Моделирование систем массового обслуживания на языке GPSS

Методика исследования сложных систем, имитационное моделирование, как способ изучения анализируемой системы. Обзор элементов системы многоканального устройства, идентификация числовых номеров и символьных имен, объединение набора стандартных блоков.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 13.05.2012
Размер файла 18,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Моделирование на языке GPSS

Моделирование систем массового обслуживания

Заключение

Список литературы

Введение

Моделирование - это метод исследования сложных систем, основанный на том, что рассматриваемая система заменяется на модель и проводится исследование модели с целью получения информации об изучаемой системе. Под моделью исследуемой системы понимается некоторая другая система, которая ведет себя с точки зрения целей исследования аналогично поведению системы. Обычно модель проще и доступнее для исследования, чем система, что позволяет упростить ее изучение. Среди различных видов моделирования, применяемых для изучения сложных систем, большая роль отводится имитационному моделированию. Имитационной называется модель, которая воспроизводит все элементарные явления, составляющие функционирования исследуемой системы во времени с сохранением их логической структуры и последовательности.

модель обслуживание массовый

Моделирование на языке GPSS

В последнее время большое прикладное значение получила разновидность имитационного моделирования, в котором в качестве модели используется программа, выполняемая на ЭВМ. Эта разновидность имитационного моделирования называется программным моделированием систем.

Под системой S понимается выделенное в соответствии с некоторым правилом объединение элементов любого рода, образующих связанное целое. Система не изолирована от окружающего мира. Все, что оказывает воздействие на систему, и на что система оказывает воздействие, называется внешней средой. В общем случае состав элементов системы переменный. Одни элементы находятся в системе постоянно, другие - появляются и покидают систему (временные элементы). Все атрибуты элементов и системы в целом можно разделить на два типа: переменные и постоянные. Переменными являются атрибуты, значение которых остается неизменным в рассматриваемом периоде времени.

Совокупность конкретных значений всех переменных атрибутов элементов и системы в целом в некоторый момент времени существования системы определяет состояние системы z(t). Системы в соответствии с различными признаками могут быть классифицированы следующим образом:

- динамические-статические;

- дискретные-непрерывные-комбинированные;

- стохастические (вероятностные)-детерминированные.

Система является динамической, если ее состояние меняется с изменением времени, в противном случае система является статической. Если состояние системы, т. е. значение ее атрибутов, изменяется непрерывно, то она называется непрерывной системой, а если значения изменяются в дискретные моменты времени, то система называется дискретной. Существуют такие системы, у которых часть атрибутов, описывающих состояние системы, меняется непрерывно, а часть дискретно. Эти системы называются непрерывно-дискретными или комбинированными.

Система называется стохастической, если при одних и тех же начальных условиях результаты функционирования системы будут различаться, иначе система называется детерминированной.

Функционирование динамической дискретной системы в период времени [t0, T] заключается в последовательной смене состояний системы z(t1) -> z(t2) -> . . . -> z(tn), где t0 <= t1 <= t2 <= . . . <= tn<= T.

Функционирование системы может рассматриваться и описываться как взаимодействие событий, действий или процессов, происходящих в системе.

Под событием понимается всякое изменение состояния системы под воздействием внешней среды и сложившихся в системе условий. Событие рассматривается как мгновенное изменение состояния системы.

Под действием понимается пребывание элемента системы в некотором состоянии. Переход элемента в данное состояние (начало действия) и выход из этого состояния (окончание действия) определяется условиями, сложившимися в системе.

Упорядоченная во времени логически взаимосвязанная последовательность событий, выделенная в соответствии с некоторым признаком, называется процессом.

Таким образом, процесс- это более агрегативное понятие, чем событие и действие. Существует множество систем, процессы функционирования в которых могут быть представлены моделями информационных потоков, получившими название систем массового обслуживания (СМО). Это прежде всего процессы в технических системах - телефонные сети, радиосвязь и телекоммуникации, вычислительные машины, системы и вычислительные сети. При их анализе наиболее важно определить скорость передачи или обработки информации, оценить пропускную способность, загрузку оборудования и т. д.

При анализе транспортных систем важнейшими задачами являются определение скорости и объема перевозок, сокращение простоев и др. Процессы жизнедеятельности в биологических системах требуют прежде всего определения благоприятных условий жизни, размножения и развития отдельных особей или популяции (колонии, сообщества) в целом. Многие процессы деятельности человека (социальные, экономические, экологические) могут быть представлены моделями типа СМО. И даже обучение, представляемое как усваивание знаний и забывание, также может быть описано такими моделями.

Любая подобная система неизбежно испытывает различного pода возмущения, источниками котоpых могут быть либо внешние воздействия, обусловленные случайными или систематическими изменениями окружающих условий, либо внутренние флюктуации, возникающие в самой системе в результате взаимодействия элементов. Пpи исследовании эти системы пpедставляются в виде стохастических моделей дискpетных пpоцессов (CМДП). Несмотря на успешное pазвитие и пpименение методов аналитического моделиpования СМДП, основным методом исследования таких систем остается имитационное моделиpование на ЭВМ с пpименением специализиpованных языков пpогpаммиpования.

За всю историю pазвития вычислительной техники было создано более 300 языков моделирования дискретных процессов. Одним из первых языков описания СМДП, появившихся в начале 60-х годов, был язык блок-диаграмм, предложенный Гордоном, идеи которого оказались настолько плодотворны, что использовались во многих последующих pазpаботках в нашей стране и за рубежом. На основе языка блок-диаграмм в 70-х годах был создан и в последующем адаптиpован к ПК широко используемый в настоящее вpемя для моделиpования большого класса систем язык и система моделирования GPSS (General Purpose Simulation System - Система моделирования общего назначения).

Моделирование систем массового обслуживания (СМО)

Система массового обслуживания - это система, состоящая из обслуживающего прибора, заявки, находящейся на обслуживании, и ожидающих обслуживания заявок. Рассмотрим на процедурном уровне модель системы обслуживания с одним прибором и чередью. Сначала обсудим способ функционирования этой системы и поставим цель разработать модель на ЭВМ, которая промоделировала бы данную систему. Далее рассмотрим основные вопросы, связанные с созданием такой модели. При моделировании таких систем предполагается, что существует генератор случайных чисел.

Считают, что обращение к генератору происходит как к функции, которая выдает значения случайных чисел, равномерно распределенных в интервале от 0, 000000 до 0,999999 включительно.

Рассмотрим систему, состоящую из одного человека, выполняющего обслуживание определенного вида. Этот человек может быть кассиром, продающим билеты на станции, контролером в универсальном магазине, парикмахером в парикмахерской с единственным креслом. "Клиенты" приходят к такому "обслуживающему прибору" в случайные моменты времени, ждут своей очереди на обслуживание (если есть необходимость), их обслуживают по принципу "первый пришел - первым обслужен". После этого они уходят.

Для дальнейшего рассмотрения системы введем следующие определения: ОЧЕРЕДЬ - это группа заявок, ожидающих обслуживания. МОДЕЛЬНОЕ ВРЕМЯ - это промежуток времени между началом моделирования и его завершением. ИНТЕРВАЛ ПРИБЫТИЯ заявок - это интервал времени между последовательными моментами прибытия заявок в систему. ВРЕМЯ ОБСЛУЖИВАНИЯ - это время, требуемое прибору для выполнения обслуживания.

Величины, характеризующие работу данной системы обслуживания и зависящие от двух вышеперечисленных независимых случайных переменных, могут стать предметом исследования. Ниже перечислены некоторые из этих случайных величин:

1. Число заявок, прибывших на обслуживание за заданный промежуток времени.

2. Число заявок, которые попали на обслуживание сразу же по прибытии (минуя очередь).

3. Среднее время пребывания заявок в очереди.

4. Средняя длина очереди.

5. Максимальная длина очереди.

6. Нагрузка прибора, являющаяся функцией времени, которое потрачено прибором на обслуживание в течение заданного промежутка времени.

Следует заметить, что разработку логической схемы модели на ЭВМ, которая будет имитировать систему обслуживания с одним прибором и очередью, нужно вести при следующих условиях:

1. Случайные переменные ИНТЕРВАЛ ПРИБЫТИЯ и ВРЕМЯ ОБСЛУЖИВАНИЯ являются равномерно распределенными и принимают только целые значения.

2. Все прибывающие заявки должны быть обслужены независимо от длины очереди.

3. Вначале моделирования система "пуста", т. е. нет очереди и обслуживающий прибор свободен.

4. Моделирование продолжается до тех пор, пока не будет достигнуто значение модельного времени, заданное для этой модели в качестве одного из входных данных.

Заключение

Язык GPSS представляет собой интерпретирующую языковую систему, применяющуюся для описания пространственного движения объектов. Такие динамические объекты в GPSS называются транзактами и представляют собой элементы потока. В процессе имитации транзакты "создаются" и "уничтожаются". Функцию каждого из них можно представить как движение через модель M с поочередным воздействием на ее блоки. Каждый транзакт имеет набор параметров. В GPSS также введены понятия прибора, многоканального устройства (накопителя) и очереди, которые соответствуют постоянным элементам системы.

1. Прибор - это элемент системы, который может находиться в двух состояниях "свободно" и "занято". В состояние "занято" прибор переводится транзактом, поступившим в него. Все остальные транзакты, после этого поступившие к прибору, встают в очередь к нему, т. е. включаются в упорядоченный список, и ожидают освобождения прибора. Занявший прибор транзакт через некоторое время освобождает его (переводит в состояние "свободно"). Прибор занимается транзактом, стоящим первым в очереди, либо, если очередь пуста, остается в состоянии "свободно" до прихода следующего транзакта.

2. Многоканальное устройство - это элемент системы, имеющий определенную емкость, которая измеряется целым положительным числом. Транзакт занимает какое-то количество каналов и, через некоторое время, освобождает их. Причем число освобождаемых каналов может отличаться от первоначально занятых. Как и в приборах, организуется очередь, если нет требуемого количества каналов.

3. Очередь - это элемент системы, упорядоченный список транзактов к прибору или многоканальному устройству.

Приборы, многоканальные устройства и очереди идентифицируются числовыми номерами или символьными именами. Под символьным именем в GPSS понимается последовательность от 3 до 5 символов, причем первые три символа обязательно латинские буквы.

Модель на языке GPSS строится путем объединения набора стандартных блоков в некоторую программу, определяющую логику функционирования исследуемой системы.

В языке имеется более 40 блоков, каждый из которых имеет определенное стилизованное обозначение и наименование, указывающее на функциональное назначение блока. Для детализации функций, выполняемых блоком, у каждого из них имеется набор параметров.

Каждому транзакту в исследуемой системе в соответствие ставится сегмент модели, т. е. самостоятельная последовательность связанных блоков, которая описывает весь жизненный цикл временных элементов одного класса, начиная с их появления в системе и заканчивая их уходом из нее. Модель может включать несколько сегментов.

Каждый сегмент модели начинается с одного или нескольких блоков GENERATE, которые создают транзакты, и заканчивается блоком TERMINATE, который эти транзакты удаляет из модели. Каждый транзакт, появившийся в модели, последовательно обрабатывается блоками, входящими в сегмент. Одновременно в модели обрабатывается только один транзакт, остальные транзакты модели ждут своей очереди на обработку.

Порядок обработки транзактов задается календарем модели, который в GPSS называется цепью будущих событий (ЦБС). ЦБС - это упорядоченный по времени начала обработки список транзактов, обработка которых запланирована на будущие моменты времени. Те транзакты, которые могут обрабатываться в данный момент системного времени, но из-за сложившихся в системе условий не обрабатываются, включаются в другой упорядоченный список-цепь текущих событий (ЦТС). Работа монитора моделирующей программы на языке GPSS заключается в том, что в начале из ЦБС выбирается транзакт с наименьшим временем начала обработки и переносится в ЦТС.

Время начала обработки этого транзакта присваивается таймеру модели. Затем монитор последовательно пытается начать обработку всех транзактов, которые находятся в ЦТС.

Если какой-то транзакт начинает обрабатываться, то он обрабатывается до тех пор, пока либо выйдет из модели, либо его обработка будет задержана на какое-то время и транзакт будет перенесен в ЦБС, или очередной по описанию сегмента блок не сможет обрабатывать транзакт в связи со сложившимися в модели условиями.

Транзакты в ЦТС просматриваются до тех пор, пока ни один из них дальше обрабатываться уже не сможет. Тогда монитор опять выбирает из ЦБС транзакт с минимальным временем, изменяет значение таймера и все выше описанное повторяется.

Модель заканчивает работу тогда, когда переменная модели, называемая "счетчик завершения", получит значение меньшее или равное 0. Начальное значение счетчика завершения задается при запуске модели в карте START, а изменяется блоком TERMINATE.

Список литературы

http://www.ict.edu.ru

http://www.pcweek.ru

http://codingrus.ru

Размещено на Allbest.ru


Подобные документы

  • Имитационное моделирование как один из наиболее широко используемых методов при решении задач анализа и синтеза сложных систем. Особенности имитационного моделирования систем массового обслуживания. Анализ структурной схемы системы передачи пакетов.

    курсовая работа [1,2 M], добавлен 28.05.2013

  • Разработка концептуальной модели системы обработки информации для узла коммутации сообщений. Построение структурной и функциональной блок-схем системы. Программирование модели на языке GPSS/PC. Анализ экономической эффективности результатов моделирования.

    курсовая работа [802,8 K], добавлен 04.03.2015

  • Сфера применения имитационного моделирования. Исследование и специфика моделирования системы массового обслуживания с расчетом стационарных значений системы и контролем погрешности получаемых значений. Реализация ее в GPSS и на языке высокого уровня Java.

    курсовая работа [818,7 K], добавлен 23.05.2013

  • Основные сведение о системе моделирования GPSS и блоки, используемые при моделировании одноканальных и многоканальных систем массового обслуживания. Разработка модели работы ремонтного подразделения в течение суток с использованием программы GPSS World.

    курсовая работа [36,4 K], добавлен 11.02.2015

  • Язык GPSS как один из наиболее эффективных и распространенных языков моделирования сложных дискретных систем. Транзакт - элемент системы массового обслуживания. Решение задач на основе моделирования с применением языка GPSS, создание имитационной модели.

    курсовая работа [54,7 K], добавлен 25.11.2010

  • Построение модели системы массового обслуживания с помощью ЭВМ с использованием методов имитационного моделирования. Моделирование проводилось с помощью GPSS World Student version, позволяющего достоверно воссоздать систему массового обслуживания.

    курсовая работа [555,7 K], добавлен 29.06.2011

  • Определение функциональных характеристик систем массового обслуживания (СМО) на основе имитационного моделирования; синтез СМО с заданными характеристиками. Разработка программы на языке SIMNET II; расчет процесса работы СМО; подбор требуемого параметра.

    лабораторная работа [623,8 K], добавлен 11.03.2011

  • Определение необходимого количества работников и их распределение между операциями, при которых достигается максимальная экономическая эффективность работы цеха. Описание процессов, протекающих в моделях систем массового обслуживания. Листинг программы.

    курсовая работа [314,9 K], добавлен 09.06.2015

  • Определение назначения и описание функций имитационных моделей стохастических процессов систем массового обслуживания. Разработка модели описанной системы в виде Q-схемы и программы на языке GPSS и C#. Основные показатели работы имитационной модели.

    курсовая работа [487,4 K], добавлен 18.12.2014

  • Методика и особенности составления имитационной модели системы массового обслуживания (СМО). Анализ и статистическая обработка показателей эффективности СМО путем решения уравнения Колмогорова, их сравнение с результатами аналитического моделирования.

    курсовая работа [609,2 K], добавлен 31.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.