Каналы утечки информации

Технические средства, предназначенные для обработки конфиденциальной информации. Технические каналы перехвата информации, обрабатываемой на объектах ТСПИ. Характеристика их видов. Активные и пассивные методы и средства защиты информации от утечки.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 22.05.2012
Размер файла 25,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • Технические каналы утечки информации
  • Методы и средства защиты информации от утечки по техническим каналам
  • Заключение
  • Список используемой литературы
  • Введение
  • Основные объекты защиты информации - информационные ресурсы, содержащие сведения, отнесенные к коммерческой тайне, и конфиденциальную информацию;
  • - средства и системы информатизации (средства вычислительной техники, информационно-вычислительные комплексы, сети и системы), программные средства (операционные системы, системы управления базами данных, другое общесистемное и прикладное программное обеспечение), автоматизированные системы управления, системы связи и передачи данных, технические средства приема, передачи и обработки информации ограниченного доступа (звукозапись, звукоусиление, звукосопровождение, переговорные и телевизионные устройства, средства изготовления, тиражирования документов и другие технические средства обработки графической, смысловой и буквенно-цифровой информации), их информативные физические поля, т.е. системы и средства, непосредственно обрабатывающие информацию, отнесенную к коммерческой тайне, а также конфиденциальную информацию. Эти средства и системы часто называют техническими средствами приема, обработки, хранения и передачи информации (ТСПИ);
  • - технические средства и системы, не относящиеся к средствам и системам информатизации (ТСПИ), но размещенные в помещениях, в которых обрабатывается секретная и конфиденциальная информация. Такие технические средства и системы называются вспомогательными техническими средствами и системами (ВТСС). К ним относятся: технические средства открытой телефонной, громкоговорящей связи, системы пожарной и охранной сигнализации, радиотрансляции, часофикации, электробытовые приборы и т.д, а также сами помещения, предназначенные для обработки информации ограниченного распространения.
  • При организации защиты информации ТСПИ необходимо рассматривать как систему, включающую основное (стационарное) оборудование, оконечные устройства, соединительные линии (совокупность проводов и кабелей, прокладываемых между отдельными ТСПИ и их элементами), распределительные и коммутационные устройства, системы электропитания, системы заземления.
  • Отдельные технические средства или группа технических средств, предназначенных для обработки конфиденциальной информации, вместе с помещениями, в которых они размещаются, составляют объекты ТСПИ. Под объектами ТСПИ понимают также выделенные помещения, предназначенные для проведения закрытых мероприятий.
  • В качестве элементов каналов утечки информации наибольший интерес представляют ТСПИ и ВТСС, имеющие выход за пределы контролируемой зоны (КЗ), т.е. зоны, в которой исключено появление лиц и транспортных средств, не имеющих постоянных или временных пропусков.
  • Кроме соединительных линий ТСПИ и ВТСС за пределы контролируемой зоны могут выходить провода и кабели, к ним не относящиеся, но проходящие через помещения, где установлены технические средства, а также металлические трубы систем отопления, водоснабжения и другие токопроводящие металлоконструкции. Такие провода, кабели и токопроводящие элементы называются посторонними проводниками.
  • Зона, в которой возможны перехват (с помощью разведывательного приемника) побочных электромагнитных излучений и последующая расшифровка содержащейся в них информации (т.е. зона, в пределах которой отношение “информационный сигнал/помеха” превышает допустимое нормированное значение), называется (опасной) зоной 2. Пространство вокруг ТСПИ, в пределах которого на случайных антеннах наводится информационный сигнал выше допустимого (нормированного) уровня, называется (опасной) зоной.
  • Случайной антенной является цепь ВТСС или посторонние проводники, способные принимать побочные электромагнитные излучения. Случайные антенны могут быть сосредоточенными и распределенными. Сосредоточенная случайная антенна представляет собой компактное техническое средство, например, телефонный аппарат, громкоговоритель радиотрансляционной сети и т.д. К распределенным случайным антеннам относятся случайные антенны с распределенными параметрами: кабели, провода, металлические трубы и другие токопроводящие коммуникации.
  • Перехват информации, обрабатываемой на объектах ТСПИ, осуществляется по техническим каналам.
  • конфиденциальный информация утечка
  • Технические каналы утечки информации
  • Под техническим каналом утечки информации (ТКУИ) понимают совокупность объекта разведки, технического средства разведки (TCP), с помощью которого добывается информация об этом объекте, и физической среды, в которой распространяется информационный сигнал. По сути, под ТКУИ понимают способ получения с помощью TCP разведывательной информации об объекте. Причем под разведывательной информацией обычно понимаются сведения или совокупность данных об объектах разведки независимо от формы их представления.
  • Сигналы являются материальными носителями информации. По своей физической природе сигналы могут быть электрическими, электромагнитными, акустическими и т.д., т.е. сигналами, как правило, являются электромагнитные, механические и другие виды колебаний (волн), причем информация содержится в их изменяющихся параметрах.
  • В зависимости от природы сигналы распространяются в определенных физических средах. В общем случае средой распространения могут быть газовые (воздушные), жидкостные (водные) и твердые среды, например, воздушное пространство, конструкции зданий, соединительные линии и токопроводящие элементы, грунт (земля) и т.п.
  • Для приема и измерения параметров сигналов служат технические средства разведки (TCP).
  • В зависимости от физической природы возникновения информационных сигналов, а также среды их распространения и способов перехвата TCP технические каналы утечки можно разделить на:
  • электромагнитные, электрические и параметрические - для телекоммуникационной информации;
  • воздушные (прямые акустические), вибрационные (виброакустические), электроакустические, оптико-электронный и параметрические - для речевой информации.
  • К электромагнитным каналам утечки информации относятся:
  • - перехват побочных электромагнитных излучений (ПЭМИ) элементов техническим каналом утечки информации (ТСПИ);
  • - перехват ПЭМИ на частотах работы высокочастотных (ВЧ) генераторов в ТСПИ;
  • - перехват ПЭМИ на частотах самовозбуждения усилителей низкой частоты (УНЧ) ТСПИ.
  • Перехват побочных электромагнитных излучений ТСПИ осуществляется средствами радио-, радиотехнической разведки, размещенными вне контролируемой зоны.
  • Электрические каналы утечки информации включают съем:
  • - наводок ПЭМИ ТСПИ с соединительных линий ВТСС и посторонних проводников;
  • - информационных сигналов с линий электропитания ТСПИ;
  • - информации путем установки в ТСПИ электронных устройств перехвата информации.
  • Перехват информационных сигналов по электрическим каналам утечки возможен путем непосредственного подключения к соединительным линиям ВТСС и посторонним проводникам, проходящим через помещения, где установлены ТСПИ, а также к системам электропитания и заземления ТСПИ. Для этих целей используются специальные средства радио- и радиотехнической разведки, а также специальная измерительная аппаратура.
  • Электронные устройства перехвата информации, устанавливаемые в ТСПИ, часто называют аппаратными закладками. Они представляют собой мини-передатчики, излучение которых модулируется информационным сигналом. Наиболее часто закладки устанавливаются в ТСПИ иностранного производства, однако возможна их установка и в отечественных средствах.
  • Перехваченная с помощью закладных устройств информация или непосредственно передается по радиоканалу, или сначала записывается на специальное запоминающее устройство, а уже затем по команде передается на запросивший ее объект.
  • Параметрический канал утечки информации образуется путем “высокочастотного облучения” ТСПИ.
  • Для перехвата информации по данному каналу необходимы специальные высокочастотные генераторы с антеннами, имеющими узкие диаграммы направленности, и специальные радиоприемные устройства.
  • В воздушных (прямых акустических) технических каналах утечки информации средой распространения акустических сигналов является воздух. Для перехвата акустических сигналов в качестве датчиков средств разведки используются микрофоны. Сигналы, поступающие с микрофонов или непосредственно, записываются на специальные портативные устройства звукозаписи или передаются с использованием специальных передатчиков в пункт приема, где осуществляется их запись.
  • Для перехвата акустической (речевой) информации используются:
  • - портативные диктофоны и проводные микрофонные системы скрытой звукозаписи;
  • - направленные микрофоны;
  • - акустические радиозакладки (передача информации по радиоканалу);
  • - акустические сетевые закладки (передача информации по сети электропитания 220В);
  • - акустические ИК-закладки (передача информации по оптическому каналу в ИК-диапазоне длин волн);
  • - акустические телефонные закладки (передача информации по телефонной линии на высокой частоте);
  • - акустические телефонные закладки типа “телефонное ухо” (передача информации по телефонной линии “телефону-наблюдателю” на низкой частоте).
  • В вибрационных (виброакустических) технических каналах утечки информации средой распространения акустических сигналов являются ограждения конструкций зданий, сооружений (стены, потолки, полы), трубы водоснабжения, канализации и другие твердые тела.
  • Для перехвата акустических колебаний в этом случае используются средства разведки с контактными микрофонами:
  • - электронные стетоскопы;
  • - радиостетоскопы (передача информации по радиоканалу).
  • Электроакустические технические каналы утечки информации возникают за счет преобразований акустических сигналов в электрические (электроакустические преобразования) и включают перехват акустических колебаний через ВТСС, обладающих “микрофонным эффектом”, а также путем “высокочастотного навязывания”.
  • Перехват акустических колебаний в данном канале утечки информации осуществляется путем непосредственного подключения к соединительным линиям ВТСС, обладающим “микрофонным эффектом”, специальных высокочувствительных низкочастотных усилителей. Например, подключая такие средства к соединительным линиям телефонных аппаратов с электромеханическими вызывными звонками, можно прослушивать разговоры, ведущиеся в помещениях, где установлены эти аппараты.
  • Технический канал утечки информации путем “высокочастотного навязывания” может быть осуществлен путем несанкционированного контактного введения токов высокой частоты от генератора, подключенного в линию (цепь), имеющую функциональную связь с нелинейными или параметрическими элементами ВТСС, на которых происходит модуляция высокочастотного сигнала информационным. Информационный сигнал в данных элементах ВТСС появляется вследствие электроакустического преобразования акустических сигналов в электрические. В силу того, что нелинейные или параметрические элементы ВТСС для высокочастотного сигнала, как правило, представляют собой несогласованную нагрузку, промодулированный высокочастотный сигнал будет отражаться от нее и распространяться в обратном направлении по линии или излучаться. Для приема излученных или отраженных высокочастотных сигналов используются специальные приемники с достаточно высокой чувствительностью.
  • Оптико-электронный (лазерный) канал утечки акустической информации образуется при облучении лазерным лучом вибрирующих в акустическом поле тонких отражающих поверхностей (стекол окон, картин, зеркал и т.д.). Для перехвата речевой информации по данному каналу используются сложные лазерные акустические локационные системы (ЛАЛС), иногда называемые “лазерными микрофонами”.
  • Параметрические технические каналы утечки информации могут быть реализованы путем “высокочастотного облучения” помещения, где установлены полуактивные закладные устройства или технические средства, имеющие элементы, некоторые параметры которых изменяются по закону изменения акустического (речевого) сигнала.
  • Методы и средства защиты информации от утечки по техническим каналам
  • Защита информации от утечки по техническим каналам достигается проектно-архитектурными решениями, проведением организационных и технических мероприятий, а также выявлением портативных электронных устройств перехвата информации (впоследствии основное внимание уделим именно этому).
  • Организационное мероприятие - это мероприятие по защите информации, проведение которого не требует применения специально разработанных технических средств.
  • К основным организационным и режимным мероприятиям относятся:
  • - привлечение к проведению работ по защите информации организаций, имеющих лицензию на деятельность в области защиты информации, выданную соответствующими органами;
  • - категорирование и аттестация объектов ТСПИ и выделенных для проведения закрытых мероприятий помещений (далее выделенных помещений) по выполнению требований обеспечения защиты информации при проведении работ со сведениями соответствующей степени секретности;
  • - использование на объекте сертифицированных ТСПИ и ВТСС;
  • - установление контролируемой зоны вокруг объекта;
  • - привлечение к работам по строительству, реконструкции объектов ТСПИ, монтажу аппаратуры организаций, имеющих лицензию на деятельность в области защиты информации по соответствующим пунктам;
  • - организация контроля и ограничение доступа на объекты ТСПИ и в выделенные помещения;
  • - введение территориальных, частотных, энергетических, пространственных и временных ограничений в режимах использования технических средств, подлежащих защите;
  • - отключение на период закрытых мероприятий технических средств, имеющих элементы, выполняющие роль электроакустических преобразователей, от линий связи и т.д.
  • Техническое мероприятие - это мероприятие по защите информации, предусматривающее применение специальных технических средств, а также реализацию технических решений.
  • Технические мероприятия направлены на закрытие каналов утечки информации путем ослабления уровня информационных сигналов или уменьшением отношения сигнал/шум в местах возможного размещения портативных средств разведки или их датчиков до величин, обеспечивающих невозможность выделения информационного сигнала средством разведки, и проводятся с использованием активных и пассивных средств.
  • К техническим мероприятиям с использованием пассивных средств относятся
  • Контроль и ограничение доступа на объекты ТСПИ и в выделенные помещения:
  • - установка на объектах ТСПИ и в выделенных помещениях технических средств и систем ограничения и контроля доступа.
  • Локализация излучений:
  • - экранирование ТСПИ и их соединительных линий;
  • - заземление ТСПИ и экранов их соединительных линий;
  • - звукоизоляция выделенных помещений.
  • Развязывание информационных сигналов:
  • - установка специальных средств защиты во вспомогательных технических средствах и системах, обладающих “микрофонным эффектом” и имеющих выход за пределы контролируемой зоны;
  • - установка специальных диэлектрических вставок в оплетки кабелей электропитания, труб систем отопления, водоснабжения канализации, имеющих выход за пределы контролируемой зоны;
  • - установка автономных или стабилизированных источников электропитания ТСПИ;
  • - установка устройств гарантированного питания ТСПИ;
  • - установка в цепях электропитания ТСПИ, а также в линиях осветительной и розеточной сетей выделенных помещений помехоподавляющих фильтров типа ФП.
  • К мероприятиям с использованием активных средств относятся [1]:
  • Пространственное зашумление:
  • - пространственное электромагнитное зашумление с использованием генераторов шума или создание прицельных помех (при обнаружении и определении частоты излучения закладного устройства или побочных электромагнитных излучений ТСПИ) с использованием средств создания прицельных помех;
  • - создание акустических и вибрационных помех с использованием генераторов акустического шума;
  • - подавление диктофонов в режиме записи с использованием подавителей диктофонов.
  • Линейное зашумление:
  • - линейное зашумление линий электропитания;
  • - линейное зашумление посторонних проводников и соединительных линий ВТСС, имеющих выход за пределы контролируемой зоны.
  • Уничтожение закладных устройств:
  • - уничтожение закладных устройств, подключенных к линии, с использованием специальных генераторов импульсов (выжигателей “жучков”).
  • Выявление портативных электронных устройств перехвата информации (закладных устройств) осуществляется проведением специальных обследований, а также специальных проверок объектов ТСПИ и выделенных помещений.
  • Специальные обследования объектов ТСПИ и выделенных помещений проводятся путем их визуального осмотра без применения технических средств.
  • Специальная проверка проводится с использованием технических средств:
  • Выявление закладных устройств с использованием пассивных средств:
  • - установка в выделенных помещениях средств и систем обнаружения лазерного облучения (подсветки) оконных стекол;
  • - установка в выделенных помещениях стационарных обнаружителей диктофонов;
  • - поиск закладных устройств с использованием индикаторов поля, интерсепторов, частотомеров, сканерных приемников и программно-аппаратных комплексов контроля;
  • - организация радиоконтроля (постоянно или на время проведения конфиденциальных мероприятий) и побочных электромагнитных излучений ТСПИ.
  • Выявление закладных устройств с использованием активных средств:
  • - специальная проверка выделенных помещений с использованием нелинейных локаторов;
  • - специальная проверка выделенных помещений, ТСПИ и вспомогательных технических средств с использованием рентгеновских комплексов.
  • Защита информации, обрабатываемой техническими средствами, осуществляется с применением пассивных и активных методов и средств.
  • Пассивные методы защиты информации направлены на:
  • - ослабление побочных электромагнитных излучений (информационных сигналов) ТСПИ на границе контролируемой зоны до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • - ослабление наводок побочных электромагнитных излучений (информационных сигналов) ТСПИ в посторонних проводниках и соединительных линиях ВТСС, выходящих за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов;
  • - исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания, выходящие за пределы контролируемой зоны, до величин, обеспечивающих невозможность их выделения средством разведки на фоне естественных шумов.
  • Активные методы защиты информации направлены на:
  • - создание маскирующих пространственных электромагнитных помех в целях уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ;
  • - создание маскирующих электромагнитных помех в посторонних проводниках и соединительных линиях ВТСС в целях уменьшения отношения сигнал/шум на границе контролируемой зоны до величин, обеспечивающих невозможность выделения средством разведки информационного сигнала ТСПИ.
  • Ослабление побочных электромагнитных излучений ТСПИ и их наводок в посторонних проводниках осуществляется путем экранирования и заземления ТСПИ и их соединительных линий.
  • Исключение (ослабление) просачивания информационных сигналов ТСПИ в цепи электропитания достигается путем фильтрации информационных сигналов. Для создания маскирующих электромагнитных помех используются системы пространственного и линейного зашумления.
  • Экранирование технических средств. Функционирование любого технического средства информации связано с протеканием по его токоведущим элементам электрических токов различных частот и образованием разности потенциалов между различными точками его электрической схемы, которые порождают магнитные и электрические поля, называемые побочными электромагнитными излучениями.
  • Узлы и элементы электронной аппаратуры, в которых имеют место большие напряжения и протекают малые токи, создают в ближней зоне электромагнитные поля с преобладанием электрической составляющей. Преимущественное влияние электрических полей на элементы электронной аппаратуры наблюдается и в тех случаях, когда эти элементы малочувствительны к магнитной составляющей электромагнитного поля.
  • Узлы и элементы электронной аппаратуры, в которых протекают большие токи и имеют место малые перепады напряжения, создают в ближней зоне электромагнитные поля с преобладанием магнитной составляющей. Преимущественное влияние магнитных полей на аппаратуру наблюдается также в случае, если рассматриваемое устройство малочувствительно к электрической составляющей или она много меньше магнитной за счет свойств излучателя.
  • Переменные электрическое и магнитное поля создаются также в пространстве, окружающем соединительные линии (провода, кабели) ТСПИ.
  • Побочные электромагнитные излучения ТСПИ являются причиной возникновения электромагнитных и параметрических каналов утечки информации, а также могут оказаться причиной возникновения наводки информационных сигналов в посторонних токоведущих линиях и конструкциях. Поэтому снижению уровня побочных электромагнитных излучений уделяется большое внимание.
  • Эффективным методом снижения уровня ПЭМИ является экранирование их источников. Различают следующие способы экранирования [2]:
  • - электростатическое;
  • - магнитостатическое;
  • - электромагнитное.
  • Электростатическое и магнитостатическое экранирования основаны на замыкании экраном (обладающим в первом случае высокой электропроводностью, а во втором - магнитопроводностью) соответственно электрического и магнитного полей.
  • Электростатическое экранирование по существу сводится к замыканию электростатического поля на поверхность металлического экрана и отводу электрических зарядов на землю (на корпус прибора). Заземление электростатического экрана является необходимым элементом при реализации электростатического экранирования. Применение металлических экранов позволяет полностью устранить влияние электростатического поля. При использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника наводки в Е раз, где Е - относительная диэлектрическая проницаемость материала экрана.
  • Основной задачей экранирования электрических полей является снижение емкости связи между экранируемыми элементами конструкции. Следовательно, эффективность экранирования определяется в основном отношением емкостей связи между источником и рецептором наводки до и после установки заземленного экрана. Поэтому любые действия, приводящие к снижению емкости связи, увеличивают эффективность экранирования.
  • Экранирующее действие металлического листа существенно зависит от качества соединения экрана с корпусом прибора и частей экрана друг с другом. Особенно важно не иметь соединительных проводов между частями экрана и корпусом. В диапазонах метровых и более коротких длин волн соединительные проводники длиной в несколько сантиметров могут резко ухудшить эффективность экранирования. На еще более коротких волнах дециметрового и сантиметрового диапазонов соединительные проводники и шины между экранами недопустимы. Для получения высокой эффективности экранирования электрического поля здесь необходимо применять непосредственное сплошное соединение отдельных частей экрана друг с другом.
  • В металлическом экране узкие щели и отверстия, размеры которых малы по сравнению с длиной волны, практически не ухудшают экранирование электрического поля.
  • С увеличением частоты эффективность экранирования снижается.
  • Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом
  • - конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;
  • - в области низких частот (при глубине проникновения (? ) больше толщины (d), т.е. при ? > d) эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;
  • - в области высоких частот (при d < ? ) эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.
  • Магнитостатическое экранирование используется при необходимости подавить наводки на низких частотах от 0 до 3 ... 10 кГц.
  • Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим:
  • - магнитная проницаемость материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например пермаллой);
  • - увеличение толщины стенок экрана приводит к повышению эффективности экранирования, однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;
  • - стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля. Их число должно быть минимальным;
  • - заземление экрана не влияет на эффективность магнитостатического экранирования.
  • Эффективность магнитостатического экранирования повышается при применении многослойных экранов.
  • Экранирование высокочастотного магнитного поля основано на использовании магнитной индукции, создающей в экране переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов внутри экрана будет направлено навстречу возбуждающему полю, и за его пределами - в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным внутри экрана и усиленным вне его. Вихревые токи в экране распределяются неравномерно по его сечению (толщине). Это вызывается явлением поверхностного эффекта, сущность которого заключается в том, что переменное магнитное поле ослабевает по мере проникновения в глубь металла, так как внутренние слои экранируются вихревыми токами, циркулирующими в поверхностных слоях.
  • Благодаря поверхностному эффекту плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциальному закону [2? .
  • Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5 ... 1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жесткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр.
  • Для частот выше 10 МГц медная или серебряная пленка толщиной более 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированного гетинакса или другого изоляционного материала с нанесенным на него медным или серебряным покрытием.
  • При экранировании магнитного поля заземление экрана не изменяет величины возбуждаемых в экране токов и, следовательно, на эффективность магнитного экранирования не влияет.
  • На высоких частотах применяется исключительно электромагнитное экранирование. Действие электромагнитного экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданным (благодаря образующимся в толще экрана вихревым токам) полем обратного направления.
  • Теория и практика показывают, что, с точки зрения стоимости материала и простоты изготовления, преимущества на стороне экранированного стального помещения. Однако при применении сетчатого экрана могут значительно упроститься вопросы вентиляции и освещения помещения. В связи с этим сетчатые экраны также находят широкое применение.
  • Вместе с тем соединение оболочки провода с корпусом в одной точке не ослабляет в окружающем пространстве магнитное поле, создаваемое протекающим по проводу током. Для экранирования магнитного поля необходимо создать поле такой же величины и обратного направления. С этой целью необходимо весь обратный ток экранируемой цепи направить через экранирующую оплетку провода. Для полного осуществления этого принципа необходимо, чтобы экранирующая оболочка была единственным путем для протекания обратного тока.
  • Высокая эффективность экранирования обеспечивается при использовании витой пары, защищенной экранирующей оболочкой [1? .
  • На низких частотах приходится использовать более сложные схемы экранирования - коаксиальные кабели с двойной оплеткой (триаксиальные кабели).
  • На более высоких частотах, когда толщина экрана значительно превышает глубину проникновения поля, необходимость в двойном экранировании отпадает. В этом случае внешняя поверхность играет роль электрического экрана, а по внутренней поверхности протекают обратные токи.
  • Применение экранирующей оболочки существенно увеличивает емкость между проводом и корпусом, что в большинстве случаев нежелательно. Экранированные провода более громоздки и неудобны при монтаже, требуют предохранения от случайных соединений с посторонними элементами и конструкциями.
  • Длина экранированного монтажного провода должна быть меньше четверти длины самой короткой волны передаваемого по проводу спектра сигнала. При использовании более длинных участков экранированных проводов необходимо иметь в виду, что в этом случае экранированный провод следует рассматривать как длинную линию, которая во избежании искажений формы передаваемого сигнала должна быть нагружена на сопротивление, равное волновому.
  • Для уменьшения взаимного влияния монтажных цепей следует выбирать длину монтажных высокочастотных проводов наименьшей, для чего элементы высокочастотных схем, связанные между собой, следует располагать в непосредственной близости, а неэкранированные провода высокочастотных цепей - при пересечении под прямым углом. При параллельном расположении такие провода должны быть максимально удалены друг от друга или разделены экранами, в качестве которых могут быть использованы несущие конструкции электронной аппаратуры (кожух, панель и т.д.).
  • Экранированные провода и кабели следует применять в основном для соединения отдельных блоков и узлов друг с другом.
  • Кабельные экраны выполняются в форме цилиндра из сплошных оболочек, в виде спирально намотанной на кабель плоской ленты или в виде оплетки из тонкой проволоки. Экраны при этом могут быть однослойными и многослойными комбинированными, изготовленными из свинца, меди, стали, алюминия и их сочетаний (алюминий-свинец, алюминий-сталь, медь-сталь-медь и т.д.).
  • В кабелях с наружными пластмассовыми оболочками применяют экраны ленточного типа в основном из алюминиевых, медных и стальных лент, накладываемых спирально или продольно вдоль кабеля.
  • В области низких частот корпуса применяемых многоштырьковых низкочастотных разъемов являются экранами и должны иметь надежный электрический контакт с общей шиной или землей прибора, а зазоры между разъемом и корпусом должны быть закрыты электромагнитными уплотняющими прокладками.
  • В области высоких частот коаксиальные кабели должны быть согласованы по волновому сопротивлению с используемыми высокочастотными разъемами. При заделке коаксиального кабеля в высокочастотные разъемы жила кабеля не должна иметь натяжения в месте соединения с контактом разъема, а сам кабель должен быть жестко прикреплен к шасси аппаратуры вблизи разъема.
  • Для эффективного экранирования низкочастотных полей применяются экраны, изготовленные из ферромагнитных материалов с большой относительной магнитной проницаемостью. При наличии такого экрана линии магнитной индукции проходят в основном по его стенкам, которые обладают малым сопротивлением по сравнению с воздушным пространством внутри экрана. Качество экранирования таких полей зависит от магнитной проницаемости экрана и сопротивления магнитопровода, которое будет тем меньше, чем толще экран и меньше в нем стыков и швов, идущих поперек направления линий магнитной индукции.
  • Наиболее экономичным способом экранирования информационных линий связи между устройствами ТСПИ считается групповое размещение их информационных кабелей в экранирующий распределительный короб. Когда такого короба нет, то приходится экранировать отдельные линии связи.
  • Для защиты линий связи от наводок необходимо разместить линию в экранирующую оплетку или фольгу, заземленную в одном месте, чтобы избежать протекания по экрану токов, вызванных неэквипотенциальностью точек заземления. Для защиты линии связи от наводок необходимо минимизировать площадь контура, образованного прямым и обратным проводами линии. Если линия представляет собой одиночный провод, а возвратный ток течет по некоторой заземляющей поверхности, то необходимо максимально приблизить провод к поверхности. Если линия образована двумя проводами, то их необходимо скрутить, образовав бифиляр (витую пару). Линии, выполненные из экранированного провода или коаксиального кабеля, в которых по оплетке протекает возвратный ток, также отвечают требованию минимизации площади контура линии.
  • Наилучшую защиту как от электрического, так и от магнитного полей обеспечивают информационные линии связи типа экранированно го бифиляра, трифиляра (трех скрученных вместе проводов, из которых один используется в качестве электрического экрана), триаксильного кабеля (изолированного коаксильального кабеля, помещенного в электрический экран), экранированного плоского кабеля (плоского многопроводного кабеля, покрытого с одной или обеих сторон медной фольгой).
  • Для уменьшения магнитной и электрической связи между проводами необходимо уменьшить площадь петли, максимально разнести цепи и максимально уменьшить длину параллельного пробега линий ТСПИ с посторонними проводниками.
  • При нулевых уровнях сигналов в соединительных линиях ТСПИ между ними и посторонними проводниками должно обепечиваться переходное затухание не менее 114 дБ (13 Нп). Данное переходное затухание обеспечивается, как правило, при прокладке кабелей ТСПИ на расстоянии не менее 0,1 м от посторонних проводников. При этом допускается прокладка кабелей ТСПИ вплотную с посторонними проводниками при суммарной длине их совместного пробега не более 70 м.
  • Экранироваться могут не только отдельные блоки (узлы) аппаратуры и их соединительные линии, но и помещения в целом.
  • В обычных (неэкранированных) помещениях основной экранирующий эффект обеспечивают железобетонные стены домов. Экранирующие свойства дверей и окон хуже. Для повышения экранирующих свойств стен применяются дополнительные средства, в том числе:
  • - токопроводящие лакокрасочные покрытия или обои;
  • - шторы из металлизированной ткани;
  • - металлизированные стекла (например из двуокиси олова), устанавливаемые в металлические или металлизированные рамы.
  • В помещении экранируются стены, двери и окна. При закрытии двери должен обеспечиваться надежный электрический контакт со стенками помещения (с дверной рамой) по всему периметру не реже чем через 10 ... 15 мм. Для этого может быть применена пружинная гребенка из фосфористой бронзы, которую укрепляют по всему внутреннему периметру дверной рамы.
  • Окна должны быть затянуты одним или двумя слоями медной сетки с ячейкой не более 2*2 мм, причем расстояние между слоями сетки должно быть не менее 50 мм. Оба слоя сетки должны иметь хороший электрический контакт со стенками помещения (с рамой) по всему периметру. Сетки удобнее делать съемными, и металлическое обрамление съемной части также должно иметь пружинящие контакты из фосфористой бронзы.? При проведении работ по тщательному экранированию подобных помещений необходимо одновременно обеспечить нормальные условия для работающего в нем человека, прежде всего вентиляцию воздуха.
  • Конструкция экрана для вентиляционных отверстий зависит от диапазона частот. Для частот менее 1000 МГц применяются сотовые конструкции, закрывающие вентиляционное отверстие, с прямоугольными, круглыми, шестигранными ячейками. Для достижения эффективного экранирования размеры ячеек должны быть менее одной десятой от длины волны. При повышении частоты необходимые размеры ячеек могут быть столь малыми, что ухудшается вентиляция.
  • Заземление коммуникационных технических средств. Необходимо помнить, что экранирование ТСПИ и соединительных линий эффективно только при правильном их заземлении. Поэтому одним из важнейших условий по защите ТСПИ является правильное заземление этих устройств. Наиболее часто используются одноточечные, многоточечные и комбинированные (гибридные) схемы.
  • Как правило, одноточечное заземление применяется на низких частотах при небольших размерах заземляемых устройств. На высоких частотах при больших размерах заземляемых устройств и значительных расстояниях между ними используется многоточечная система заземления. В промежуточных случаях эффективна комбинированная (гибридная) система заземления, представляющая собой различные сочетания одноточечной, многоточечной и плавающей заземляющих систем.
  • Заземление технических средств систем информатизации и связи должно быть выполнено в соответствии с определенными правилами. Основные требования, предъявляемые к системе заземления, заключаются в следующем:
  • - система заземления должна включать общий заземлитель, заземляющий кабель, шины и провода, соединяющие заземлитель с объектом;
  • - сопротивления заземляющих проводников, а также земляных шин должны быть минимальными;
  • - каждый заземляемый элемент должен быть присоединен к заземлителю или к заземляющей магистрали при помощи отдельного ответвления. Последовательное включение в заземляющий проводник нескольких заземляемых элементов запрещается;
  • - в системе заземления должны отсутствовать замкнутые контуры, образованные соединениями или нежелательными связями между сигнальными цепями и корпусами устройств, между корпусами устройств и землей;
  • - следует избегать использования общих проводников в системах экранирования, заземления и сигнальных цепей;
  • - качество электрических соединений в системе заземления должно обеспечивать минимальное сопротивление контакта, надежность и механическую прочность контакта в условиях климатических воздействий и вибрации;
  • - контактные соединения должны исключать возможность образования оксидных пленок на контактирующих поверхностях и связанных с этими пленками нелинейных явлений;
  • - контактные соединения должны исключать возможность образования гальванических пар для предотвращения коррозии в цепях заземления;
  • - запрещается использовать в качестве заземляющего устройства нулевые фазы электросетей, металлоконструкции зданий, имеющие соединение с землей, металлические оболочки подземных кабелей, металлические трубы систем отопления, водоснабжения, канализации и т д.
  • Сопротивление заземления определяется главным образом сопротивлением растекания тока в земле. Величину этого сопротивления можно значительно понизить за счет уменьшения переходного сопротивления между заземлителем и почвой путем тщательной очистки перед укладкой поверхности заземлителя и утрамбовкой вокруг него почвы, а также подсыпкой поваренной соли [2].
  • Фильтрация информационных сигналов. Одним из методов локализации опасных сигналов, циркулирующих в технических средствах и системах обработки информации, является фильтрация [1,8]. В источниках электромагнитных полей и наводок фильтрация осуществляется в целях предотвращения распространения нежелательных электромагнитных колебаний за пределы устройства - источника опасного сигнала. Фильтрация в устройствах - рецепторах электромагнитных полей и наводок должна исключить их воздействие на рецептор.
  • Для фильтрации сигналов в цепях питания ТСПИ используются разделительные трансформаторы и помехоподавляющие фильтры.
  • Разделительные трансформаторы. Такие трансформаторы должны обеспечивать развязку первичной и вторичной цепей по сигналам наводки.Это означает, что во вторичную цепь трансформатора не должны проникать наводки, появляющиеся в цепи первичной обмотки. Проникновение наводок во вторичную обмотку объясняется наличием нежелательных резистивных и емкостных цепей связи между обмотками.
  • Для уменьшения связи обмоток по сигналам наводок часто применяется внутренний экран, выполняемый в виде заземленной прокладки или фольги, укладываемой между первичной и вторичной обмотками. С помощью этого экрана наводка, действующая в первичной обмотке, замыкается на землю. Однако электростатическое поле вокруг экрана также может служить причиной проникновения наводок во вторичную цепь.
  • Разделительные трансформаторы используются в целях решения ряда задач [9? , в том числе для:
  • - разделения по цепям питания источников и рецепторов наводки, если они подключаются к одним и тем же шинам переменного тока;
  • - устранения асимметричных наводок;
  • - ослабления симметричных наводок в цепи вторичной обмотки, обусловленных наличием асимметричных наводок в цепи первичной обмотки.
  • Средства развязки и экранирования, применяемые в разделительных трансформаторах, обеспечивают максимальное значение сопротивления между обмотками и создают для наводок путь с малым сопротивлением из первичной обмотки на землю. Это достигается обеспечением высокого сопротивления изоляции соответствующих элементов конструкции (~104 МОм) и незначительной емкости между обмотками. Указанные особенности трансформаторов для цепей питания обеспечивают более высокую степень подавления наводок, чем обычные трансформаторы.
  • Разделительный трансформатор со специальными средствами экранирования и развязки обеспечивает ослабление информационного сигнала наводки в нагрузке на 126 дБ при емкости между обмотками 0,005 пФ и на 140 дБ при емкости между обмотками 0,001 пФ.
  • Средства экранирования, применяемые в разделительных трансформаторах, должны не только устранять влияние асимметричных наводок на защищаемое устройство, но и не допустить на выходе трансформатора симметричных наводок, обусловленных асимметричными наводками на его входе. Применяя в разделительных трансформаторах специальные средства экранирования, можно существенно (более чем на 40 дБ) уменьшить уровень таких наводок.
  • Помехоподавляющие фильтры. В настоящее время существует большое количество различных типов фильтров, обеспечивающих ослабление нежелательных сигналов в разных участках частотного диапазона. Это фильтры нижних и верхних частот, полосовые и заграждающие фильтры и т.д. Основное назначение фильтров - пропускать без значительного ослабления сигналы с частотами, лежащими в рабочей полосе частот, и подавлять (ослаблять) сигналы с частотами, лежащими за пределами этой полосы.
  • Для исключения просачивания информационных сигналов в цепи электропитания используются фильтры нижних частот.
  • Заключение
  • Безопасных технических средств нет.
  • Источниками образования технических каналов утечки информации являются физические преобразователи.
  • Любой электронный элемент при определенных условиях может стать источником образования канала утечки информации.
  • Любой канал утечки информации может быть обнаружен и локализован. "На каждый яд есть противоядие".
  • Канал утечки информации легче локализовать, чем обнаружить.
  • Список используемой литературы
  • 1. http://www.nestor.minsk.by/sr/2003/06/30617.html
  • 2. http://dvo.sut.ru/libr/infbezop/i192galk/1.htm

3. «Организация защиты информации от утечки по техническим каналам», Хорев А.А.

Размещено на Allbest.ru


Подобные документы

  • Информационная безопасность, её цели и задачи. Каналы утечки информации. Программно-технические методы и средства защиты информации от несанкционированного доступа. Модель угроз безопасности информации, обрабатываемой на объекте вычислительной техники.

    дипломная работа [839,2 K], добавлен 19.02.2017

  • Возможные каналы утечки информации. Особенности и организация технических средств защиты от нее. Основные методы обеспечения безопасности: абонентское и пакетное шифрование, криптографическая аутентификация абонентов, электронная цифровая подпись.

    курсовая работа [897,9 K], добавлен 27.04.2013

  • Физическая целостность информации. Система защиты информации. Установка средств физической преграды защитного контура помещений. Защита информации от утечки по визуально-оптическим, акустическим, материально-вещественным и электромагнитным каналам.

    курсовая работа [783,9 K], добавлен 27.04.2013

  • Анализ источников сигналов и видов акустических каналов защищаемой информации. Распространение и поглощение звуковых волн. Технические каналы утечки акустических данных. Модель угроз для информации через вибро- и электроакустический, оптический каналы.

    дипломная работа [1,3 M], добавлен 05.07.2012

  • Анализ подходов по защите от утечки конфиденциальной информации. Разработать программный модуль обнаружения текстовых областей в графических файлах для решения задач предотвращения утечки конфиденциальной информации. Иллюстрация штрихового фильтра.

    дипломная работа [12,8 M], добавлен 28.08.2014

  • Характеристика предприятия. Технические каналы утечки, техника их моделирования: оптического, радиоэлектронного, акустического. Порядок проведения измерений и их анализ. Меры предотвращения утечки информации, программно-аппаратные средства ее защиты.

    курсовая работа [36,1 K], добавлен 13.06.2012

  • Необходимость и потребность в защите информации. Виды угроз безопасности информационных технологий и информации. Каналы утечки и несанкционированного доступа к информации. Принципы проектирования системы защиты. Внутренние и внешние нарушители АИТУ.

    контрольная работа [107,3 K], добавлен 09.04.2011

  • Главные каналы утечки информации. Основные источники конфиденциальной информации. Основные объекты защиты информации. Основные работы по развитию и совершенствованию системы защиты информации. Модель защиты информационной безопасности ОАО "РЖД".

    курсовая работа [43,6 K], добавлен 05.09.2013

  • Исследование плана помещения и здания в целом. Технические каналы утечки речевой информации: виброакустический и акустооптический. Перехват наводок информационных сигналов. Оценка рисков информационной безопасности. Технические мероприятия по защите.

    курсовая работа [1,9 M], добавлен 26.11.2014

  • Необходимость защиты информации. Виды угроз безопасности ИС. Основные направления аппаратной защиты, используемые в автоматизированных информационных технологиях. Криптографические преобразования: шифрование и кодирование. Прямые каналы утечки данных.

    курсовая работа [72,1 K], добавлен 22.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.