешним (foreign).

Первичный ключ однозначно определяет запись в таблице. В примере с базой данных BIBLIO.MDB таблицы PUBLISHERS, AUTHORS и TITLES имеют первичные ключи PubID, Au_ID и ISBN соответственно. Таблица TITLES также имеет два внешних ключа PubID и Au_ID для связи с таблицами PUBLISHERS и AUTHORS. Таким образом, первичный ключ однозначно определяет запись в таблице, в то время как внешний ключ используется для связи с первичным ключом другой таблицы.

Ключевой поле может иметь определенный смысл, как например ключ ISBN в таблице TITLES. Однако, очень часто ключевое поле не несет никакой смысловой нагрузки и является просто идентификатором объекта в таблице. Во многих случаях удобно использовать в качестве ключа поле счетчика (Counter field). При этом вся ответственность по поддержанию уникальности ключевого поля снимается с пользователя и перекладывается на процессор баз данных. Поле счетчика представляет собой четырехбайтовое целое число (Long) и автоматически увеличивается на единицу при добавлении пользователем новой записи в таблицу.

Данные запоминаются в таблице в том порядке, в котором они вводятся пользователем. Это, так называемый, физический порядок следования записей. Однако, часто требуется представить данные в другом, отличном от физического, порядке. Например может потребоваться просмотреть данные об авторах книг, упорядоченные по алфавиту. Кроме того, часто необходимо найти в большом объеме информации запись, удовлетворяющую определенному критерию. Простой перебор записей при поиске в большой таблице может потребовать достаточно много времени и поэтому будет неэффективным.

Одними из основных требований, предъявляемым к системам управления базами данных, являются возможность представления данных в определенном, отличном от физического, порядке и возможность быстрого поиска определенной записи. Эффективным средством решения этих задач является использование индексов.

Индекс представляет собой таблицу, которая содержит ключевые значения для каждой записи в таблице данных и записанные в порядке, требуемом для пользователя. Ключевые значения определяются на основе одного или нескольких полей таблицы. Кроме того, индекс содержит уникальные ссылки на соответствующие записи в таблице. На рис.1.12 показан фрагмент таблицы CUSTOMERS, содержащей информацию о покупателях, и индекс IDX_NAME, построенный на основе поля Name таблицы CUSTOMERS. Индекс IDX_NAME содержит значения ключевого поля Name, упорядоченные в алфавитном порядке, и ссылки на соответствующие записи в таблице CUSTOMERS.

Рис.1.12. Связь между таблицей и индексом.

Каждая таблица может иметь несколько различных индексов, каждый из которых определяет свой собственный порядок следования записей. Например, таблица AUTHORS может иметь индексы для представления данных об авторах, упорядоченные по дате рождения или по алфавиту. Таким образом, каждый индекс используется для представления одних и тех же данных, но упорядоченных различным образом.

Вообще говоря, таблицы в базе данных могут и не иметь индексов. В этом случае для большой таблицы время поиска определенной записи может быть весьма значительным и использование индекса становиться необходимым. С другой стороны, не следует увлекаться созданием слишком большого количества индексов, так как это может заметно увеличить время необходимое для обновления базы данных и значительно увеличить размер файла базы данных.

При разработке приложений, работающих с базами данных, наиболее широко используются простые индексы. Простые индексы используют значения одного поля таблицы. Примером простого индекса в базе данных BIBLIO.MDB может служить код ISBN, идентификатор автора Au_ID или идентификатор издательства PubID.

Хотя в большинстве случаев для представления данных в определенном порядке достаточно использовать простой индекс, часто возникают ситуации, где не обойтись без использования составных индексов. Составной индекс строится на основе значений двух или более полей таблицы. Хорошей иллюстрацией использования составных индексов может служить база данных родственников при генеалогических исследованиях какой-либо фамилии. Понятно, что использование в качестве простого индекса фамилии человека в данном случае недопустимо. Даже использование составного индекса, основанного на полях имени, фамилии и отчества может быть неэффективным, так как и в этом случае все равно возможно существование достаточно большого числа однофамильцев.

ЗАКЛЮЧЕНИЕ

В общем смысле термин «база данных» (БД) можно применить к любой совокупности связанной информации, объединенной вместе по определенному признаку, т.е. к набору данных, организованных определенным образом. При этом большинство БД использует табличный способ преставления, где данные располагаются по строкам (которые называются записями) и столбцам (которые называются полями), причем все записи должны состоять из одинаковых полей и все данные одного поля должны иметь один тип. Например, расписание движения поездов, полетов самолетов, книга заказов или учет товаров и т.п. легко могут быть представлены в такой форме. Базы данных должны содержать только независимую (первичную) информацию, поэтому не любая таблица представляет собой базу данных.

В последнее время наибольшее распространение получили реляционные базы данных (слово «реляционная» происходит от английского relation - отношение). Концепции реляционной модели данных связаны с именем известного специалиста в области систем 6aз данных Е. Кодда. Именно поэтому реляционную модель данных в литературе часто называют моделью Кодда.

В компьютерном варианте в реляционной БД информация хранится, как правило, в нескольких таблицах-файлах, связанных между собой посредством одного или нескольких совпадающих в этих таблицах полей (в некоторых компьютерных системах все таблицы одной базы помещаются в один файл). Каждая строка в таблице реляционной БД должна быть уникальна (т.е. не должно быть одинаковых строк-записей). Такие уникальные столбцы (или уникальные группы столбцов), используемые, чтобы идентифицировать каждую строку и хранить все строки отдельно, называются первичными ключами таблицы.

Первичные ключи таблицы важный элемент в структуре базы данных. Они - основа системы записи в файл и, когда необходимо найти определенную строку в таблице, то ссылаются к этому первичному ключу. Кроме того, первичные ключи гарантируют, что данные имеют определенную целостность. Если первичный ключ правильно используется и поддерживается, то можно быть уверенным, что нет пустых строк таблицы и, что каждая строка отличается от любой другой строки.

Основным назначением БД является быстрый поиск содержащейся в ней информации. При этом БД могут содержать значительный объем информации, например, список домашних телефонов г.Астрахани (с его недостаточной степенью телефонизации) составляет десятки тысяч абонентов. В телефонной книге абоненты упорядочены (отсортированы) в алфавитном порядке и поиск по фамилии займет не очень много времени, однако, поиск по адресу или неточному номеру телефона и т.п. вручную - не решаемая практически задача.

Мир баз данных становится все более и более единым, с развитием Internet- и Intranet- технологий появилась возможность доступа к удаленным БД, что привело к необходимости создания стандартного языка, который мог бы использоваться так, чтобы функционировать в большом количестве различных видов компьютерных сред. Стандартный язык позволил бы пользователям, знающим один набор команд, использовать их, чтобы создавать, отыскивать, изменять и передавать информацию независимо от того, работают ли они на персональном компьютере, сетевой рабочей станции или на универсальном компьютере.

СПИСОК ЛИТЕРАТУРЫ

1) Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. -- 8-е изд. -- М.: «Вильямс», 2006. -- 1328 с. -- ISBN 0-321-19784-4

2) Кузнецов С. Д. Основы баз данных. -- 2-е изд. -- М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2007. -- 484 с. -- ISBN 978-5-94774-736-2

3) Когаловский М.Р. Энциклопедия технологий баз данных. -- М.: Финансы и статистика, 2002. -- 800 с. -- ISBN 5-279-02276-4

4) Коннолли Т., Бегг К. Базы данных. Проектирование, реализация и сопровождение. Теория и практика = Database Systems: A Practical Approach to Design, Implementation, and Management. -- 3-е изд. -- М.: «Вильямс», 2003. -- 1436 с. -- ISBN 0-201-70857-4

5) http://ru.wikipedia.org/wiki/База_данных

6) http://www.seobuilding.ru/wiki/База_данных

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.