Классификационные признаки, задачи, области применения экспертных систем

Классы экспертных систем и их различие по сложности и типу решаемых задач: анализ или синтез. Структура статистических и динамических экспертных систем. Назначение и необходимость подсистем моделирования внешнего мира и связи с внешним окружением.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 03.05.2012
Размер файла 47,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Характеристика ЭС

2. Классификация, классификационные признаки ЭС

3. Архитектура статических и динамических экспертных систем

1. Характеристика ЭС

Экспертные системы как самостоятельное направление в искусственном интеллекте сформировалось в конце 1970-х гг.

Группа по экспертным системам при Комитете British Computer Society определила ЭС как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знаниях, в такой форме, что машина может дать интеллектуальный совет или принять решение относительно обрабатываемой функции». Одним из важных свойств ЭС является способность объяснить ход своих рассуждений понятным для пользователя образом.

Область исследования ЭС называют «инженерией знаний». Этот термин был введен Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и инструментария из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов».

Другими словами, ЭС применяются для решения неформализованных проблем, к которым относят задачи, обладающие одной (или несколькими) из следующих характеристик:

· задачи не могут быть представлены в числовой форме;

· исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;

· цели нельзя выразить с помощью четко определенной целевой функции;

· не существует однозначного алгоритмического решения задачи;

· алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).

Главное отличие ЭС и систем искусственного интеллекта от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

ЭС охватывают самые разные предметные области, среди которых лидируют бизнес, производство, медицина, проектирование и системы управления. Во многих случаях ЭС являются инструментом, усиливающим интеллектуальные способности эксперта.

Кроме того, ЭС может выступать в роли:

· консультанта для неопытных или непрофессиональных пользователей;

· ассистента эксперта-человека в процессах анализа вариантов решений;

· партнера эксперта в процессе решения задач, требующих привлечения знаний из разных предметных областей.

2. Классификация, классификационные признаки ЭС

Для классификации ЭС используются следующие признаки:

· способ формирования решения;

· способ учета временного признака;

· вид используемых данных и знаний;

· число используемых источников знаний.

· партнера эксперта в процессе решения задач, требующих привлечения знаний из разных предметных областей.

По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие. В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.

В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.

По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость.

ЭС могут создаваться с использованием одного или нескольких источников знаний.

В соответствии с перечисленными признаками можно выделить четыре основных класса ЭС (рис. 1): классифицирующие, доопределяющие, трансформирующие и мультиагентные.

Размещено на http://www.allbest.ru/

Классифицирующие ЭС решают задачи распознавания ситуаций. Основным методом формирования решений в таких системах является дедуктивный логический вывод.

Доопределяющие ЭС используются для решения задач с не полностью определенными данными и знаниями. В таких ЭС возникают задачи интерпретации нечетких знаний и выбора альтернативных направлений поиска в пространстве возможных решений. В качестве методов обработки неопределенных знаний могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика.

Трансформирующие ЭС относятся к синтезирующим динамическим экспертным системам, в которых предполагается повторяющееся преобразование знаний в процессе решения задач. В ЭС данного класса используются различные способы обработки знаний:

· генерация и проверка гипотез;

· логика предположений и умолчаний (когда по неполным данным формируются представления об объектах определенного класса, которые впоследствии адаптируются к конкретным условиям изменяющихся ситуаций);

· использование метазнаний, более общих закономерностей для устранения неопределенностей в ситуациях.

Мультиагентные системы - это динамические ЭС, основанные на интеграции нескольких разнородных источников знаний. Эти источники обмениваются между собой получаемыми результатами в ходе решения задач. Системы данного класса имеют следующие возможности:

· реализация альтернативных рассуждений на основе использования различных источников знаний и механизма устранения противоречий;

· распределенное решение проблем, декомпозируемых на параллельно решаемые подзадачи с самостоятельными источниками знаний;

· применение различных стратегий вывода заключений в зависимости от типа решаемой проблемы;

· обработка больших массивов информации из баз данных;

· использование математических моделей и внешних процедур для имитации развития ситуаций.

В основе классификации экспертных систем лежат следующие параметры: тип приложения, стадия существования, масштаб, тип проблемной среды, тип решаемой задачи.

Тип приложения характеризуется следующими признаками.

1. Возможность взаимодействия приложения с другими программными средствами:

· изолированное приложение - экспертная система, не способная взаимодействовать с другими программными системами (например, с базами данных, электронными таблицами, пакетами прикладных программ, контроллерами, датчиками и т.п.);

· интегрированное приложение - экспертная система и другие программные системы, с которыми она взаимодействует в ходе работы. Большинство современных ЭС, используемых для решения практически значимых задач, являются интегрированными.

2. Возможность исполнять приложение на разнородной аппаратуре и переносить его на различные платформы:

· закрытые приложения -- исполняются только в программной среде данной фирмы и могут быть перенесены на другие платформы только путем перепрограммирования приложения;

· открытые приложения -- ориентированы на исполнение в разнородном программно-аппаратном окружении и могут быть перенесены на другие платформы без перепрограммирования.

3. Архитектура приложения:

· централизованное приложение - реализуется на базе центральной ЭВМ, с которой связаны терминалы;

· распределенное приложение - обычно используется архитектура клиент-сервер.

Стадия существования характеризует степень завершенности разработки ЭС. В нее входят:

· исследовательский прототип - решает представительный класс задач проблемной области, но может быть неустойчив в работе и не полностью проверен. При наличии развитых инструментальных средств при разработке исследовательского прототипа требуется примерно 2-4 месяца. База знаний исследовательского прототипа обычно содержит небольшое число исполняе-мых утверждений;

· действующий прототип - надежно решает любые задачи проблемной области, но при решении сложных задач может потребовать чрезмерно много времени и (или) памяти. Доведение системы от начала разработки до стадии действующего прототипа требует примерно 6 - 9 месяцев, при этом количество исполняемых утверждений в базе знаний увеличивается по сравнению с исследовательским прототипом;

· промышленная система - обеспечивает высокое качество решения всех задач при минимуме времени и памяти. Обычно процесс преобразования действующего прототипа в промышленную систему состоит в расширении базы знаний и ее тщательной отладке. Доведение ЭС от начала разработки до стадии промышленной системы с применением развитых инструментальных средств требует не менее 12-18 месяцев;

· коммерческая система - пригодна не только для использования разработчиком, но и для продажи различным потребителям. Доведение системы до коммерческой стадии требует примерно 1,5-2 года. Приведенные здесь сроки справедливы для ЭС средней сложности.

Масштаб ЭС характеризует сложность решаемых задач и связан с типом используемой ЭВМ.

По этому признаку различают:

· малые ЭС - предназначены для первичного обучения и исследования возможности применения технологии ЭС для рассматриваемого класса задач. Системы такого типа могут быть реализованы на персональных компьютерах;

· средние ЭС - охватывают весь спектр необходимых приложений и обычно интегрированы с базами данных, электронными таблицами и т.д. Системы такого масштаба чаще всего реализуются на рабочих станциях;

· большие ЭС - имеют доступ к мощным базам данных и реализуются на рабочих станциях или на специализированных компьютерах;

· символьные ЭС - создаются с исследовательскими целями и реализуются на специализированных компьютерах, ориентированных на обработку символьных данных.

Понятие проблемной среды включает описание предметной области (множество сущностей, описывающих множество объектов, их характеристик и отношений между объектами) и решаемых в ней задач. Другими словами, проблемная среда включает структуры данных и решаемые с ними задачи, представленные в виде исполняемых утверждений (правил, процедур, формул и др.). В связи с этим проблемная среда определяется характеристиками соответствующей предметной области и характеристиками типов решаемых в ней задач.

Характеристики предметной области.

1. Тип предметной области:

· статический - входные данные не изменяются за время сеанса работы приложения, значения других (не входных) данных изменяются только самой экспертной системой;

· динамический - входные данные, поступающие из внешних источников, изменяются во времени, значения других данных изменяются ЭС или подсистемой моделирования внешнего окружения.

2. Способ описания сущностей предметной области:

· совокупность атрибутов и их значений (фиксированный состав сущностей);

· совокупность классов (объектов) и их экземпляров (изменяемый состав сущностей).

3. Способ организации сущностей в БЗ:

· неструктурированная БЗ;

· структурирование сущностей в БЗ по различным иерархиям, («частное - общее», «часть - целое», «род - вид»), что обеспечивает наследование свойств сущностей.

Структурирование БЗ способствует:

· ограничению круга сущностей, которые должны рассматриваться механизмом вывода, и сокращению количества перебираемых вариантов в процессе выбора решения;

· обеспечению наследования свойств сущностей, т.е. передачи свойств вышерасположенных в иерархии сущностей нижерасположенным сущностям, что значительно упрощает процесс приобретения и использо-вания знаний.

Характеристики типов решаемых в проблемной области задач.

1. Тип решаемых задач:

· задачи анализа или синтеза. В задаче анализа задана модель сущности и требуется определить неизвестные характеристики модели. В задаче синтеза задаются условия, которым должны удовлетворять характеристики «неизвестной» модели сущности, и требуется построить модель этой сущности. Решение задачи синтеза обычно включает задачу анализа как составную часть;

· статические или динамические задачи. Если задачи, решаемые ЭС, явно не учитывают фактор времени и/или не изменяют в процессе своего решения знания об окружающем мире, то ЭС решает статические задачи, в противном случае речь идет о решении динамических задач.

· Учитывая значимость времени в динамических проблемных средах, многие специалисты называют их приложениями, работающими в реальном времени.

Обычно выделяют следующие системы реального времени: псевдореального времени, «мягкого» реального времени и «жесткого» реального времени.

Системы псевдореального времени, как следует из названия, не являются системами реального времени, однако они, в отличие от статических систем, получают и обрабатывают данные, поступающие из внешних источников.

Системы псевдореального времени решают задачу быстрее, чем происходят значимые изменения информации об окружающем мире.

2. Общность исполняемых утверждений:

· частные исполняемые утверждения, содержащие ссылки на конкретные сущности (объекты);

· общие исполняемые утверждения, относящиеся к любым сущностям заданного типа (вне зависимости от их числа и имени). Использование общих утверждений позволяет значительно лаконичнее представлять знания. Однако поскольку общие утверждения не содержат явных ссылок на конкретные сущности, для их использования каждый раз требуется определять те сущности, к которым они должны применяться.

Не все сочетания перечисленных выше параметров, характеризующих проблемную среду, встречаются на практике. Наиболее распространены следующие типы проблемных сред:

· статическая предметная область:

представление сущностей в виде совокупности атрибутов и их значений, неизменяемый состав сущностей, БЗ не структурирована, решаются статические задачи анализа, используются только частные исполняемые утверждения;

представление сущностей объектами, изменяемый состав сущностей, БЗ структурирована, решаются статические задачи анализа и синтеза, используются общие и частные исполняемые утверждения;

· динамическая предметная область:

представление сущностей совокупностью атрибутов и их значений, неизменяемый состав сущностей, БЗ не структурирована, решаются динамические задачи анализа, используются частные исполняемые утверждения;

представление сущностей в виде объектов, изменяемый состав сущностей, БЗ структурирована, решаются динамические задачи анализа и синтеза, используются общие и частные исполняемые утверждения.

В ЭС различают следующие типы решения задач:

· интерпретация данных - процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Экспертные системы, как правило, проводят многовариантный анализ данных;

· диагностика - процесс соотнесения объекта с некоторым классом объектов и/или обнаружение неисправностей в системе (отклонений параметров системы от нормативных значений);

· мониторинг - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы;

· проектирование - создание ранее не существовавшего объекта и подготовка спецификаций на создание объектов с заранее определенными свойствами. Степень новизны может быть разной и определяется видом знаний, заложенных в ЭС, и методами их обработки. Для организации эффективного проектирования требуется формировать не только сами проектные решения, но и мотивы их принятия. ЭС, решающие задачи проектирования, реализуют процедуры вывода решения и объяснения полученных результатов;

· прогнозирование - предсказание последствий некоторых событий или явлений на основе анализа имеющихся данных. Прогнозирующие ЭС логически выводят вероятные следствия из заданных ситуаций. В прогнозирующих ЭС в большинстве случаев используются динамические модели, в которых значения параметров «подгоняются» под заданную ситуацию. Выводимые из этих моделей следствия составляют основу для прогнозов с вероятностными оценками;

· планирование - построение планов действий объектов, способных выполнять некоторые функции. Работа ЭС по планированию основана на моделях поведения реальных объектов, которые позволяют проводить логический вывод последствий планируемой деятельности;

· обучение - использование компьютера для обучения каким-либо дисциплине или предмету. Экспертные системы обучения выполняют такие функции, как диагностика ошибок, подсказывание правильных решений; аккумулирование знаний о гипотетическом «ученике» и его характерных ошибках; диагностирование слабости в познаниях обучаемых и нахождение соответствующих средств для их ликвидации. Системы обучения способны планировать акт общения с учеником в зависимости от успехов ученика для передачи необходимых знаний;

· управление - функция организованной системы, поддерживающая определенный режим ее деятельности. Экспертные системы данного типа предназначены для управления поведением сложных систем в соответствии с заданными спецификациями;

· поддержка принятия решений - совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающими процесс принятия решения. Такого рода ЭС оказывают помощь специалистам в выборе и/или генерации наиболее рациональной альтернативы из множества возможных при принятии ответственных решений.

Задачи интерпретации данных, диагностики, поддержки принятия решений относятся к задачам анализа, задачи проектирования, планирования и управления - к задачам синтеза. К комбинированному типу задач относятся обучение, мониторинг и прогнозирование.

3. Архитектура статических и динамических экспертных систем

экспертный динамический статистический

В самых первых ЭС не учитывалось изменение знаний, используемых в процессе решения конкретной задачи. Их назвали статическими ЭС. Типичная статическая ЭС содержит следующие основные компоненты (рис. 2): базу знаний; рабочую память, называемую также базой данных; решатель (интерпретатор); систему объяснений; компоненты приобретения знаний; интерфейс с пользователем

База знаний ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область, и правил, описывающих целесообразные преобразования данных этой области.

База данных (рабочая память) служит для хранения текущих данных решаемой задачи.

Решатель (интерпретатор) формирует последовательность применения правил и осуществляет их обработку, используя данные из рабочей памяти и знания из БЗ.

Система объяснений показывает, каким образом система получила решение задачи, и какие знания при этом использовались. Это облегчает тестирование системы и повышает доверие пользователя к полученному результату.

Компоненты приобретения знаний необходимы для заполнения ЭС знаниями в диалоге с пользователем-экспертом, а также для добавления и модификации заложенных в систему знаний.

К разработке ЭС привлекаются специалисты из разных предметных областей, а именно:

· эксперты той проблемной области, к которой относятся задачи, решаемые ЭС;

· инженеры по знаниям, являющиеся специалистами по разработке ИИС;

· программисты, осуществляющие реализацию ЭС.

Размещено на http://www.allbest.ru/

Рис. 2 Структура статической экспертной системы

Эксперты поставляют знания в ЭС и оценивают правильность получаемых результатов. Инженеры по знаниям помогают экспертам выявить и структурировать знания, необходимые для работы ЭС, выполняют работу по представлению знаний, выбирают методы обработки знаний, проводят выбор инструментальных средств реализации ЭС, наиболее пригодных для решения поставленных задач. Программисты разрабатывают программное обеспечение ЭС и осуществляют его сопряжение со средой, в которой оно будет использоваться.

В целом за разработку экспертной системы следует браться организации, где накоплен опыт по автоматизации рутинных процедур обработки информации, например: информационный поиск, графика, сложные расчеты, обработка текстов и т.д.

Любая ЭС должна иметь, по крайней мере, два режима работы. В режиме приобретения знаний эксперт наполняет систему знаниями, которые впоследствии позволят ЭС самостоятельно (без помощи эксперта) решать определенные задачи из конкретной проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил.

Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют взаимные связи, существующие между данными, и способы манипулирования данными, характерные для рассматриваемого класса задач.

В режиме консультации пользователь ЭС сообщает системе конкретные данные о решаемой задаче и стремится получить с ее помощью результат. Пользователи-неспециалисты обращаются к ЭС за результатом, не умея получить его самостоятельно, пользователи-специалисты используют ЭС для ускорения и облегчения процесса получения результата.

Следует подчеркнуть, что термин «пользователь» является многозначным, так как использовать ЭС могут и эксперт, и инженер по знаниям, и программист. Поэтому, когда хотят подчеркнуть, что речь идет о том, для кого делалась ЭС, используют термин «конечный пользователь».

В режиме консультации входные данные о задаче поступают в рабочую память. Решатель на основе входных данных из рабочей памяти и правил из БЗ формирует решение.

В отличие от традиционных программ компьютерной обработки данных ЭС при решении задачи не только исполняет предписанную последовательность операций, но и сама формирует ее.

Существует широкий класс приложений, в которых требуется учитывать изменения, происходящие в окружающем мире за время исполнения приложения. Для таких задач необходимо применять динамические ЭС.

В структуру динамической ЭС (рис. 3) вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением.

Размещено на http://www.allbest.ru/

Рис. 3. Структура динамической экспертной системы

Подсистема моделирования внешнего мира необходима для прогнозирования, анализа и адекватной оценки состояния внешней среды. Изменения окружения решаемой задачи требуют изменения хранимых в ЭС знаний, с тем, чтобы отразить временную логику происходящих в реальном мире событий. Компонента связи с внешним миром актуальна для автономных интеллектуальных систем (роботов), а также для интеллектуальных систем управления. Связь с внешним миром осуществляется через систему датчиков и контроллеров.

Размещено на Allbest.ru


Подобные документы

  • Изучение характеристик, классификации, функций и основных элементов экспертных систем. Исследование их структуры и отличительных особенностей от другого программного обеспечения. Описания методов проектирования и области применения экспертных систем.

    реферат [38,1 K], добавлен 18.09.2013

  • Определение экспертных систем, их достоинство и назначение. Классификация экспертных систем и их отличие от традиционных программ. Структура, этапы разработки и области применения. Классификация инструментальных средств и технология разработки систем.

    курсовая работа [78,0 K], добавлен 03.06.2009

  • Понятие и особенности экспертных систем, способных накапливать, обрабатывать знания из некоторой предметной области, на их основе выводить новые знания и решать на основе этих знаний практические задачи. История и устройство юридических экспертных систем.

    реферат [58,4 K], добавлен 17.03.2015

  • Сущность экспертных систем и их научно-познавательная деятельность. Структура, функции и классификация ЭС. Механизм вывода и система объяснений. Интегрированные информационные системы управления предприятием. Применение экспертных систем в логистике.

    курсовая работа [317,3 K], добавлен 13.10.2013

  • Механизм автоматического рассуждения. Основные требования к экспертным системам. Наделение системы способностями эксперта. Типовая структура и классификация интерфейсов пользователей экспертных систем. Основные термины в области разработки систем.

    презентация [252,6 K], добавлен 14.08.2013

  • Структура экспертных систем, их классификация и характеристики. Выбор среды разработки программирования. Этапы создания экспертных систем. Алгоритм формирования базы знаний с прямой цепочкой рассуждений. Особенности интерфейса модулей "Expert" и "Klient".

    курсовая работа [1,1 M], добавлен 18.08.2009

  • Сущность, виды, направления использования и основные понятия экспертных систем. Понятие и характеристика основных элементов структуры экспертной системы. Основные виды классификаций экспертных систем: по решаемой задаче и по связи с реальным временем.

    доклад [104,5 K], добавлен 09.06.2010

  • Признаки и отличительные черты интеллектуальных информационных систем, их классификация и использование при разработке экономических и управленческих решений. Определение, назначение и области применения экспертных систем. Использование нейронных сетей.

    курс лекций [1,7 M], добавлен 27.04.2009

  • Понятие и содержание экспертных систем, принципы взаимосвязи элементов: интерфейса пользователя, собственно пользователя, эксперта, средств объяснения, рабочей памяти и машины логического вывода. Классификация, преимущества, недостатки экспертных систем.

    реферат [33,9 K], добавлен 25.02.2013

  • Понятия, классификация и структура экспертных систем. Базы знаний и модели представления знаний. Механизмы логического вывода. Инструментальные средства проектирования и разработки экспертных систем. Предметная область ЭС "Выбор мобильного телефона".

    курсовая работа [2,2 M], добавлен 05.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.