Token Ring — технология локальной вычислительной сети кольца с маркерным доступом

Маркерный метод доступа в сети. Стандарт 802.5 как метод доступа к кольцу с передачей маркера. Функционирование сети Token Ring. Максимальное время оборота маркера. Механизм раннего освобождения токена. Конфигурация кольца и обеспечение надежности FDDI.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 24.04.2012
Размер файла 430,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Маркерный метод доступа

В сетях с маркерным методом доступа право на доступ к среде передается циклически от станции к станции по логическому кольцу. Кольцо образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер (токен).

Получив маркер, станция анализирует его, при необходимости модифицирует и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой.

При поступлении кадра данных к одной или нескольким станциям, эти станции копируют для себя этот кадр и вставляют в этот кадр подтверждение приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и выдает новый маркер для обеспечения возможности другим станциям сети передавать данные.

На рисунке отображён описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце, состоящем из 6 станций, от станции 1 к станции 3.

token ring маркерный сеть

2. Протокол 802.5.

Стандарт 802.5 описывает метод доступа к кольцу с передачей маркера (Token ring network), прототип - Token Ring.

Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном.

Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.

3. Функционирование сети Token Ring

Маркер передается по логическому кольцу в направлении противоположном направлению вращения часовой стрелки. Если у устройства есть данные, которые необходимо отправить, и оно видит проходящий по кольцу маркер, то оно может осуществить захват этого маркера. Захватив маркер, устройство передает кадр по кольцу. В процессе прохождения кадра по кольцу система-получатель копирует данные из этого кадра. Когда кадр, посланный устройством, возвращается обратно, отправитель удаляет его из сети и высвобождает маркер, который вновь начинает передаваться по кольцу. В 16-мегабитных сетях Token Ring устройство-отправитель высвобождает маркер раньше, чем получает назад свой отосланный кадр, используя функцию, именуемую ранним высвобождением маркера (early token release). В отличие от протокола CSMD/CD, протокол захвата маркера делает невозможными конфликты при передаче, так как передать кадр в сеть Token Ring может только то устройство, которое захватило маркер. Кроме того, здесь возможен расчет максимального времени ожидания, которое будет необходимо устройству, прежде чем оно сможет отправить кадр. Это позволяет сделать технологию Token Ring детерминированной. Для некоторых сетевых приложений, например, обработки транзакций в реальном времени, такой детерминизм является очень важным требованием для протокола локальной сети.

4. Топология сетей token ring

Сеть Token-Ring имеет топологию кольцо, хотя внешне она больше напоминает звезду. Это связано с тем, что отдельные абоненты (компьютеры) присоединяются к сети не напрямую, а через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU - Multistation Access Unit). Физически сеть образует звездно-кольцевую топологию. В действительности же абоненты объединяются все-таки в кольцо, то есть каждый из них передает информацию одному соседнему абоненту, а принимает информацию от другого.

5. Максимальное время оборота маркера

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения во многом связаны со временем оборота маркера по кольцу. Так, если кольцо состоит из 260 станций, то при времени удержания маркера в 10 мс маркер вернется в активный монитор в худшем случае через 2,6 с, а это время как раз составляет максимально допустимое время оборота маркера.

6. Расчет конфигураций кольца

Станции С1, С2 и С3 - это станции, подключаемые к кольцу через концентратор. Обычно такими станциями являются компьютеры с установленными в них сетевыми адаптерами.

Максимальная длина ответвительного кабеля зависит от типа концентратора, типа кабеля и скорости передачи данных. Обычно для скорости 16 Мб/с максимальная длина кабеля может достигать 200 м, а для скорости 4 Мб/с - 600 м. Концентраторы Token Ring делятся на активные и пассивные.

Остальные станции сети соединены в кольцо непосредственными связями. Такие связи называются магистральными (trunk cable). Обычно связи такого рода используются для соединения концентраторов друг с другом для образования общего кольца. Порты концентраторов, предназначенные для такого соединения, называются портами Ring-In и Ring-Out.

Для предотвращения влияния отказавшей или отключенной станции на работу кольца станции подключаются к магистрали кольца через специальные устройства, называемые устройствами подключения к магистрали (Trunk Coupling Unit, TCU).

При подключении станции в кольцо через концентратор, устройства TCU встраивают в порты концентратора.

Максимальное количество станций в одном кольце - 250.

7. Активный монитор

Сети Token Ring используют несколько механизмов обнаружения и компенсации неисправностей в сети. Например, одна станция в сети Token Ring выбирается активным монитором (active monitor). Эта станция, которой в принципе может быть любая станция сети, действует как централизованный источник синхронизирующей информации для других станций кольца и выполняет разнообразные функции для поддержания кольца. Одной из таких функций является удаление из кольца постоянно циркулирующих блоков данных. Если устройство, отправившее блок данных, отказало, то этот блок может постоянно циркулировать по кольцу. Это может помешать другим станциям передавать собственные блоки данных и фактически блокирует сеть. Активный монитор может выявлять и удалять такие блоки и генерировать новый маркер.

8. Формат кадра Token Ring

В Token Ring существуют три различных формата кадров:

· Маркер - кадр маркера состоит из трех полей, каждое длиной в один байт:

- начальный ограничитель (Start Delimiter, SD) появляется в начале маркера, а также в начале любого кадра, проходящего по сети;

- управление доступом (Access Control) состоит из четырех подполей: РРР, Т, М и RRR, где РРР - биты приоритета, Т - бит маркера, М - бит монитора, RRR -резервные биты приоритета;

- конечный ограничитель (End Delimeter, ED) - последнее поле маркера.

· Кадр данных включает те же три поля, что и маркер, и имеет кроме них еще несколько дополнительных полей. Таким образом, кадр данных состоит из следующих полей:

- начальный ограничитель (Start Delimiter, SD);

- управление кадром (Frame Control, FC);

- адрес назначения (Destination Address, DA);

- адрес источника (Source Address, SA);

- данные (INFO);

- контрольная сумма (Frame Check Sequence, FCS);

- конечный ограничитель (End Delimeter, ED);

- статус кадра (Frame Status, FS).

· Прерывающая последовательность состоит из двух байтов, содержащих начальный и конечный ограничители. Прерывающая последовательность может появиться в любом месте потока битов и сигнализирует о том, что текущая передача кадра или маркера отменяется.

9. Решение проблем с потерей монитора

Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

10. Проверка работоспособности сети Token Ring

Проверка работоспособности сети Token Ring осуществляется с помощью кадров управления доступом. Например, аварийный сигнал используется станциями для восстановления работоспособности после устойчивой ошибки.

11. MAU для Token Ring

MAU - Сокращение от Мedia Аccess UNIT.

Короткий Мultistation Аccess UNIT (также сокращенно MSAU), в Token-Ring сеть устройство, которое физически соединяет сеть компьютеров в звезду топологии при сохранении логической кольцевой структуры. Одна из проблем, с Token-Ring топологии заключается в том, что единый внереализационные узла может привести к поломке кольца. В MAU решает эту проблему, поскольку он обладает способностью к коротким из внереализационные узлов и поддержание кольца структуры. А MAU представляет собой особый тип узла.

А кольцевая сеть использует multistation доступа (MAU) как концентратор. Он также может быть известен как Smart Multistation доступа (SMAU). А MAU, как правило, состоит из десяти портов. Два порта кольцо (RI) и кольцо Out (RO), которые позволяют нескольким MAUS быть связаны друг с другом. Еще 8 портов для подключения к компьютерам.

12. Доступ станций к кольцу

С помощью операций МАС-уровня станции получают доступ к кольцу и передают свои кадры данных. Цикл передачи кадра от одной станции к другой состоит из нескольких этапов: захвата токена станцией, которой необходимо передать кадр, передачей одного или нескольких кадров данных, освобождением токена передающей станцией, ретрансляцией кадра промежуточными станциями, распознаванием и копированием кадра станцией-получателем и удалением кадра из сети станцией-отправителем.

1. Захват токена. Если станция имеет право захватить токен, то она после ретрансляции на выходной порт символов PA и SD токена, удаляет из кольца символ FC, по которому она распознала токен, а также конечный ограничитель ED. Затем она передает вслед за уже переданным символом SD символы своего кадра, таким образом, формируя его из начальных символов токена.

2. Передача кадра. После удаления полей FC и ED токена станция начинает передавать символы кадров, которые ей предоставил для передачи уровень LLC. Станция может передавать кадры до тех пор, пока не истечет время удержания токена.

3. Синхронный трафик предназначен для приложений, которые требуют предоставления им гарантированной пропускной способности для передачи голоса, видеоизображений, управления процессами и других случаев работы в реальном времени. Для такого трафика каждой станции предоставляется фиксированная часть пропускной способности кольца FDDI, поэтому станция имеет право передавать кадры синхронного трафика всегда, когда она получает токен от предыдущей станции.

4. Асинхронный трафик - это обычный трафик локальных сетей, не предъявляющий высоких требований к задержкам обслуживания. Станция может передавать асинхронные кадры только в том случае, если при последнем обороте токена по кольцу для этого осталась какая-либо часть неизрасходованной пропускной способности. Интервал времени, в течение которого станция может передавать асинхронные кадры, называется временем удержания токена (Token Holding Time, THT). Каждая станция самостоятельно вычисляет текущее значение этого параметра по алгоритму, рассмотренному ниже.

5. Повторение кадра. Если кадр не адресуется данному МАС-узлу, то последний должен просто повторить каждый символ кадра на выходном порту. Каждый МАС-узел должен подсчитывать количество полученных им полных кадров (усеченные не включаются в подсчет). Каждая станция проверяет повторяемый кадр на наличие ошибок с помощью контрольной последовательности. Если ошибка обнаружена, а признак ошибки в поле FS не установлен, то МАС-узел устанавливает этот признак в кадре, а также наращивает счетчик ошибочных кадров, распознанных данным МАС-узлом.

6. Обработка кадра станцией назначения. Станция назначения, распознав свой адрес в поле DA, начинает копировать символы кадра во внутренний буфер одновременно с повторением их на выходном порту. При этом станция назначения устанавливает признак распознавания адреса. Если же кадр скопирован во внутренний буфер, то устанавливается и признак копирования (невыполнение копирования может произойти, например, из-за переполнения внутреннего буфера). Устанавливается также и признак ошибки, если ее обнаружила проверка по контрольной последовательности.

7. Удаление кадра из кольца. Каждый МАС-узел ответственен за удаление из кольца кадров, которые он ранее в него поместил. Этот процесс известен под названием Frame Stripping. Если МАС-узел при получении своего кадра занят передачей следующих кадров, то он удаляет все символы вернувшегося по кольцу кадра. Если же он уже освободил токен, то он повторяет на выходе несколько полей этого кадра прежде, чем распознает свой адрес в поле SA. В этом случае в кольце возникает усеченный кадр, у которого после поля SA следуют символы Idle и отсутствует конечный ограничитель. Этот усеченный кадр будет удален из кольца какой-нибудь станцией, принявшей его в состоянии собственной передачи.

13. Формат токена

Формат токена

Токен состоит по существу из одного значащего поля - поля управления, которое содержит в этом случае 1 в поле С и 0000 в поле ZZZZ.

· Преамбула (Preamble, PA). Любой кадр должен предваряться преамбулой, состоящей как минимум из 16 символов Idle (I). Эта последовательность предназначена для вхождения в синхронизм генератора RCRCLK, обеспечивающего прием последующих символов кадра.

· Начальный ограничитель (Starting Delimiter, SD). Состоит из пары символов JK, которые позволяют однозначно определить границы для остальных символов кадра.

· Поле управления (Frame Control, FC). Идентифицирует тип кадра и детали работы с ним. Имеет 8-ми битовый формат и передается с помощью двух символов. Состоит из подполей, обозначаемых как CLFFZZZZ

· Конечный ограничитель (Ending Delimiter, ED) - содержит единственный символ Terminate (T), обозначающий границу кадра. Однако за ним располагаются еще признаки статуса кадра.

14. Механизм раннего освобождения токена

В сетях Token Ring 16 Мб/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом “раннего освобождения маркера” (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно и приближается к 80 % от номинальной. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает "раннего освобождения маркера"), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Таким образом по сети может в один момент времени передаваться только один пакет следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

15. Физический уровень Token Ring

Стандарт Token Ring фирмы IBM изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU (Multistation Access Unit) или MSAU (Multi-Station Access Unit), то есть устройствами многостанционного доступа (рис. 3.15). Сеть Token Ring может включать до 260 узлов.

Физическая конфигурация сети Token Ring.

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет. Активный концентратор выполняет функции регенерации сигналов и поэтому иногда называется повторителем, как в стандарте Ethernet.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости - либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, - магистральными (trunk cable).

Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля: STP Type I, UTP Type 3, UTP Type 6, а также волоконно-оптический кабель.

Максимальная длина кольца Token Ring составляет 4000 м.

16. Стадии функционирование Token Ring

Последовательность действий получается следующей:

· формируется логическое кольцо, связывающее все станции, и создается один маркер;

· маркер проходит от станции к станции по кольцу до тех пор, пока не достигнет станции, ожидающей разрешения на передачу;

· станция передает кадры данных, после чего передает маркер дальше по кольцу.

Все станции, подключенные к сети, имеют возможность реинициализации маркера в случае его потери, однако в каждый момент времени только одна из них имеет на это право.

17. Различие сетей Ethernet и Token Ring.

Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля).

Характеристика

Ethernet

Token Ring

Битовая скорость

10 Мб/с

16Мбит/с

Топология

Шина/звезда

Звезда/кольцо

Метод доступа

CSMA/CD

Приоритетная

система резервирования

Среда передачи

данных

Толстый, тонкий коаксиал, витая пара, оптоволокно

Экранированная и

неэкранированная витая

пара,оптоволокно

Максимальная

длина сети

(без мостов)

2500 м

1000м

Максимальное

расстояние между узлами

2500 м

100м

Максимальное

количество узлов

1024

260 для экранированной витой пары, 72 для неакранированной витой

пары

Тактирование и восстановление после отказов

Не определены

Активный монитор

18. Соединение сетей Ethernet и token ring

Прозрачные мосты (transparent bridges - TB) в основном встречаются в сетях Ethernet, в то время как мосты SRB встречаются почти исключительно в сетях Token Ring. Оба метода объединения сетей с помощью мостов (ТВ и SRB) популярны, поэтому естественно возникает вопрос о существовании какого-нибудь метода, который позволил бы объединить их.

Трансляционное объединение с помощью мостов (Translational bridging - TLB) обеспечивает относительно недорогое решение некоторых из многочисленных проблем, связанных с объединением с помощью моста доменов ТВ и SRB.

19. Сеть FDDI

Одной из наиболее популярных сетей, использующих оптическое волокно, (не считая fast ethernet) является FDDI (Fiber Distributed Data Interface). Сети FDDI не имеют себе равных при построении опорных магистралей (backbone) локальных сетей, позволяя реализовать принципиально новые возможности - удаленную обработку изображений и интерактивную графику. Обычно устройства (DAS - dual attached station) подключаются к обоим кольцам одновременно. Пакеты по этим кольцам движутся в противоположных направлениях. В норме только одно кольцо активно (первичное), но при возникновении сбоя (отказ в одном из узлов) активизируется и второе кольцо, что заметно повышает надежность системы, позволяя обойти неисправный. Предусмотрена возможность подключения станций и только к одному кольцу (SAS - single attached station), что заметно дешевле. К одному кольцу можно подключить до 500 das и 1000 sas. Сервер и клиент имеют разные типы интерфейсов.

На рисунке представлена схема связей в двойном кольце FDDI.

20. Стандарт FDDI

FDDI (Fiber Distributed Data Interface) стандарт американского института стандартов (ansi), принятый без изменения ISO. Протокол рассчитан на физическую скорость передачи информации 100 Мбит/с и предназначен для сетей с суммарной длиной до 100 км (40 км для мультимодовых волокон) при расстоянии между узлами 2 км или более. Частота ошибок в сети не превышает 10-9. В FDDI используется схема двойного кольцевого счетчика. Кольцевая схема единственно возможное решение для оптического волокна (не считая схемы точка-точка). Для доступа к сети используется специальный маркер (развитие протокола IEEE 802.5 - Token Ring).

21. Конфигурация кольца FDDI

FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит из двух или более двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое - вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.

"Станции Класса В" или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; "станции класса А" или "станции, подключаемые к двум кольцам" (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через "концентратор", который обеспечивает связи для множества SAS. Koнцентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.

22. Обеспечение надежности FDDI

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

При обрывах оптоволокна возможно частичное (при двух обрывах) или полное (при одном обрыве) восстановление связности сети.

На рисунке представлены варианты связей в случае обрывов волокон.

23. Стек протоколов FDDI

FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

Схема протокола FDDI.

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

· Уровень PMD (Physical Media Dependent) обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну.

· Уровень PHY (Physical Layer Protocol) выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов.

· Уровень MAC (Media Access Control) ответственен за управление доступом к сети, а также за прием и обработку кадров данных.

· Уровень SMT (Station Management) выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI . В управлении кольцом принимает участие каждый узел сети FDDI . Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью.

24. Форматы кадров FDDI

Формат кадра FDDI близок к формату кадра Token Ring, основные отличия заключаются в отсутствии полей приоритетов. Признаки распознавания адреса, копирования кадра и ошибки позволяют сохранить имеющиеся в сетях Token Ring процедуры обработки кадров станцией-отправителем, промежуточными станциями и станцией-получателем.

На рисунке представлен формат пакета протокола FDDI и формат кадра-маркера.

25. Физический уровень FDDI

Физический уровень FDDI разделен на два подуровня: независимый от среды подуровень PHY (Physical) и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

· Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62,5/125 мкм.

· Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам.

· Параметры оптических разъемов MIC (Media Interface Connector).

· Длина волны в 1300 нанометров, на которой работают приемопередатчики.

· Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов.В его спецификации определяются:

· кодирование информации в соответствии со схемой 4B/5B;

· правила тактирования сигналов;

· требования к стабильности тактовой частоты 125 МГц;

· правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

· Протокол передачи токена.

· Правила захвата и ретрансляции токена.

· Формирование кадра.

· Правила генерации и распознавания адресов.

· Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

· Алгоритмы обнаружения ошибок и восстановления после сбоев.

· Правила мониторинга работы кольца и станций.

· Управление кольцом.

· Процедуры инициализации кольца.

26. Кабельная система FDDI

· Подстандарт FDDI PMD (Physical medium-dependent layer) в качестве базовой кабельной системы определяет многомодовый волоконно-оптический кабель с диаметром световодов 62.5/125 мкм. Допускается применение кабелей с другим диаметром волокон, например: 50/125 мкм. Длина волны - 1300 нм. Средняя мощность оптического сигнала на входе станции должна быть не менее -31 дБм. Максимально допустимый уровень потерь сигнала в кабеле стандарт определяет равным 11 дБм.

· Подстандарт FDDI SMF-PMD (Single-mode fiber Physical medium-dependent layer) определяет требования к физическому уровню при использовании одномодового волоконно-оптического кабеля. В этом случае в качестве передающего элемента обычно используется лазерный светодиод, а дистанция между станциями может достигать 60 и даже 100 км.

· Подстандарт физического уровня CDDI (Copper Distributed Data Interface - распределенный интерфейс данных по медным кабелям) определяет требования к физическому уровню при использовании экранированной и не экранированной витых пар. Эта значительно упрощает процесс инсталляции кабельной системы и удешевляет ее, сетевые адаптеры и оборудование концентраторов. Расстояния между станциями при использовании витых пар не должны превышать 100 км.

27. Отличие FDDI от Token Ring

Технология FDDI разрабатывалась для применения в ответственных участках сетей - на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главным для разработчиков было обеспечить высокую скорость передачи данных, отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой.

Характеристика

FDDI

Token Ring

Битовая скорость

100Мбит/с

16Мбит/с

Топология

Двойное кольцо деревьев

Звезда/кольцо

Метод доступа

Доля от времени

оборота маркера

Приоритетная

система резервирования

Среда передачи

данных

Оптоволокно,

неэкранированная

витая пара категории 5

Экранированная и

неэкранированная витая

пара,оптоволокно

Максимальная

длина сети

(без мостов)

200 км (100км на кольцо)

1000м

Максимальное

расстояние между узлами

2км

100м

Максимальное

количество узлов

500

260 для экранированной витой пары, 72 для неакранированной витой

пары

Тактирование и восстановление после отказов

Распределенная реализация тактирования и восстановления после отказов

Активный монитор

28. Канальный уровень FDDI.

На канальном уровне FDDI управляет подуровень MAC. Он ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

· Протокол передачи токена.

· Правила захвата и ретрансляции токена.

· Формирование кадра.

· Правила генерации и распознавания адресов.

· Правила вычисления и проверки 32-разрядной контрольной суммы.

29. Объединение сетей FDDI

Применение мостов для объединения FDDI-сетей позволяет обеспечить высокую степень сетевой безопасности и решить многие топологические проблемы, снять ограничения с предельного числа DAS-подключений (<500). Выбор между мостом и маршрутизатором определяется тем, что важнее, стоимость, гибкость системы илу высокая пропускная способность.

На рисунке показан пример использования сети FDDI для доступа нескольких субсетей к общему серверу без взаимного влияния потоков данных. Сегменты 1 и 2 представляют собой субсети Ethernet (10 Мбит/с). Учитывая то, что FDDI имеет пропускную способность 100 Мбит/с, даже при подключении 10 субсетей взаимовлияние их будет практически отсутствовать. Два кольца FDDI, показанные на рис. 4.1.6.7, могут быть объединены друг с другом через мост или маршрутизатор. Сетям FDDI благодаря маркерному доступу не знакомы столкновения в том виде, в каком они существуют в Ethernet и это дает им определенное преимущество перед сетями равного быстродействия, например перед быстрым Ethernet (также 100 МГц). Существует версия FDDI приспособленная для передачи мультимедийной информации. Возможна реализация FDDI на скрученных парах проводов.

Схема использования кольца FDDI

30. Проектирование ЛВС

Проектирование ЛВС - первый этап построения локальной вычислительной сети. Проектирование ЛВС - это серьезная подготовительная работа, включающая в себя изучение потребности в ЛВС, определение задач и функций, которые она должна выполнять, выбор топологии сети, среды и протоколов передачи данных. Результатом работ по проектированию ЛВС является технический проект.

Качественное проектирование ЛВС позволяет избежать множество проблем при построении и дальнейшей эксплуатации ЛВС.

Размещено на Allbest.ru


Подобные документы

  • Особенности технологии Token Ring. Свойство отказоустойчивости, процедуры контроля работы сети, использующие обратную связь кольцеобразной структуры. Маркерный метод доступа к разделяемой среде. Формат маркера сети Token Ring, байта управления доступом.

    курсовая работа [755,3 K], добавлен 21.07.2012

  • Token ring как технология локальной вычислительной сети (LAN) кольца с "маркерным доступом" - протокол локальной сети на канальном уровне (DLL) модели OSI. Логическая организация станций Token ring в кольцевую топологию с данными. Описание метода доступа.

    лекция [168,8 K], добавлен 15.04.2014

  • Четкое распознавание коллизий всеми станциями сети как необходимое условие корректной работы сети Ethernet. Программы, имитирующие работу станции в компьютерной сети стандарта Ethernet и Token Ring. Имитация работы сетей, из пропускной способности.

    курсовая работа [36,6 K], добавлен 24.06.2013

  • Роль компьютерных сетей, принципы их построения. Системы построения сети Token Ring. Протоколы передачи информации, используемые топологии. Способы передачи данных, средства связи в сети. Программное обеспечение, технология развертывания и монтажа.

    курсовая работа [279,7 K], добавлен 11.10.2013

  • Основная цель и модели сети. Принцип построения ее соединений. Технология клиент-сервер. Характеристика сетевых архитектур Ethernet, Token Ring, ArcNet: метод доступа, среда передачи, топология. Способы защиты информации. Права доступа к ресурсам сети.

    презентация [269,0 K], добавлен 26.01.2015

  • Обзор и анализ возможных технологий построения сети: Ethernet, Token Ring, FDDI, Fast Ethernet. Основные виды кабелей и разъемов. Выбор архитектуры, топологии ЛВС; среды передачи данных; сетевого оборудования. Расчет пропускной способности локальной сети.

    дипломная работа [476,4 K], добавлен 15.06.2015

  • Компьютеры и используемая в офисе компании "АйТи Сервисез" периферия. Выбор сетевых решений. Протокол передачи данных. Построение и этапы внедрения локальной вычислительной сети по технологии Token Ring. Требования к надежности и стабильности сети.

    курсовая работа [706,4 K], добавлен 16.04.2016

  • Характеристика сетевых технологий Ethernet, FDDI и Token Ring. Описание топологий соединения "общая шина", "звезда" и "кольцо". Выбор активного, пассивного и вспомогательного оборудования, протоколов, схем адресации с целью разработки вычислительной сети.

    курсовая работа [134,8 K], добавлен 30.07.2010

  • Анализ работы ТОО "Эммануил", план и помещений и размещение сервера. Анализ существующей сети на предприятии. Технология монтажа и развертывания СКС. Характеристика стандарта 8P8C и стандарта RJ 11. Описание методов доступа: Ethernet, Arcnet и Token Ring.

    отчет по практике [2,4 M], добавлен 16.01.2013

  • Обоснование модернизации локальной вычислительной сети (ЛВС) предприятия. Оборудование и программное обеспечение ЛВС. Выбор топологии сети, кабеля и коммутатора. Внедрение и настройка Wi-Fi - точки доступа. Обеспечение надежности и безопасности сети.

    дипломная работа [2,4 M], добавлен 21.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.