Жидкокристаллический монитор

Отображение графической информации в компьютерных экранах. Принципы работы и устройство жидкокристаллических мониторов, их положительные и отрицательные стороны. Плоскость поляризации светового луча. Схема шариковых распорок и распорки колонного типа.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 13.04.2012
Размер файла 968,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

- 17 -

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

  • 1. СОЗДАНИЕ ЖИДКОКРИСТАЛЛИЧЕСКОГО МОНИТОРА
  • 1.1 Принцип работы
  • 1.2 Конструкция панели
  • 2. ВАЖНЕЙШИЕ ХАРАКТЕРИСТИКИ ЖК - МОНИТОРА
    • 3. ПРЕИМУЩЕСТВА И НЕДОСТАТИ ЖК - МОНИТОРОВ
    • ЗАКЛЮЧЕНИЕ
    • СПИСОК ЛИТЕТАРУРЫ
    • ПРИЛОЖЕНИЕ

ВВЕДЕНИЕ

Жидкокристаллический монитор (ЖК дисплей, ЖКД, LCD, ЖК монитор) -- плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

Дисплей на жидких кристаллах используется для отображения графической информации в компьютерных мониторах (также и в ноутбуках), телевизорах, телефонах, цифровых фотоаппаратах, электронных книгах, навигаторах, также -- электронных переводчиках, калькуляторах, часах и т.п. (реже, в них в основном используются ЖКИ), что вызывает у меня интерес к их подробному изучению.

Целью курсовой работы - изучить принцип работы и устройство жидкокристаллических мониторов.

Задачи:

1. Изучить принцип работы ЖК мониторов;

2. Ознакомиться с устройством ЖК мониторов;

3. Показать положительные и отрицательные стороны ЖК мониторов;

4. Провести сравнение ЖК и ЭЛТ мониторов.

1. Создание жидкокристаллического монитора

Первый рабочий жидкокристаллический дисплей был создан Фергесоном (Fergason) в 1970 году. До этого жидкокристаллические устройства потребляли слишком много энергии, срок их службы был ограничен, а контраст изображения был удручающим. На суд общественности новый ЖК-дисплей был представлен в 1971 году и тогда он получил горячее одобрение. Жидкие кристаллы (Liquid Crystal) - это органические вещества, способные под напряжением изменять величину пропускаемого света. Жидкокристаллический монитор представляет собой две стеклянных или пластиковых пластины, между которыми находится суспензия. Кристаллы в этой суспензии расположены параллельно по отношению друг к другу, тем самым они позволяют свету проникать через панель. При подаче электрического тока расположение кристаллов изменяется, и они начинают препятствовать прохождению света. ЖК технология получила широкое распространение в компьютерах и в проекционном оборудовании. Первые жидкие кристаллы отличались своей нестабильностью и были малопригодными к массовому производству. Реальное развитие ЖК технологии началось с изобретением английскими учеными стабильного жидкого кристалла - бифенила (Biphenyl). Жидкокристаллические дисплеи первого поколения можно наблюдать в калькуляторах, электронных играх и в часах. Современные ЖК мониторы также называют плоскими панелями, активными матрицами двойного сканирования, тонкопленочными транзисторами. Идея ЖК мониторов витала в воздухе более 30 лет, но проводившиеся исследования не приводили к приемлемому результату, поэтому ЖК мониторы не завоевали репутации устройств, обеспечивающих хорошее качество изображения. Сейчас они становятся популярными - всем нравится их изящный вид, тонкий стан, компактность, экономичность (15-30 ватт).

1.1 Принцип работы

Экраны LCD-мониторов сделаны из вещества - цианофенил, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул. Работа ЖК основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-дисплеи для настольных компьютеров.

Рисунок 1.1. Конструкция ЖК-монитора.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой (рисунок. 1.1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света).

Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели (рисунок 2.2).

Рисунок 2.2 Плоскость поляризации.

При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (рисунок. 1.3).

Рисунок 1.3 Плоскость поляризации.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (рисунок 1.4а).

а) напряжения нет

б) напряжение есть

Рисунок 1.4 Поляризация светового луча.

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) (рисунок 1.4б). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет. Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение).

1.2 Конструкция панели

Существует несколько технологий ЖК-панелей. Для иллюстрации конструкции в данном случае приведена TN, как наиболее распространенная (рисунок 1.6).

Рисунок 1.6 Жидкокристаллическая панель TN в разрезе.

Все жидкокристаллические панели для мониторов являются трансмиссивными -- изображение в них формируется за счет преобразования светового потока от расположенного сзади источника. Модуляция светового потока осуществляется за счет оптической активности жидких кристаллов (их способности вращать плоскость поляризации проходящего света). Реализуется это следующим образом. При прохождении через первый поляризатор свет от ламп подсветки становится линейно поляризованным. Далее он следует через слой жидких кристаллов, заключенный в пространстве между двумя стеклами. Положение молекул ЖК в каждой ячейке панели регулируется электрическим полем, создаваемым за счет подачи напряжения на электроды. От положения молекул зависит поворот плоскости поляризации проходящего света. Таким образом, за счет подачи на ячейки нужного значения напряжения происходит управление поворотом плоскости поляризации.

Для доставки напряжения к субпикселю служат вертикальные (data line) и горизонтальные (gate line) линии данных, представляющие собой металлические токопроводящие дорожки, нанесенные на внутреннюю (ближайшую к модулю подсветки) стеклянную подложку. Электрическое поле, как уже говорилось, создается напряжением на электродах -- общем и пиксельном. Напряжение используется переменное, поскольку применение постоянного напряжения вызывает взаимодействие ионов с материалом электродов, нарушение упорядоченности расположения молекул ЖК-материала, и приводит к деградации ячейки. Тонкопленочный транзистор играет роль переключателя, который замыкается при выборе адреса требуемой ячейки на линии сканирования, разрешает «записать» требуемое значение напряжения и по окончании цикла сканирования вновь размыкается, позволяя сохранять заряд в течение некоторого периода времени. Зарядка происходит в течение времени T = Tf /n, где Tf -- время вывода кадра на экран (например, при частоте обновления 60 Гц время вывода кадра составляет 1 с / 60 = 16.7 мс), n -- количество строк панели (например, 1024 для панелей с физическим разрешением 1280х1024). Однако, собственной емкости жидкокристаллического материала недостаточно для сохранения заряда в интервале между циклами обновления, что должно вести к спаду напряжения и, как следствие, снижению контрастности. Поэтому, кроме транзистора, каждая ячейка оснащается запоминающим конденсатором, который также заряжается при открытии транзистора и помогает компенсировать потери напряжения до начала очередного цикла сканирования.

Вертикальные и горизонтальные линии данных при помощи подклеенных плоских гибких шлейфов соединены с управляющими микросхемами панели -- драйверами, соответственно столбцовым (source driver) и строчным (gate driver); которые обрабатывают поступающий с контроллера цифровой сигнал и формируют соответствующее полученным данным напряжение для каждой ячейки.

После слоя жидких кристаллов расположены цветовые фильтры, нанесенные на внутреннюю поверхность стекла панели и служащие для формирования цветной картинки. Используется обычный трехцветный аддитивный синтез: цвета образуются в результате оптического смешения излучений трех базовых цветов (красного, зелёного и синего). Ячейка (пиксель) представляет собой три раздельных элемента (субпикселя), каждому из которых сопоставлен расположенный над ним цветовой фильтр красного, зеленого или синего цвета. Комбинациями из 256 возможных значений тона для каждого субпикселя можно получить до 16,77 миллионов цветов пикселя.

Структура панели (металлические вертикальные и горизонтальные линии данных, тонкопленочные транзисторы) и пограничные области ячеек, где нарушена ориентация молекул, должны быть скрыты под непрозрачным материалом, чтобы избежать нежелательных оптических эффектов. Для этого применяется так называемая черная матрица (black matrix), которая напоминает тонкую сетку, заполняющую промежутки между отдельными цветовыми фильтрами. В качестве материала для черной матрицы используется хром или черные смолы.

Заключительную роль в формировании картинки играет второй поляризатор, часто называемый анализатором. Его направление поляризации смещено относительно первого на 90 градусов. Чтобы представить назначение анализатора, можно условно удалить его с поверхности подключенной панели. В этом случае мы увидим все субпиксели максимально освещенными, то есть ровную белую заливку экрана вне зависимости от выведенной на него картинки. От того, что свет стал поляризованным, и плоскость его поляризации вращается каждой ячейкой по-разному, в зависимости от приложенного к ней напряжения, для наших глаз пока ничего не изменилось. Функция анализатора как раз и состоит в отсечении нужных компонентов волн, что позволяет увидеть на выходе требуемый результат.

Теперь о том, как это отсечение нужных компонентов происходит. Возьмем для примера поляризатор с вертикальным направлением поляризации, т.е. пропускающий волны, ориентированные в вертикальной плоскости.

Рисунок 1.7. Прохождение световой волны через поляризатор

На рисунке 1.7 показана волна, распространяющаяся в плоскости, лежащей под некоторым углом относительно вертикального направления поляризации. Вектор электрического поля падающей волны можно разложить на две взаимно перпендикулярных составляющих: параллельную оптической оси поляризатора и перпендикулярную ей. Первая составляющая, параллельная оптической оси, проходит, вторая (перпендикулярная) блокируется.

Отсюда очевидны и два крайних положения:

· волна, распространяющаяся в строго вертикальной плоскости, будет пропускаться без изменений;

· волна, распространяющаяся в горизонтальной плоскости, будет блокироваться, как не имеющая вертикальной составляющей.

Эти два крайних положения соответствуют полностью открытому и полностью закрытому положению ячейки.

Подытожим:

· Для максимально полной блокировки проходящего света ячейкой (субпикселем) требуется, чтобы плоскость поляризации этого света была ортогональна плоскости пропускания анализатора (направлению поляризации);

· Для максимального пропускания света ячейкой плоскость его поляризации должна совпадать с направлением поляризации;

· Плавно регулируя напряжение, подаваемое на электроды ячейки, можно управлять положением молекул жидких кристаллов и, как следствие, поворотом плоскости поляризации проходящего света. И тем самым изменять количество пропускаемого ячейкой света.

Так как угол поворота плоскости поляризации зависит от расстояния, пройденного светом в слое жидких кристаллов, этот слой должен иметь строго выдержанную толщину по всей панели. Для поддержания равномерности расстояния между стеклами (со всей нанесенной на них структурой) применяются специальные распорки (spacers).

Простейшим вариантом являются так называемые шариковые распорки (ball spacers). Они представляют собой прозрачные полимерные или стеклянные шарики строго определенного диаметра и наносятся на внутреннюю структуру стекла путем распыления. Соответственно, располагаются они хаотично по всей площади ячейки и их наличие отрицательно влияет на ее однородность, так как распорка служит центром для дефектной области и непосредственно возле нее молекулы ориентируются неправильно.

Рисунок 1.8. Шариковые распорки и распорки колонного типа

Применяется и другая технология -- распорки колонного типа (column spacer, photo spacer, post spacer). Располагаются такие распорки с фотографической точностью под черной матрицей (рисунок 1.8). Преимущества такой технологии очевидны: повышение контрастности за счет отсутствия световых утечек возле распорок, более точный контроль однородности зазора за счет упорядоченного расположения распорок, повышение жесткости панели и отсутствие ряби при нажиме на поверхность.

2. Характеристики ЖК мониторов

компьютерный жидкокристаллический монитор

Разрешение -- горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.

Размер точки (размер пикселя) -- расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.

Соотношение сторон экрана (пропорциональный формат) -- отношение ширины к высоте (5:4, 4:3, 3:2 {15?10} 8:5 {16?10}, 5:3 {15?9}, 16:9 и др.)

Видимая диагональ -- размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.

Контрастность -- отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.

Яркость -- количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.

Время отклика -- минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:

Время буферизации -- input lag. Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20--50 мс; в отдельных ранних моделях достигало 200 мс.

Время переключения -- именно оно указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас практически во всех мониторах заявленное время переключения не превышает 10 мс.

Угол обзора -- угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в тех. параметрах своих мониторов углы обзора такие к примеру как: CR 5:1 -- 176°/176°, CR 10:1 -- 170°/160°. Аббревиатура CR (contrast rate) обозначает уровень контрастности при указанных углах обзора относительно перпендикуляра к экрану. При углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже чем 10:1, при углах обзора 176°/176° не ниже чем до значения 5:1.

Тип матрицы: технология, по которой изготовлен ЖК-дисплей.

Существует три основных типа жидких кристаллов: смектические, нематические и холестерические.

3. Преимущества и недостатки ЖК-мониторов

Среди преимуществ TFT можно отметить отличную фокусировку, отсутствие геометрических искажений и ошибок совмещения цветов. Кроме того, у них никогда не мерцает экран. Почему? Ответ прост - в этих дисплеях не используется электронный луч, рисующий слева направо каждую строку на экране. Когда в ЭЛТ этот луч переводится из правого нижнего в левый верхний угол, изображение на мгновение гаснет (обратный ход луча). Напротив, пиксели дисплея TFT никогда не гаснут, они просто непрерывно меняют интенсивность своего свечения. 

В приложении показаны все главные отличия рабочих характеристик для разных типов дисплеев.

ЗАКЛЮЧЕНИЕ

ЭЛТ-мониторы ещё в течение нескольких лет будут оставаться хорошим выбором для точной работы с цветом и для покупателей желающих сэкономить, но век этой технологии подходит к концу. Всё дело в больших габаритах и архаичной концепции формирования изображения методом строчной развёртки.

Рынок дисплеев уже сделал свой выбор в пользу компактных цифровых матриц с персональным управлением каждого пикселя и технология TFT-LCD находится на переднем крае этого направления.

СПИСОК ЛИТЕТАРУРЫ

1. Методическое пособие по курсу «Персональная электроника» Жидкокристаллические мониторы. / Составители: С.П. Мирошниченко, П.В. Серба. Таганрог: Изд-во ТРТУ, 2005, 24c.

2. 3DNews Daily Digital Digest [Электронный ресурс] / 3DNews Daily Digital Digest. - 1997-2011. - Режим доступа: http://3dnews.ru. - Дата доступа: 29.04.2011.

3. HARDLINE.RU [Электронный ресурс] / HARDLINE.RU - 2008. - Режим доступа:http://hardline.ru. - Дата доступа: 29.04.2011.

ПРИЛОЖЕНИЕ

Таблица - Сравнительные характеристики ЭЛТ и ЖК-мониторов Условные обозначения: ( +) достоинство, ( ~) допустимо, ( -) недостаток 

ЖК-мониторы

ЭЛТ-мониторы

Яркость

( +) от 170 до 250 Кд/м 2

( ~) от 80 до 120 Кд/м 2

Контрастность

( ~) от 200:1 до 400:1

( +) от 350:1 до 700:1

Угол обзора  (по контрасту)

( ~) от 110 до 170 градусов

( +) свыше 150 градусов

Угол обзора  (по цвету)

( -) от 50 до 125 градусов

( ~) свыше 120 градусов

Разрешение

( -) Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны.

( +) Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации.

Частота вертикальной развертки

( +) Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания

( ~) Только при частотах свыше 75 Гц отсутствует явно заметное мерцание

Ошибки совмещения цветов

( +) нет

( ~) от 0.0079 до 0.0118 дюйма (0.20 - 0.30 мм)

Фокусировка

( +) очень хорошая

( ~) от удовлетворительной до очень хорошей>

Геометрические/ линейные искажения

( +) нет

( ~) возможны

Неработающие пиксели

( -) до 8

( +) нет

Входной сигнал

( +) аналоговый или цифровой

( ~) только аналоговый

Масштабирование при разных разрешениях

( -) отсутствует или используются методы интерполяции, не требующие больших накладных расходов

( +) очень хорошее

Точность отображения цвета

( ~) Поддерживается True Color и имитируется требуемая цветовая температура

( +) Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом

Гамма-коррекция  (подстройка цвета под особенности человеческого зрения)

( ~) удовлетворительная

( +) фотореалистичная

Однородность

( ~) часто изображение ярче по краям

( ~) часто изображение ярче в центре

Чистота цвета/качество цвета

( ~) хорошее

( +) высокое

Мерцание

( +) нет

( ~) незаметно на частоте выше 85 Гц

Время инерции

( -) от 20 до 30 мсек.

( +) пренебрежительно мало

Формирование изображения

( +) Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким

( ~) Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества ЭЛТ

Энергопотребление и излучения

( +) Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов (от 25 до 40 Вт).

( -) Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли ЭЛТ какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 60 - 150 Вт.

Размеры/вес

( +) плоский дизайн, малый вес

( -) тяжелая конструкция, занимает много места

Интерфейс монитора

( +) Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров

( -) Аналоговый интерфейс

Размещено на Allbest.ru


Подобные документы

  • Характеристика монитора - устройства для вывода на экран текстовой и графической информации, его основные параметры, принцип работы. Схема электронно-лучевой трубки. Мониторы с теневой маской. Особенности и преимущества жидкокристаллических мониторов.

    презентация [705,0 K], добавлен 10.08.2013

  • Монитор (дисплей) компьютера - устройство, предназначенное для вывода на экран текстовой и графической информации. История создания и эволюции компьютерных мониторов: электронно-лучевые, жидкокристаллические, газоразрядные или плазменные панели.

    реферат [31,7 K], добавлен 22.02.2008

  • Монитор как устройство визуального отображения информации. Основные типы мониторов. Жидкокристаллические дисплеи, главные достоинства и недостатки. Строение жидкокристаллического и CRT мониторов. Сравнение CRT и TFT LCD: основные плюсы и минусы.

    презентация [618,5 K], добавлен 30.10.2011

  • Монитор PC как важнейшее устройство отображения текстовой и графической информации. Описание разновидностей и принципа действия мониторов. Описание современных моделей. Устройство и особенности разных видов принтеров, различия в затратных материалах.

    реферат [20,4 K], добавлен 27.03.2010

  • Способы взаимодействия человека с информационными системами. CRT (Cathode Ray Tube) мониторы. Устройство цветного кинескопа. Основные параметры LCD-жидкокристаллических мониторов: разрешение, яркость, контрастность. Классификация современных принтеров.

    презентация [714,8 K], добавлен 09.11.2013

  • История создания жидкокристаллического дисплея. Виды ЖК мониторов, их классификация по рабочему разрешению. Характеристика цифрового интерфейса DVI, типы и особенности матриц. Методики измерения яркости и контрастности монитора, время реакции пикселя.

    курсовая работа [500,2 K], добавлен 01.05.2011

  • Обзор конструкции и особенностей создания изображения в ЭЛТ мониторах. Состав теневой маски кинескопа. Классификация современных плоских мониторов. Способы антибликовой защиты экрана. Описания жидкокристаллических мониторов: цветопередачи, контрастности.

    презентация [1,0 M], добавлен 10.08.2013

  • Стандартное устройство вывода графической информации в компьютере IBM - система из монитора и видеокарты. Основные компоненты видеокарты. Графическое и цветовое разрешение экрана. Виды мониторов и видеокарт. Мультимедиа-проекторы, плазменные панели.

    контрольная работа [38,7 K], добавлен 09.06.2010

  • История развития дисплеев. Основные принципы работы СRT-мониторов, LCD-мониторов. Различные виды сенсорных экранов и современные типы мониторов. Сравнение характеристик мониторов LCD над CRT. Сенсорные экраны на поверхностно-акустических волнах.

    реферат [1,2 M], добавлен 15.06.2016

  • Функции основных компонентов компьютера: системный блок, клавиатура, манипулятор "мышь", монитор. Назначение содержимого системного блока, свойства исходных материалов. Характеристика и принципы работы жидкокристаллических и плазменных мониторов.

    контрольная работа [9,5 K], добавлен 10.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.