Определение локальных сетей и их топология

Место и роль локальных сетей. Подключение терминалов к центральному компьютеру. Передача сигналов по витой паре. Передача пакетов в сети между двумя абонентами. Включение промежуточных устройств между абонентами сети. Оборудование беспроводных сетей.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 28.03.2012
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основные технические характеристики сети FDDI.

· Максимальное количество абонентов сети - 1000.

· Максимальная протяженность кольца сети - 20 километров.

· Максимальное расстояние между абонентами сети - 2 километра.

· Среда передачи - многомодовый оптоволоконный кабель (возможно применение электрической витой пары).

· Метод доступа - маркерный.

· Скорость передачи информации - 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца - 200 километров.

Имеется также реализация FDDI на электрическом кабеле (CDDI - Copper Distributed Data Interface или TPDDI - Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Таблица 8.1. Код 4В/5В

Информация

Код 4В/5В

Информация

Код 4В/5В

0000

11110

1000

10010

0001

01001

1001

10011

0010

10100

1010

10110

0011

10101

1011

10111

0100

01010

1100

11010

0101

01011

1101

11011

0110

01110

1110

11100

0111

01111

1111

11101

Для передачи данных в FDDI применяется уже упоминавшийся в первой главе код 4В/5В (см. табл. 8.1), специально разработанный для этого стандарта. Главный принцип кода - избежать длинных последовательностей нулей и единиц. Код 4В/5В обеспечивает скорость передачи 100 Мбит/с при пропускной способности кабеля 125 миллионов сигналов в секунду (или 125 МБод), а не 200 МБод, как в случае манчестерского кода. При этом каждым четырем битам передаваемой информации (каждому полубайту или нибблу) ставится в соответствие пять передаваемых по кабелю битов. Это позволяет приемнику восстанавливать синхронизацию приходящих данных один раз на четыре принятых бита. Таким образом, достигается компромисс между простейшим кодом NRZ и самосинхронизирующимся на каждом бите манчестерским кодом. Дополнительно сигналы кодируются кодом NRZI (в случае TPDDI) и MLT-3 (в случае FDDI).

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

· Абоненты (станции) класса А (абоненты двойного подключения, DAS - Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.

· Абоненты (станции) класса В (абоненты одинарного подключения, SAS - Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC - Dual-Attachment Concentrator) и одинарного подключения (SAC - Single-Attachment Concentrator).

Пример конфигурации сети FDDI представлен на рис. 8.1. Принцип объединения устройств сети иллюстрируется на рис. 8.2.

Рис. 8.1. Пример конфигурации сети FDDI

FDDI определяет четыре типа портов абонентов (рис. 8.2):

· Порт A определен только для устройств двойного подключения, его вход подключается к первичному (внешнему) кольцу, а выход - к вторичному (внутреннему) кольцу.

· Порт B определен только для устройств двойного подключения, его вход подключается к вторичному (внутреннему) кольцу, а выход - к первичному (внешнему) кольцу. Порт A обычно соединяется с портом B, а порт В - с портом A.

· Порт M (Master) определен для концентраторов и соединяет два концентратора между собой или концентратор с абонентом при одном кольце. Порт M как правило соединяется с портом S.

· Порт S (Slave) определен только для устройств одинарного подключения (концентраторов и абонентов). Порт S обычно соединяется с портом M.

Структура портов для абонентов DAS и SAS, а также концентратора DAC видна на рис. 8.2. Концентратор SAC имеет один порт S для включения в одинарное кольцо и несколько портов М для подключения абонентов SAS.

Рис. 8.2. Объединение устройств сети FDDI

Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля (рис. 8.3).

В показанном на рисунке случае поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (то есть абоненты DAS начинают работать, как абоненты SAS). Это равносильно процедуре сворачивания кольца в сети Token-Ring.

Рис. 8.3. Реконфигурация сети FDDI при повреждении кабеля

Кроме абонентов (станций) и концентраторов в сети FDDI применяются обходные коммутаторы (bypass switch). Обходные коммутаторы включаются между абонентом и кольцом и позволяют отключить абонента от кольца в случае его неисправности. Управляется обходной коммутатор электрическим сигналом от абонента. В зависимости от управляющего сигнала он или включает абонента в кольцо или же исключает его из кольца, замыкая его на самого себя (рис. 8.4).

При использовании обходных коммутаторов необходимо учитывать дополнительные затухания, вносимые ими (около 2,5 дБ на один коммутатор).

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета (подобно тому, как это делается при методе ETR в сети Token-Ring). Последовательность действий здесь следующая:

1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.

2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет. Таким образом, в сети может быть одновременно несколько пакетов, но только один маркер.

3. Сразу после передачи своего пакета абонент посылает новый маркер.

4. Абонент-получатель, которому адресован пакет, копирует его из сети и, сделав пометку в поле статуса пакета, отправляет его дальше по кольцу.

5. Получив обратно по кольцу свой пакет, абонент уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

Рис. 8.4. Включение обходного коммутатора

В сети FDDI не используется система приоритетов и резервирования, как в Token-Ring. Но предусмотрен механизм адаптивного планирования нагрузки.

Каждый абонент ведет свой отсчет времени, сравнивая реальное время обращения маркера по кольцу (TRT - Token-Rotation Time) с заранее установленным контрольным (операционным) временем его прибытия (T_OPR).

Если маркер возвращается раньше, чем установлено T_OPR, то делается вывод о том, что сеть загружена мало, и, следовательно, абонент может передавать всю информацию в асинхронном режиме, то есть независимо от других. Для этого абонент может использовать весь оставшийся временной интервал (T_OPR -TRT).

Если же маркер возвращается позже, чем установлено T_OPR, то сеть загружена сильно, и абонент может передавать только самую важную информацию в течение того интервала времени, который отводится ему в синхронном режиме.

Величина T_OPR выбирается на этапе инициализации сети всеми абонентами в процессе состязания.

Такой механизм позволяет абонентам гибко реагировать на загрузку сети и автоматически поддерживать ее на оптимальном уровне.

Для правильной работы сети задержка прохождения сигнала по кольцу должна быть ограничена. Так, в случае максимальной длины кольца 20 км и максимальном количестве абонентов 1000 полное время задержки не должно превышать 1,617 мс.

Форматы маркера (рис. 8.5) и пакета (рис. 8.6) сети FDDI несколько отличаются от форматов, используемых в сети Token-Ring.

Рис. 8.5. Формат маркера FDDI

Рис. 8.6. Формат пакета FDDI

Назначение полей:

· Преамбула (Preamble) используется для синхронизации. Первоначально она содержит 64 бита, но абоненты, через которых проходит пакет, могут менять ее размер.

· Начальный разделитель (SD-- Start Delimiter) выполняет функцию признака начала кадра.

· Байт управления (FC - Frame Control) содержит информацию о пакете (размер поля адреса, синхронная/асинхронная передача, тип пакета - служебный или информационный, код команды).

· Адреса приемника и источника (SA - Source Address и DA - Destination Address) могут быть 6-байтовыми (аналогично Ethernet и Token-Ring) или 2-байтовыми.

· Поле данных (Info) имеет переменную длину (от 0 до 4478 байт). В служебных (командных) пакетах поле данных обладает нулевой длиной.

· Поле контрольной суммы (FCS - Frame Check Sequence) содержит 32-битную циклическую контрольную сумму пакета (CRC).

· Конечный разделитель (ED - End Delimiter) определяет конец кадра.

· Байт состояния пакета (FS - Frame Status) включает в себя бит обнаружения ошибки, бит распознавания адреса и бит копирования (аналогично Token-Ring).

Формат байта управления сети FDDI (рис. 8.7):

· Бит класса пакета определяет тип пакета: синхронный или асинхронный.

· Бит длины адреса устанавливает, какой адрес (6-байтовый или 2-байтовый) используется в данном пакете.

· Поле типа пакета (два бита) определяет, управляющий это пакет или информационный.

· Поле кода команды (четыре бита) указывает на то, какую команду должен выполнить приемник (если это управляющий пакет).

Рис. 8.7. Формат байта управления

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас - это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшиться с ростом объема ее выпуска.

Сеть 100VG-AnyLAN

Сеть 100VG-AnyLAN - это одна из последних разработок высокоскоростных локальных сетей, недавно появившаяся на рынке. Она разработана компаниями Hewlett-Packard и IBM и соответствует международному стандарту IEEE 802.12, так что уровень ее стандартизации достаточно высокий.

Главными достоинствами ее являются большая скорость обмена, сравнительно невысокая стоимость аппаратуры (примерно вдвое дороже оборудования наиболее популярной сети Ethernet 10BASE-T), централизованный метод управления обменом без конфликтов, а также совместимость на уровне форматов пакетов с сетями Ethernet и Token-Ring.

В названии сети 100VG-AnyLAN цифра 100 соответствует скорости 100 Мбит/с, буквы VG обозначают дешевую неэкранированную витую пару категории 3 (Voice Grade), а AnyLAN (любая сеть) обозначает то, что сеть совместима с двумя самыми распространенными сетями.

Основные технические характеристики сети 100VG-AnyLAN:

· Скорость передачи - 100 Мбит/с.

· Топология - звезда с возможностью наращивания (дерево). Количество уровней каскадирования концентраторов (хабов) - до 5.

· Метод доступа - централизованный, бесконфликтный (Demand Priority - с запросом приоритета).

· Среда передачи - счетверенная неэкранированная витая пара (кабели UTP категории 3, 4 или 5), сдвоенная витая пара (кабель UTP категории 5), сдвоенная экранированная витая пара (STP), а также оптоволоконный кабель. Сейчас в основном распространена счетверенная витая пара.

· Максимальная длина кабеля между концентратором и абонентом и между концентраторами - 100 метров (для UTP кабеля категории 3), 200 метров (для UTP кабеля категории 5 и экранированного кабеля), 2 километра (для оптоволоконного кабеля). Максимально возможный размер сети - 2 километра (определяется допустимыми задержками).

· Максимальное количество абонентов - 1024, рекомендуемое - до 250.

Таким образом, параметры сети 100VG-AnyLAN довольно близки к параметрам сети Fast Ethernet. Однако главное преимущество Fast Ethernet - это полная совместимость с наиболее распространенной сетью Ethernet (в случае 100VG-AnyLAN для этого требуется мост). В то же время, централизованное управление 100VG-AnyLAN, исключающее конфликты и гарантирующее предельную величину времени доступа (чего не предусмотрено в сети Ethernet), также нельзя сбрасывать со счетов.

Пример структуры сети 100VG-AnyLAN показан на рис. 8.8.

Рис. 8.8. Структура сети 100VG-AnyLAN

Сеть 100VG-AnyLAN состоит из центрального (основного, корневого) концентратора уровня 1, к которому могут подключаться как отдельные абоненты, так и концентраторы уровня 2, к которым в свою очередь подключаются абоненты и концентраторы уровня 3 и т.д. При этом сеть может иметь не более пяти таких уровней (в первоначальном варианте было не более трех). Максимальный размер сети может составлять 1000 метров для неэкранированной витой пары.

В отличие от неинтеллектуальных концентраторов других сетей (например, Ethernet, Token-Ring, FDDI), концентраторы сети 100VG-AnyLAN - это интеллектуальные контроллеры, которые управляют доступом к сети. Для этого они непрерывно контролируют запросы, поступающие на все порты. Концентраторы принимают приходящие пакеты и отправляют их только тем абонентам, которым они адресованы. Однако никакой обработки информации они не производят, то есть в данном случае получается все-таки не активная, но и не пассивная звезда. Полноценными абонентами концентраторы назвать нельзя.

Каждый из концентраторов может быть настроен на работу с форматами пакетов Ethernet или Token-Ring. При этом концентраторы всей сети должны работать с пакетами только какого-нибудь одного формата. Для связи с сетями Ethernet и Token-Ring необходимы мосты, но мосты довольно простые.

Концентраторы имеют один порт верхнего уровня (для присоединения его к концентратору более высокого уровня) и несколько портов нижнего уровня (для присоединения абонентов). В качестве абонента может выступать компьютер (рабочая станция), сервер, мост, маршрутизатор, коммутатор. К порту нижнего уровня может также присоединяться другой концентратор.

Каждый порт концентратора может быть установлен в один из двух возможных режимов работы:

· Нормальный режим предполагает пересылку абоненту, присоединенному к порту, только пакетов, адресованных лично ему.

· Мониторный режим предполагает пересылку абоненту, присоединенному к порту, всех пакетов, приходящих на концентратор. Этот режим позволяет одному из абонентов контролировать работу всей сети в целом (выполнять функцию мониторинга).

Метод доступа к сети 100VG-AnyLAN типичен для сетей с топологией звезда и состоит в следующем.

Каждый абонент, желающий передавать, посылает концентратору свой запрос на передачу. Концентратор циклически прослушивает всех абонентов по очереди и дает право передачи абоненту, следующему по порядку за тем, который закончил передачу. Величина времени доступа гарантирована. Приоритет у абонентов - географический, то есть определяется номером порта нижнего уровня, к которому подключен абонент. Однако этот простейший алгоритм усложнен в сети 100VG-AnyLAN, так как запросы на передачу могут иметь два уровня приоритета:

· нормальный уровень приоритета используется для обычных приложений;

· высокий уровень приоритета используется для приложений, требующих быстрого обслуживания.

Запросы с высоким уровнем приоритета (высокоприоритетные) обслуживаются раньше, чем запросы с нормальным приоритетом (низкоприоритетные). Если приходит запрос высокого приоритета, то нормальный порядок обслуживания прерывается, и после окончания приема текущего пакета обслуживается запрос высокого приоритета. Если таких высокоприоритетных запросов несколько, то возврат к нормальной процедуре обслуживания происходит только после полной обработки всех этих запросов. Можно сказать, что высокоприоритетные запросы обслуживаются вне очереди, но они образуют свою очередь.

При этом концентратор следит за тем, чтобы не была превышена установленная величина гарантированного времени доступа для низкоприоритетных запросов. Если высокоприоритетных запросов слишком много, то запросы с нормальным приоритетом автоматически переводятся им в ранг высокоприоритетных. Типичная величина времени повышения приоритета равна 200--300 мс (устанавливается при конфигурировании сети). Таким образом, даже низкоприоритетные запросы не будут ждать своей очереди слишком долго.

Концентраторы более низких уровней также анализируют запросы абонентов, присоединенных к ним, и в случае необходимости пересылают их запросы концентратору более высокого уровня. За один раз концентратор более низкого уровня может передать концентратору более высокого уровня не один пакет (как обычный абонент), а столько пакетов, сколько абонентов присоединено к нему.

Так, для примера на рис. 8.9 в случае одновременного возникновения заявок на передачу у всех абонентов (компьютеров) порядок обслуживания будет такой: компьютер 1-2, затем 1-3, потом 2-1, 2-4, 2-8, и далее 1-6. Однако так будет только при одинаковом (нормальном) приоритете всех запросов. Если же, например, от компьютеров 1-2, 2-4 и 2-8 поступят высокоприоритетные запросы, то порядок обслуживания будет таким: 1-2, 2-4, 2-8, 1-3, 2-1, 1-6.

Рис. 8.9. Порядок обслуживания запросов абонентов на различных уровнях сети

Каждый концентратор содержит во внутренней памяти таблицу MAC-адресов всех абонентов, подключенных к его портам нижнего уровня. Это позволяет ему перенаправлять полученные пакеты именно тем абонентам, которым они адресованы. Концентраторы верхних уровней хранят таблицы адресов и тех абонентов, которые подключены к концентраторам более низких уровней. Таким образом, основной (корневой) концентратор содержит в себе информацию о всех абонентах сети. Формируется таблица адресов на этапе инициализации сети.

Помимо собственно передачи пакетов и пересылки запросов на передачу в сети применяется также специальная процедура подготовки к связи (Link Training), во время которой концентратор и абоненты обмениваются между собой управляющими пакетами специального формата. При этом проверяется правильность присоединения линий связи и их исправность, а также уровень ошибок: если 24 пакета подряд не проходят без ошибок, то абонент не включается в работу. Одновременно концентратор получает информацию об особенностях абонентов, подключенных к нему, их назначении и сетевых адресах, которые он заносит в таблицу. Запускается данная процедура абонентом при включении питания или после подключения к концентратору, а также автоматически при большом уровне ошибок.

Интересно решена в сети 100VG-AnyLAN проблема кодирования передаваемых данных.

Вся передаваемая информация проходит следующие этапы обработки:

· Разделение на квинтеты (группы по 5 бит).

· Перемешивание, скремблирование (scrambling) полученных квинтетов.

· Кодирование квинтетов специальным кодом 5В/6В (этот код обеспечивает в выходной последовательности не более трех единиц или нулей подряд, что используется для детектирования ошибок).

· Добавление начального и конечного разделителей кадра.

Сформированные таким образом кадры передаются в 4 линии передачи (при использовании счетверенной витой пары). При сдвоенной витой паре и оптоволоконном кабеле применяется временное мультиплексирование информации в каналах.

В результате всех этих действий достигается рандомизация сигналов, то есть выравнивание количества передаваемых единиц и нулей, снижение взаимовлияния кабелей друг на друга и самосинхронизация передаваемых сигналов без удвоения требуемой полосы пропускания, как в случае манчестерского кода.

При использовании счетверенной витой пары передача по каждой из четырех витых пар производится со скоростью 30 Мбит/с (рис. 8.10). Суммарная скорость передачи составляет 120 Мбит/с. Однако полезная информация вследствие использования кода 5В/6В передается всего лишь со скоростью 100 Мбит/с. Таким образом, пропускная способность кабеля должна быть не менее 15 МГц. Этому требованию удовлетворяет кабель с витыми парами категории 3 (полоса пропускания - 16 МГц).

Рис. 8.10. Кодирование информации в сети 100VG-AnyLAN

В сети 100VG-AnyLAN предусмотрены два режима обмена: полудуплексный и полнодуплексный.

При полудуплексном обмене все четыре витые пары используются для передачи одновременно в одном направлении (от абонента к концентратору или наоборот). Данный режим используется для передачи пакетов.

При полнодуплексном обмене две витые пары (1 и 4) передают в одном направлении, а две другие (2 и 3) - в другом направлении. Этот режим используется для передачи управляющих сигналов.

Для управления используются два тональных сигнала. Первый из них представляет собой последовательность из 16 логических единиц и 16 логических нулей, следующих со скоростью 30 Мбит/с (в результате частота сигнала равна 0,9375 МГц). Второй тональный сигнал имеет вдвое большую частоту (1,875 МГц) и образуется чередованием восьми логических единиц и восьми логических нулей. Все управление сетью осуществляется комбинациями этих двух тональных сигналов.

В таблице 8.2 приведена расшифровка различных комбинаций этих сигналов, передаваемых абоненту и концентратору.

Когда ни у абонента, ни у концентратора нет информации для передачи, оба они посылают по обеим линиям первый тоновый сигнал (комбинация 1--1). Если принимаемый концентратором пакет может быть адресован данному абоненту, ему посылается комбинация сигналов 1--2. При этом абонент должен прекратить передачу управляющих сигналов концентратору и освободить эти две линии связи для пересылки информационных пакетов. Такая же комбинация (1--2), полученная концентратором, означает запрос на передачу пакета с нормальным приоритетом. Запрос на передачу пакета с высоким приоритетом передается комбинацией 2--1. Наконец, комбинация 2--2 сообщает как абоненту, так и концентратору о необходимости перейти к процедуре подготовки к связи (Link Training).

Таблица 8.2. Расшифровка комбинаций управляющих тональных сигналов

Передаваемые сигналы

Расшифровка абонентом

Расшифровка концентратором

1 - 1

Нет информации для передачи

Нет информации для передачи

1 - 2

Концентратор принимает пакет

Запрос нормального приоритета

2 - 1

Зарезервировано

Высокоприоритетный запрос

2 - 2

Запрос процедуры подготовки к связи

Запрос процедуры подготовки к связи

Таким образом, сеть 100VG-AnyLAN представляет собой доступное решение для увеличения скорости передачи до 100 Мбит/с. Однако не обладает полной совместимостью ни с одной из стандартных сетей, поэтому ее дальнейшая судьба проблематична. К тому же, в отличие от сети FDDI, она не имеет никаких рекордных параметров. Скорее всего, 100VG-AnyLAN несмотря на поддержку солидных фирм и высокий уровень стандартизации останется всего лишь примером интересных технических решений.

Если говорить о наиболее распространенной 100-мегабитной сети Fast Ethernet, то 100VG-AnyLAN обеспечивает вдвое большую длину кабеля UTP категории 5 (до 200 метров), а также бесконфликтный метод управления обменом.

Сверхвысокоскоростные сети

Быстродействие сети Fast Ethernet и других сетей, работающих на скорости в 100 Мбит/с, в настоящее время удовлетворяет требованиям большинства задач, но в ряде случаев даже его оказывается недостаточно. Особенно в тех ситуациях, когда необходимо подключать к сети современные высокопроизводительные серверы или строить сети с большим количеством абонентов, требующих высокой интенсивности обмена. Например, все более широко применяется сетевая обработка трехмерных динамических изображений. Скорость компьютеров непрерывно растет, они обеспечивают все более высокие темпы обмена с внешними устройствами. В результате сеть может оказаться наиболее слабым местом системы, и ее пропускная способность будет основным сдерживающим фактором в увеличении быстродействия.

Работы по достижению скорости передачи в 1 Гбит/с (1000 Мбит/с) в последние годы ведутся довольно интенсивно несколькими компаниями. Однако, скорее всего, наиболее перспективной окажется сеть Gigabit Ethernet. Это связано, прежде всего, с тем, что переход на нее окажется наиболее безболезненным, самым дешевым и психологически приемлемым. Ведь сеть Ethernet и ее версия Fast Ethernet сегодня далеко опережают всех своих конкурентов по объему продаж и распространенности в мире.

Сеть Gigabit Ethernet - это естественный, эволюционный путь развития концепции, заложенной в стандартной сети Ethernet. Безусловно, она наследует и все недостатки своих прямых предшественников, например, негарантированное время доступа к сети. Однако огромная пропускная способность приводит к тому, что загрузить сеть до тех уровней, когда этот фактор становится определяющим, довольно трудно. Зато сохранение преемственности позволяет достаточно просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в сеть, и, самое главное, переходить к новым скоростям постепенно, вводя гигабитные сегменты только на самых напряженных участках сети. (К тому же далеко не везде такая высокая пропускная способность действительно необходима.) Если же говорить о конкурирующих гигабитных сетях, то их применение может потребовать полной замены сетевой аппаратуры, что сразу же приведет к большим затратам средств.

В сети Gigabit Ethernet сохраняется все тот же хорошо зарекомендовавший себя в предыдущих версиях метод доступа CSMA/CD, используются те же форматы пакетов (кадров) и те же их размеры. Не требуется никакого преобразования протоколов в местах соединения с сегментами Ethernet и Fast Ethernet. Единственно, что нужно, - это согласование скоростей обмена, поэтому главной областью применения Gigabit Ethernet станет в первую очередь соединение концентраторов Ethernet и Fast Ethernet между собой.

С появлением сверхбыстродействующих серверов и распространением наиболее совершенных персональных компьютеров класса "high-end" преимущества Gigabit Ethernet становятся все более явными. Так, 64-разрядная системная магистраль PCI, уже фактический стандарт, вполне достигает требуемой для такой сети скорости передачи данных.

Работы по созданию сети Gigabit Ethernet ведутся с 1995 года. В 1998 году принят стандарт, получивший наименование IEEE 802.3z (1000BASE-SX, 1000BASE-LX и 1000BASE-CX). Разработкой занимается специально созданный альянс (Gigabit Ethernet Alliance), в который, в частности, входит такая известная компания, занимающаяся сетевой аппаратурой, как 3Com. В 1999 году принят стандарт IEEE 802.3ab (1000BASE-T).

Номенклатура сегментов сети Gigabit Ethernet в настоящее время включает в себя следующие типы:

· 1000BASE-SX - сегмент на мультимодовом оптоволоконном кабеле с длиной волны светового сигнала 850 нм (длиной до 500 метров). Используются лазерные передатчики.

· 1000BASE-LX - сегмент на мультимодовом (длиной до 500 метров) и одномодовом (длиной до 2000 метров) оптоволоконном кабеле с длиной волны светового сигнала 1300 нм. Используются лазерные передатчики.

· 1000BASE-CX - сегмент на экранированной витой паре (длиной до 25 метров).

· 1000BASE-T (стандарт IEEE 802.3ab) - сегмент на счетверенной неэкранированной витой паре категории 5 (длиной до 100 метров). Используется 5-уровневое кодирование (PAM-5), причем в полнодуплексном режиме передача ведется по каждой паре в двух направлениях.

Специально для сети Gigabit Ethernet предложен метод кодирования передаваемой информации 8В/10В, построенный по тому же принципу, что и код 4В/5В сети FDDI (кроме 1000BASE-T). Таким образом, восьми битам информации, которую нужно передать, ставится в соответствие 10 бит, передаваемых по сети. Этот код позволяет сохранить самосинхронизацию, легко обнаруживать несущую (факт передачи), но не требует удвоения полосы пропускания, как в случае манчестерского кода.

Для увеличения 512-битного интервала сети Ethernet, соответствующего минимальной длине пакета, (51,2 мкс в сети Ethernet и 5,12 мкс в сети Fast Ethernet), разработаны специальные методы. В частности, минимальная длина пакета увеличена до 512 байт (4096 бит). В противном случае временной интервал 0,512 мкс чрезмерно ограничивал бы предельную длину сети Gigabit Ethernet. Все пакеты с длиной меньше 512 байт расширяются до 512 байт. Поле расширения вставляется в пакет после поля контрольной суммы. Это требует дополнительной обработки пакетов, но зато максимально допустимый размер сети становится в 8 раз больше, чем без принятия таких мер.

Кроме того, в Gigabit Ethernet предусмотрена возможность блочного режима передачи пакетов (frame bursting). При этом абонент, получивший право передавать и имеющий для передачи несколько пакетов, может передать не один, а несколько пакетов, последовательно, причем адресованных разным абонентам-получателям. Дополнительные передаваемые пакеты могут быть только короткими, а суммарная длина всех пакетов блока не должна превышать 8192 байта. Такое решение позволяет снизить количество захватов сети и уменьшить число коллизий. При использовании блочного режима расширяется до 512 байт только первый пакет блока для того, чтобы проверить, нет ли в сети коллизий. Остальные пакеты до 512 байт могут не расширяться.

Передача в сети Gigabit Ethernet производится как в полудуплексном режиме (с сохранением метода доступа CSMA/CD), так и в более быстром полнодуплексном режиме (аналогично предшествующей сети Fast Ethernet). Ожидается, что полнодуплексный режим, не налагающий ограничений на длину сети (кроме ограничений в связи с затуханием сигнала в кабеле) и обеспечивающий отсутствие конфликтов, станет в будущем основным для Gigabit Ethernet. Подробнее о полнодуплексном режиме будет рассказано в главе 9.

Рис. 8.11. Использование сети Gigabit Ethernet для соединения групп компьютеров

Рис. 8.12. Использование сети Gigabit Ethernet для подключения быстродействующих серверов

Сеть Gigabit Ethernet, прежде всего, находит применение в сетях, объединяющих компьютеры крупных предприятий, которые располагаются в нескольких зданиях. Она позволяет с помощью соответствующих коммутаторов, преобразующих скорости передачи, обеспечить каналы связи с высокой пропускной способностью между отдельными частями сложной сети (рис. 8.11) или линии связи коммутаторов со сверхбыстродействующими серверами (рис. 8.12).

Вероятно, в ряде случаев Gigabit Ethernet будет вытеснять оптоволоконную сеть FDDI, которая в настоящее время все чаще используется для объединения в сеть нескольких локальных сетей, в том числе, и Ethernet. Правда, FDDI может связывать абонентов, находящихся гораздо дальше друг от друга, но по скорости передачи информации Gigabit Ethernet существенно превосходит FDDI.

Но даже сеть Gigabit Ethernet не может решить некоторых задач. Уже предлагается и 10-гигабитная версия Ethernet, называемая 10Gigabit Ethernet (стандарт IEEE 802.3ae, принятый в 2002 году). Она принципиально отличается от предыдущих версий. В качестве среды передачи используется исключительно оптоволоконный кабель. Электрический кабель может иногда применяться только для связи на короткие расстояния (порядка 10 метров). Режим обмена - полнодуплексный. Формат пакета Ethernet прежний. Это, наверное, единственное, что остается от изначального стандарта Ethernet (IEEE 802.3).

В заключение раздела несколько слов об альтернативном решении сверхбыстродействующей сети. Речь идет о сети с технологией ATM (Asynchronous Transfer Mode). Данная технология используется как в локальных, так и в глобальных сетях. Основная идея - передача цифровых, голосовых и мультимедийных данных по одним и тем же каналам. Строго говоря, жесткого стандарта на аппаратуру ATM не предполагает.

Первоначально была выбрана скорость передачи 155 Мбит/с (для настольных систем - 25 Мбит/с), затем - 662 Мбит/с, а сейчас ведутся работы по повышению скорости до 2488 Мбит/с. По скорости ATM успешно конкурирует с Gigabit Ethernet. Кстати, появилась ATM раньше, чем Gigabit Ethernet.В качестве среды передачи информации в локальной сети технология ATM предполагает использование оптоволоконного кабеля и неэкранированной витой пары. Используемые коды - 4В/5В и 8В/10В.

Принципиальное отличие ATM от остальных сетей состоит в отказе от привычных пакетов с полями адресации, управления и данных. Вся передаваемая информация упакована в микропакеты (ячейки, cells) длиной 53 байта. Каждая ячейка имеет 5-байтовый заголовок, который позволяет интеллектуальным распределительным устройствам сортировать ячейки и следить за тем, чтобы они передавались в нужной последовательности. Каждая ячейка имеет 48 байт информации. Их минимальный размер позволяет осуществлять коррекцию ошибок и маршрутизацию на аппаратном уровне. Он же обеспечивает равномерность всех информационных потоков сети и минимальное время ожидания доступа к сети.

Заголовок включает в себя идентификаторы пути, канала доставки, типа информации, указатель приоритета доставки, а также контрольную сумму заголовка, позволяющую определить наличие ошибок передачи.

Главный недостаток сетей с технологией ATM состоит в их полной несовместимости ни с одной из имеющихся сетей. Плавный переход на АТМ в принципе невозможен, нужно менять сразу все оборудование, а стоимость его пока что очень высока. Правда, работы по обеспечению совместимости ведутся, снижается и стоимость оборудования. Тем более что задач по передаче изображений по компьютерным сетям становится все больше и больше.

Технология АТМ еще в недалеком прошлом считалась перспективной и универсальной, способной потеснить привычные локальные сети. Однако в настоящий момент вследствие успешного развития традиционных локальных сетей применение АТМ ограничено только глобальными и магистральными сетями.

Сверхвысокоскоростные сети

Быстродействие сети Fast Ethernet и других сетей, работающих на скорости в 100 Мбит/с, в настоящее время удовлетворяет требованиям большинства задач, но в ряде случаев даже его оказывается недостаточно. Особенно в тех ситуациях, когда необходимо подключать к сети современные высокопроизводительные серверы или строить сети с большим количеством абонентов, требующих высокой интенсивности обмена. Например, все более широко применяется сетевая обработка трехмерных динамических изображений. Скорость компьютеров непрерывно растет, они обеспечивают все более высокие темпы обмена с внешними устройствами. В результате сеть может оказаться наиболее слабым местом системы, и ее пропускная способность будет основным сдерживающим фактором в увеличении быстродействия.

Работы по достижению скорости передачи в 1 Гбит/с (1000 Мбит/с) в последние годы ведутся довольно интенсивно несколькими компаниями. Однако, скорее всего, наиболее перспективной окажется сеть Gigabit Ethernet. Это связано, прежде всего, с тем, что переход на нее окажется наиболее безболезненным, самым дешевым и психологически приемлемым. Ведь сеть Ethernet и ее версия Fast Ethernet сегодня далеко опережают всех своих конкурентов по объему продаж и распространенности в мире.

Сеть Gigabit Ethernet - это естественный, эволюционный путь развития концепции, заложенной в стандартной сети Ethernet. Безусловно, она наследует и все недостатки своих прямых предшественников, например, негарантированное время доступа к сети. Однако огромная пропускная способность приводит к тому, что загрузить сеть до тех уровней, когда этот фактор становится определяющим, довольно трудно. Зато сохранение преемственности позволяет достаточно просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в сеть, и, самое главное, переходить к новым скоростям постепенно, вводя гигабитные сегменты только на самых напряженных участках сети. (К тому же далеко не везде такая высокая пропускная способность действительно необходима.) Если же говорить о конкурирующих гигабитных сетях, то их применение может потребовать полной замены сетевой аппаратуры, что сразу же приведет к большим затратам средств.

В сети Gigabit Ethernet сохраняется все тот же хорошо зарекомендовавший себя в предыдущих версиях метод доступа CSMA/CD, используются те же форматы пакетов (кадров) и те же их размеры. Не требуется никакого преобразования протоколов в местах соединения с сегментами Ethernet и Fast Ethernet. Единственно, что нужно, - это согласование скоростей обмена, поэтому главной областью применения Gigabit Ethernet станет в первую очередь соединение концентраторов Ethernet и Fast Ethernet между собой.

С появлением сверхбыстродействующих серверов и распространением наиболее совершенных персональных компьютеров класса "high-end" преимущества Gigabit Ethernet становятся все более явными. Так, 64-разрядная системная магистраль PCI, уже фактический стандарт, вполне достигает требуемой для такой сети скорости передачи данных.

Работы по созданию сети Gigabit Ethernet ведутся с 1995 года. В 1998 году принят стандарт, получивший наименование IEEE 802.3z (1000BASE-SX, 1000BASE-LX и 1000BASE-CX). Разработкой занимается специально созданный альянс (Gigabit Ethernet Alliance), в который, в частности, входит такая известная компания, занимающаяся сетевой аппаратурой, как 3Com. В 1999 году принят стандарт IEEE 802.3ab (1000BASE-T).

Номенклатура сегментов сети Gigabit Ethernet в настоящее время включает в себя следующие типы:

· 1000BASE-SX - сегмент на мультимодовом оптоволоконном кабеле с длиной волны светового сигнала 850 нм (длиной до 500 метров). Используются лазерные передатчики.

· 1000BASE-LX - сегмент на мультимодовом (длиной до 500 метров) и одномодовом (длиной до 2000 метров) оптоволоконном кабеле с длиной волны светового сигнала 1300 нм. Используются лазерные передатчики.

· 1000BASE-CX - сегмент на экранированной витой паре (длиной до 25 метров).

· 1000BASE-T (стандарт IEEE 802.3ab) - сегмент на счетверенной неэкранированной витой паре категории 5 (длиной до 100 метров). Используется 5-уровневое кодирование (PAM-5), причем в полнодуплексном режиме передача ведется по каждой паре в двух направлениях.

Специально для сети Gigabit Ethernet предложен метод кодирования передаваемой информации 8В/10В, построенный по тому же принципу, что и код 4В/5В сети FDDI (кроме 1000BASE-T). Таким образом, восьми битам информации, которую нужно передать, ставится в соответствие 10 бит, передаваемых по сети. Этот код позволяет сохранить самосинхронизацию, легко обнаруживать несущую (факт передачи), но не требует удвоения полосы пропускания, как в случае манчестерского кода.

Для увеличения 512-битного интервала сети Ethernet, соответствующего минимальной длине пакета, (51,2 мкс в сети Ethernet и 5,12 мкс в сети Fast Ethernet), разработаны специальные методы. В частности, минимальная длина пакета увеличена до 512 байт (4096 бит). В противном случае временной интервал 0,512 мкс чрезмерно ограничивал бы предельную длину сети Gigabit Ethernet. Все пакеты с длиной меньше 512 байт расширяются до 512 байт. Поле расширения вставляется в пакет после поля контрольной суммы. Это требует дополнительной обработки пакетов, но зато максимально допустимый размер сети становится в 8 раз больше, чем без принятия таких мер.

Кроме того, в Gigabit Ethernet предусмотрена возможность блочного режима передачи пакетов (frame bursting). При этом абонент, получивший право передавать и имеющий для передачи несколько пакетов, может передать не один, а несколько пакетов, последовательно, причем адресованных разным абонентам-получателям. Дополнительные передаваемые пакеты могут быть только короткими, а суммарная длина всех пакетов блока не должна превышать 8192 байта. Такое решение позволяет снизить количество захватов сети и уменьшить число коллизий. При использовании блочного режима расширяется до 512 байт только первый пакет блока для того, чтобы проверить, нет ли в сети коллизий. Остальные пакеты до 512 байт могут не расширяться.

Передача в сети Gigabit Ethernet производится как в полудуплексном режиме (с сохранением метода доступа CSMA/CD), так и в более быстром полнодуплексном режиме (аналогично предшествующей сети Fast Ethernet). Ожидается, что полнодуплексный режим, не налагающий ограничений на длину сети (кроме ограничений в связи с затуханием сигнала в кабеле) и обеспечивающий отсутствие конфликтов, станет в будущем основным для Gigabit Ethernet. Подробнее о полнодуплексном режиме будет рассказано в главе 9.

Рис. 8.11. Использование сети Gigabit Ethernet для соединения групп компьютеров

Рис. 8.12. Использование сети Gigabit Ethernet для подключения быстродействующих серверов

Сеть Gigabit Ethernet, прежде всего, находит применение в сетях, объединяющих компьютеры крупных предприятий, которые располагаются в нескольких зданиях. Она позволяет с помощью соответствующих коммутаторов, преобразующих скорости передачи, обеспечить каналы связи с высокой пропускной способностью между отдельными частями сложной сети (рис. 8.11) или линии связи коммутаторов со сверхбыстродействующими серверами (рис. 8.12).

Вероятно, в ряде случаев Gigabit Ethernet будет вытеснять оптоволоконную сеть FDDI, которая в настоящее время все чаще используется для объединения в сеть нескольких локальных сетей, в том числе, и Ethernet. Правда, FDDI может связывать абонентов, находящихся гораздо дальше друг от друга, но по скорости передачи информации Gigabit Ethernet существенно превосходит FDDI.

Но даже сеть Gigabit Ethernet не может решить некоторых задач. Уже предлагается и 10-гигабитная версия Ethernet, называемая 10Gigabit Ethernet (стандарт IEEE 802.3ae, принятый в 2002 году). Она принципиально отличается от предыдущих версий. В качестве среды передачи используется исключительно оптоволоконный кабель. Электрический кабель может иногда применяться только для связи на короткие расстояния (порядка 10 метров). Режим обмена - полнодуплексный. Формат пакета Ethernet прежний. Это, наверное, единственное, что остается от изначального стандарта Ethernet (IEEE 802.3).

В заключение раздела несколько слов об альтернативном решении сверхбыстродействующей сети. Речь идет о сети с технологией ATM (Asynchronous Transfer Mode). Данная технология используется как в локальных, так и в глобальных сетях. Основная идея - передача цифровых, голосовых и мультимедийных данных по одним и тем же каналам. Строго говоря, жесткого стандарта на аппаратуру ATM не предполагает.

Первоначально была выбрана скорость передачи 155 Мбит/с (для настольных систем - 25 Мбит/с), затем - 662 Мбит/с, а сейчас ведутся работы по повышению скорости до 2488 Мбит/с. По скорости ATM успешно конкурирует с Gigabit Ethernet. Кстати, появилась ATM раньше, чем Gigabit Ethernet.В качестве среды передачи информации в локальной сети технология ATM предполагает использование оптоволоконного кабеля и неэкранированной витой пары. Используемые коды - 4В/5В и 8В/10В.

Принципиальное отличие ATM от остальных сетей состоит в отказе от привычных пакетов с полями адресации, управления и данных. Вся передаваемая информация упакована в микропакеты (ячейки, cells) длиной 53 байта. Каждая ячейка имеет 5-байтовый заголовок, который позволяет интеллектуальным распределительным устройствам сортировать ячейки и следить за тем, чтобы они передавались в нужной последовательности. Каждая ячейка имеет 48 байт информации. Их минимальный размер позволяет осуществлять коррекцию ошибок и маршрутизацию на аппаратном уровне. Он же обеспечивает равномерность всех информационных потоков сети и минимальное время ожидания доступа к сети.

Заголовок включает в себя идентификаторы пути, канала доставки, типа информации, указатель приоритета доставки, а также контрольную сумму заголовка, позволяющую определить наличие ошибок передачи.

Главный недостаток сетей с технологией ATM состоит в их полной несовместимости ни с одной из имеющихся сетей. Плавный переход на АТМ в принципе невозможен, нужно менять сразу все оборудование, а стоимость его пока что очень высока. Правда, работы по обеспечению совместимости ведутся, снижается и стоимость оборудования. Тем более что задач по передаче изображений по компьютерным сетям становится все больше и больше.

Технология АТМ еще в недалеком прошлом считалась перспективной и универсальной, способной потеснить привычные локальные сети. Однако в настоящий момент вследствие успешного развития традиционных локальных сетей применение АТМ ограничено только глобальными и магистральными сетями.

Беспроводные сети

До недавнего времени беспроводная связь в локальных сетях практически не применялась. Однако с конца 90-х годов 20 века наблюдается настоящий бум беспроводных локальных сетей (WLAN - Wireless LAN). Это связано в первую очередь с успехами технологии и с теми удобствами, которые способны предоставить беспроводные сети. По имеющимся прогнозам, число пользователей беспроводных сетей в 2005 году достигнет 44 миллионов, а 80% всех мобильных компьютеров будут оснащены встроенными средствами доступа к таким сетям.

В 1997 году был принят стандарт для беспроводных сетей IEEE 802.11. Сейчас этот стандарт активно развивается и включает в себя уже несколько разделов, в том числе три локальные сети (802.11a, 802.11b и 802.11g). Стандарт содержит следующие спецификации:

· 802.11 - первоначальный стандарт WLAN. Поддерживает передачу данных со скоростями от 1 до 2 Мбит/с.

· 802.11a - высокоскоростной стандарт WLAN для частоты 5 ГГц. Поддерживает скорость передачи данных 54 Мбит/с.

· 802.11b - стандарт WLAN для частоты 2,4 ГГц. Поддерживает скорость передачи данных 11 Мбит/с.

· 802.11e - устанавливает требования качества запроса, необходимое для всех радио интерфейсов IEEE WLAN.

· 802.11f - описывает порядок связи между равнозначными точками доступа.

· 802.11g - устанавливает дополнительную технику модуляции для частоты 2,4 ГГц. Предназначен для обеспечения скоростей передачи данных до 54 Мбит/с.

· v802.11h - описывает управление спектром частоты 5 ГГц для использования в Европе и Азии.

· 802.11i - исправляет существующие проблемы безопасности в областях аутентификации и протоколов шифрования.

Разработкой и поддержкой стандарта IEEE 802.11 занимается комитет Wi-Fi Alliance. Термин Wi-Fi (wireless fidelity) используется в качестве общего имени для стандартов 802.11a и 802.11b, а также всех последующих, относящихся к беспроводным локальным сетям (WLAN).

Оборудование беспроводных сетей включает в себя точки беспроводного доступа (Access Point) и беспроводные адаптеры для каждого абонента.

Точки доступа выполняют роль концентраторов, обеспечивающих связь между абонентами и между собой, а также функцию мостов, осуществляющих связь с кабельной локальной сетью и с Интернет. Несколько близкорасположенных точек доступа образуют зону доступа Wi-Fi, в пределах которой все абоненты, снабженные беспроводными адаптерами, получают доступ к сети. Такие зоны доступа (Hotspot) создаются в местах массового скопления людей: в аэропортах, студенческих городках, библиотеках, магазинах, бизнес-центрах и т.д.

Каждая точка доступа может обслуживать несколько абонентов, но чем больше абонентов, тем меньше эффективная скорость передачи для каждого из них. Метод доступа к сети - CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance). Сеть строится по сотовому принципу. В сети предусмотрен механизм роуминга, то есть поддерживается автоматическое подключение к точке доступа и переключение между точками доступа при перемещении абонентов, хотя строгих правил роуминга стандарт не устанавливает.

Поскольку радиоканал не обеспечивает высокой степени защиты от прослушивания, в сети Wi-Fi используется специальный встроенный механизм защиты информации. Он включает средства и процедуры аутентификации для противодействия несанкционированному доступу к сети и шифрование для предотвращения перехвата информации.

Стандарт IEEE 802.11b был принят в 1999 г. и благодаря ориентации на освоенный диапазон 2,4 ГГц завоевал наибольшую популярность у производителей оборудования. В качестве базовой радиотехнологии в нем используется метод DSSS (Direct Sequence Spread Spectrum), который отличается высокой устойчивостью к искажению данных, помехам, в том числе преднамеренным, а также к обнаружению. Поскольку оборудование 802.11b, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала. Пропускная способность (теоретическая 11 Мбит/с, реальная - от 1 до 6 Мбит/с) отвечает требованиям большинства приложений. Расстояния - до 300 метров, но обычно - до 160 метров.

Стандарт IEEE 802.11a рассчитан на работу в частотном диапазоне 5 ГГц. Скорость передачи данных до 54 Мбит/с, то есть примерно в пять раз быстрее сетей 802.11b. Это наиболее широкополосный из семейства стандартов 802.11. Определены три обязательные скорости - 6, 12 и 24 Мбит/с и пять необязательных - 9, 18, 36, 48 и 54 Мбит/с. В качестве метода модуляции сигнала принято ортогональное частотное мультиплексирование (OFDM). Его наиболее существенное отличие от методов DSSS заключается в том, что OFDM предполагает параллельную передачу полезного сигнала одновременно по нескольким частотам диапазона, в то время как технологии расширения спектра передают сигналы последовательно. В результате повышается пропускная способность канала и качество сигнала. К недостаткам 802.11а относятся большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (около 100 м). Кроме того, устройства для 802.11а дороже, но со временем ценовой разрыв между продуктами 802.11b и 802.11a будет уменьшаться.


Подобные документы

  • Беспроводная технология передачи информации. Развитие беспроводных локальных сетей. Стандарт безопасности WEP. Процедура WEP-шифрования. Взлом беспроводной сети. Режим скрытого идентификатора сети. Типы и протоколы аутентификации. Взлом беспроводной сети.

    реферат [51,8 K], добавлен 17.12.2010

  • Функции компьютерных сетей (хранение и обработка данных, доступ пользователей к данным и их передача). Основные показатели качества локальных сетей. Классификация компьютерных сетей, их главные компоненты. Топология сети, характеристика оборудования.

    презентация [287,4 K], добавлен 01.04.2015

  • Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.

    реферат [1,8 M], добавлен 03.02.2009

  • Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.

    презентация [72,8 K], добавлен 04.05.2012

  • Передача информации между компьютерами. Анализ способов и средств обмена информацией. Виды и структура локальных сетей. Исследование порядка соединения компьютеров в сети и её внешнего вида. Кабели для передачи информации. Сетевой и пакетный протоколы.

    реферат [1,9 M], добавлен 22.12.2014

  • Понятие и структура компьютерных сетей, их классификация и разновидности. Технологии, применяемые для построения локальных сетей. Безопасность проводных локальных сетей. Беспроводные локальные сети, их характерные свойства и применяемые устройства.

    курсовая работа [441,4 K], добавлен 01.01.2011

  • Определение и отличительные признаки локальной сети. Методы коммутации каналов, сообщений, пакетов и ячеек. Особенности, различия и достоинства топологий сетей: "общая шина", "звезда", "кольцо", "дерево", "полносвязная", "многосвязная", "смешанная".

    курсовая работа [440,8 K], добавлен 16.05.2012

  • Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.

    реферат [134,0 K], добавлен 21.10.2013

  • Анализ системы распределенных локальных сетей и информационного обмена между ними через Интернет. Отличительные черты корпоративной сети, определение проблем информационной безопасности в Интернете. Технология построения виртуальной защищенной сети – VPN.

    курсовая работа [3,7 M], добавлен 02.07.2011

  • Классификация вычислительных сетей. Функции локальных вычислительных сетей: распределение данных, информационных и технических ресурсов, программ, обмен сообщениями по электронной почте. Построение сети, адресация и маршрутизаторы, топология сетей.

    доклад [23,2 K], добавлен 09.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.