Определение локальных сетей и их топология
Место и роль локальных сетей. Подключение терминалов к центральному компьютеру. Передача сигналов по витой паре. Передача пакетов в сети между двумя абонентами. Включение промежуточных устройств между абонентами сети. Оборудование беспроводных сетей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 28.03.2012 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
· Кабель категории 7 - перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.
Согласно стандарту EIA/TIA 568, полное волновое сопротивление наиболее совершенных кабелей категорий 3, 4 и 5 должно составлять 100 Ом ±15% в частотном диапазоне от 1 МГц до максимальной частоты кабеля. Требования не очень жесткие: величина волнового сопротивления может находиться в диапазоне от 85 до 115 Ом. Здесь же следует отметить, что волновое сопротивление экранированной витой пары STP по стандарту должно быть равным 150 Ом ±15%. Для согласования сопротивлений кабеля и оборудования в случае их несовпадения применяют согласующие трансформаторы (Balun). Существует также экранированная витая пара с волновым сопротивлением 100 Ом, но используется она довольно редко.
Второй важнейший параметр, задаваемый стандартом, - это максимальное затухание сигнала, передаваемого по кабелю, на разных частотах. В таблице 2.1 приведены предельные значения величины затухания в децибелах для кабелей категорий 3, 4 и 5 на расстояние 1000 футов (то есть 305 метров) при нормальной температуре окружающей среды 20°С.
Таблица 2.1. Максимальное затухание в кабелях |
||||
Частота, МГц |
Максимальное затухание, дБ |
|||
Категория 3 |
Категория 4 |
Категория 5 |
||
0,064 |
2,8 |
2,3 |
2,2 |
|
0,256 |
4,0 |
3,4 |
3,2 |
|
0,512 |
5,6 |
4,6 |
4,5 |
|
0,772 |
6,8 |
5,7 |
5,5 |
|
1,0 |
7,8 |
6,5 |
6,3 |
|
4,0 |
17 |
13 |
13 |
|
8,0 |
26 |
19 |
18 |
|
10,0 |
30 |
22 |
20 |
|
16,0 |
40 |
27 |
25 |
|
20,0 |
-- |
31 |
28 |
|
25,0 |
-- |
-- |
32 |
|
31,25 |
-- |
-- |
36 |
|
62,5 |
-- |
-- |
52 |
|
100 |
-- |
-- |
67 |
Из таблицы видно, что величины затухания на частотах, близких к предельным, для всех кабелей очень значительны. Даже на небольших расстояниях сигнал ослабляется в десятки и сотни раз, что предъявляет высокие требования к приемникам сигнала.
Еще один специфический параметр, определяемый стандартом, это величина так называемой перекрестной наводки на ближнем конце (NEXT - Near End CrossTalk). Он характеризует влияние разных проводов в кабеле друг на друга. Суть данного параметра иллюстрируется на рис. 2.2. Сигнал, передаваемый по одной из витых пар кабеля (верхняя пара), наводит индуктивную помеху на другую (нижнюю) витую пару кабеля. Две витые пары в сети обычно передают информацию в разные стороны, поэтому наиболее важна наводка на ближнем конце воспринимающей пары (нижней на рисунке), так как именно там находится приемник информации. Перекрестная наводка на дальнем конце (FEXT - Far End CrossTalk) не имеет такого большого значения.
Таблица 2.2. Допустимые уровни перекрестных наводок NEXT |
||||
Частота, МГц |
Перекрестная наводка на ближнем конце, дБ |
|||
Категория 3 |
Категория 4 |
Категория 5 |
||
0,150 |
- 54 |
-68 |
-74 |
|
0,772 |
-43 |
-58 |
-64 |
|
1,0 |
-41 |
-56 |
-62 |
|
4,0 |
-32 |
-47 |
-53 |
|
8,0 |
-28 |
-42 |
-48 |
|
10,0 |
-26 |
-41 |
-47 |
|
16,0 |
-23 |
-38 |
-44 |
|
20,0 |
-- |
-36 |
-42 |
|
25,0 |
-- |
-- |
-41 |
|
31,25 |
-- |
-- |
-40 |
|
62,5 |
-- |
-- |
-35 |
|
100,0 |
-- |
-- |
-32 |
В таблице 2.2 представлены значения допустимой перекрестной наводки на ближнем конце для кабелей категорий 3, 4 и 5 на различных частотах сигнала. Естественно, более качественные кабели обеспечивают меньшую величину перекрестной наводки.
Рис. 2.2. Перекрестные помехи в кабелях на витых парах
Стандарт определяет также максимально допустимую величину рабочей емкости каждой из витых пар кабелей категории 4 и 5. Она должна составлять не более 17 нФ на 305 метров (1000 футов) при частоте сигнала 1 кГц и температуре окружающей среды 20°С.
Для присоединения витых пар используются разъемы (коннекторы) типа RJ-45, похожие на разъемы, используемые в телефонах (RJ-11), но несколько большие по размеру. Разъемы RJ-45 имеют восемь контактов вместо четырех в случае RJ-11. Присоединяются разъемы к кабелю с помощью специальных обжимных инструментов. При этом золоченые игольчатые контакты разъема прокалывают изоляцию каждого провода, входят между его жилами и обеспечивают надежное и качественное соединение. Надо учитывать, что при установке разъемов стандартом допускается расплетение витой пары кабеля на длину не более одного сантиметра.
Чаще всего витые пары используются для передачи данных в одном направлении (точка-точка), то есть в топологиях типа звезда или кольцо. Топология шина обычно ориентируется на коаксиальный кабель. Поэтому внешние терминаторы, согласующие неподключенные концы кабеля, для витых пар практически никогда не применяются.
Кабели выпускаются с двумя типами внешних оболочек:
· Кабель в поливинилхлоридной (ПВХ, PVC) оболочке дешевле и предназначен для работы в сравнительно комфортных условиях эксплуатации.
· Кабель в тефлоновой оболочке дороже и предназначен для более жестких условий эксплуатации.
Кабель в ПВХ оболочке называется еще non-plenum, а в тефлоновой - plenum. Термин plenum обозначает в данном случае пространство под фальшполом и над подвесным потолком, где удобно размещать кабели сети. Для прокладки в этих скрытых от глаз пространствах как раз удобнее кабель в тефлоновой оболочке, который, в частности, горит гораздо хуже, чем ПВХ - кабель, и не выделяет при этом ядовитых газов в большом количестве.
Еще один важный параметр любого кабеля, который жестко не определяется стандартом, но может существенно повлиять на работоспособность сети, - это скорость распространения сигнала в кабеле или, другими словами, задержка распространения сигнала в кабеле в расчете на единицу длины.
Производители кабелей иногда указывают величину задержки на метр длины, а иногда - скорость распространения сигнала относительно скорости света (или NVP - Nominal Velocity of Propagation, как ее часто называют в документации). Связаны эти две величины простой формулой:
tз =1/(3 ? 108 ? NVP)
где tз - величина задержки на метр длины кабеля в наносекундах. Например, если NVP=0,65 (65% от скорости света), то задержка tз будет равна 5,13 нс/м. Типичная величина задержки большинства современных кабелей составляет около 4--5 нс/м.
В таблице 2.3 приведены величины NVP и задержек на метр длины (в наносекундах) для некоторых типов кабеля двух самых известных компаний-производителей AT&T и Belden.
Таблица 2.3. Временные характеристики некоторых кабелей |
||||||
Фирма |
Марка |
Категория |
Оболочка |
NVP |
Задержка |
|
AT&T |
1010 |
3 |
non-plenum |
0,67 |
4,98 |
|
AT&T |
1041 |
4 |
non-plenum |
0,70 |
4,76 |
|
AT&T |
1061 |
5 |
non-plenum |
0,70 |
4,76 |
|
AT&T |
2010 |
3 |
plenum |
0,70 |
4,76 |
|
AT&T |
2041 |
4 |
plenum |
0,75 |
4,44 |
|
AT&T |
2061 |
5 |
plenum |
0,75 |
4,44 |
|
Belden |
1229A |
3 |
non-plenum |
0,69 |
4,83 |
|
Belden |
1455A |
4 |
non-plenum |
0,72 |
4,63 |
|
Belden |
1583A |
5 |
non-plenum |
0,72 |
4,63 |
|
Belden |
1245A2 |
3 |
plenum |
0,69 |
4,83 |
|
Belden |
1457A |
4 |
plenum |
0,75 |
4,44 |
|
Belden |
1585A |
5 |
plenum |
0,75 |
4,44 |
Стоит также отметить, что каждый из проводов, входящих в кабель на основе витых пар, как правило, имеет свой цвет изоляции, что существенно упрощает монтаж разъемов, особенно в том случае, когда концы кабеля находятся в разных комнатах, и контроль с помощью приборов затруднен.
Примером кабеля с экранированными витыми парами может служить кабель STP IBM типа 1, который включает в себя две экранированные витые пары AWG типа 22. Волновое сопротивление каждой пары составляет 150 Ом. Для этого кабеля применяются специальные разъемы, отличающиеся от разъемов для неэкранированной витой пары (например, DB9). Имеются и экранированные версии разъема RJ-45.
Коаксиальные кабели
Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального медного провода и металлической оплетки (экрана), разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку (рис. 2.3).
Рис. 2.3. Коаксиальный кабель
Коаксиальный кабель до недавнего времени был очень популярен, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), более широкими, чем в случае витой пары, полосами пропускания (свыше 1ГГц), а также большими допустимыми расстояниями передачи (до километра ). К нему труднее механически подключиться для несанкционированного прослушивания сети, он дает также заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5 - 3 раза). Сложнее и установка разъемов на концах кабеля. Сейчас его применяют реже, чем витую пару. Стандарт EIA/TIA-568 включает в себя только один тип коаксиального кабеля, применяемый в сети Ethernet.
Основное применение коаксиальный кабель находит в сетях с топологией типа шина. При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, необходимо, чтобы их сопротивление равнялось волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.
Реже коаксиальные кабели применяются в сетях с топологией звезда (например, пассивная звезда в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.
Волновое сопротивление кабеля указывается в сопроводительной документации. Чаще всего в локальных сетях применяются 50-омные (RG-58, RG-11, RG-8) и 93-омные кабели (RG-62). Распространенные в телевизионной технике 75-омные кабели в локальных сетях не используются. Марок коаксиального кабеля немного. Он не считается особо перспективным. Не случайно в сети Fast Ethernet не предусмотрено применение коаксиальных кабелей. Однако во многих случаях классическая шинная топология (а не пассивная звезда) очень удобна. Как уже отмечалось, она не требует применения дополнительных устройств - концентраторов.
Существует два основных типа коаксиального кабеля:
· тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;
· толстый (thick) кабель, диаметром около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен современным тонким кабелем.
Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, поскольку сигнал в нем затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования. А для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий, поэтому тонкий кабель применяется гораздо чаще.
Как и в случае витых пар, важным параметром коаксиального кабеля является тип его внешней оболочки. Точно так же в данном случае применяются как non-plenum (PVC), так и plenum кабели. Естественно, тефлоновый кабель дороже поливинилхлоридного. Обычно тип оболочки можно отличить по окраске (например, для PVC кабеля фирма Belden использует желтый цвет, а для тефлонового - оранжевый).
Типичные величины задержки распространения сигнала в коаксиальном кабеле составляют для тонкого кабеля около 5 нс/м, а для толстого - около 4,5 нс/м.
Существуют варианты коаксиального кабеля с двойным экраном (один экран расположен внутри другого и отделен от него дополнительным слоем изоляции). Такие кабели имеют лучшую помехозащищенность и защиту от прослушивания, но они немного дороже обычных.
В настоящее время считается, что коаксиальный кабель устарел, в большинстве случаев его вполне может заменить витая пара или оптоволоконный кабель. И новые стандарты на кабельные системы уже не включают его в перечень типов кабелей.
Оптоволоконные кабели
Оптоволоконный (он же волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.
Рис. 2.4. Структура оптоволоконного кабеля
Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 2.4). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 - 10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).
Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.
Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов.
Однако оптоволоконный кабель имеет и некоторые недостатки.
Самый главный из них - высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.
Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2--8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.
Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.
Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.
Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла более чем достаточно.
Существуют два различных типа оптоволоконного кабеля:
· многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
· одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.
Суть различия между этими двумя типами сводится к разным режимам прохождения световых лучей в кабеле.
Рис. 2.5. Распространение света в одномодовом кабеле
В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается (рис. 2.5). Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не долговечны. Однако в перспективе одномодовый кабель должен стать основным типом благодаря своим прекрасным характеристикам. К тому же лазеры имеют большее быстродействие, чем обычные светодиоды. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км.
Рис. 2.6. Распространение света в многомодовом кабеле
В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (рис. 2.6). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм, при этом наблюдается разброс длин волн около 30 - 50 нм. Допустимая длина кабеля составляет 2 - 5 км. Многомодовый кабель - это основной тип оптоволоконного кабеля в настоящее время, так как он дешевле и доступнее. Затухание в многомодовом кабеле больше, чем в одномодовом и составляет 5 - 20 дБ/км.
Типичная величина задержки для наиболее распространенных кабелей составляет около 4--5 нс/м, что близко к величине задержки в электрических кабелях.
Оптоволоконные кабели, как и электрические, выпускаются в исполнении plenum и non-plenum.
Лекция 3. Бескабельные каналы связи
Кроме кабельных каналов в компьютерных сетях иногда используются также бескабельные каналы. Их главное преимущество состоит в том, что не требуется никакой прокладки проводов (не надо делать отверстий в стенах, закреплять кабель в трубах и желобах, прокладывать его под фальшполами, над подвесными потолками или в вентиляционных шахтах, искать и устранять повреждения). К тому же компьютеры сети можно легко перемещать в пределах комнаты или здания, так как они ни к чему не привязаны.
Радиоканал использует передачу информации по радиоволнам, поэтому теоретически он может обеспечить связь на многие десятки, сотни и даже тысячи километров. Скорость передачи достигает десятков мегабит в секунду (здесь многое зависит от выбранной длины волны и способа кодирования).
Особенность радиоканала состоит в том, что сигнал свободно излучается в эфир, он не замкнут в кабель, поэтому возникают проблемы совместимости с другими источниками радиоволн (радио- и телевещательными станциями, радарами, радиолюбительскими и профессиональными передатчиками и т.д.). В радиоканале используется передача в узком диапазоне частот и модуляция информационным сигналом сигнала несущей частоты.
Главным недостатком радиоканала является его плохая защита от прослушивания, так как радиоволны распространяются неконтролируемо. Другой большой недостаток радиоканала - слабая помехозащищенность.
Для локальных беспроводных сетей (WLAN - Wireless LAN) в настоящее время применяются подключения по радиоканалу на небольших расстояниях (обычно до 100 метров) и в пределах прямой видимости. Чаще всего используются два частотных диапазона - 2,4 ГГц и 5 ГГц. Скорость передачи - до 54 Мбит/с. Распространен вариант со скоростью 11 Мбит/с.
Сети WLAN позволяют устанавливать беспроводные сетевые соединения на ограниченной территории (обычно внутри офисного или университетского здания или в таких общественных местах, как аэропорты). Они могут использоваться во временных офисах или в других местах, где прокладка кабелей неосуществима, а также в качестве дополнения к имеющейся проводной локальной сети, призванного обеспечить пользователям возможность работать перемещаясь по зданию.
Популярная технология Wi-Fi (Wireless Fidelity) позволяет организовать связь между компьютерами числом от 2 до 15 с помощью концентратора (называемого точкой доступа, Access Point, AP), или нескольких концентраторов, если компьютеров от 10 до 50. Кроме того, эта технология дает возможность связать две локальные сети на расстоянии до 25 километров с помощью мощных беспроводных мостов. Для примера на рис. 2.7 показано объединение компьютеров с помощью одной точки доступа. Важно, что многие мобильные компьютеры (ноутбуки) уже имеют встроенный контроллер Wi-Fi, что существенно упрощает их подключение к беспроводной сети.
Рис. 2.7. Объединение компьютеров с помощью технологии Wi-Fi
Радиоканал широко применяется в глобальных сетях как для наземной, так и для спутниковой связи. В этом применении у радиоканала нет конкурентов, так как радиоволны могут дойти до любой точки земного шара.
Инфракрасный канал также не требует соединительных проводов, так как использует для связи инфракрасное излучение (подобно пульту дистанционного управления домашнего телевизора). Главное его преимущество по сравнению с радиоканалом - нечувствительность к электромагнитным помехам, что позволяет применять его, например, в производственных условиях, где всегда много помех от силового оборудования. Правда, в данном случае требуется довольно высокая мощность передачи, чтобы не влияли никакие другие источники теплового (инфракрасного) излучения. Плохо работает инфракрасная связь и в условиях сильной запыленности воздуха.
Скорости передачи информации по инфракрасному каналу обычно не превышают 5--10 Мбит/с, но при использовании инфракрасных лазеров может быть достигнута скорость более 100 Мбит/с. Секретность передаваемой информации, как и в случае радиоканала, не достигается, также требуются сравнительно дорогие приемники и передатчики. Все это приводит к тому, что применяют инфракрасные каналы в локальных сетях довольно редко. В основном они используются для связи компьютеров с периферией (интерфейс IrDA).
Инфракрасные каналы делятся на две группы:
· Каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможна только при отсутствии препятствий между компьютерами сети. Зато протяженность канала прямой видимости может достигать нескольких километров.
· Каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий. Препятствия в данном случае не помеха, но связь может осуществляться только в пределах одного помещения.
Если говорить о возможных топологиях, то наиболее естественно все беспроводные каналы связи подходят для топологии типа шина, в которой информация передается одновременно всем абонентам. Но при использовании узконаправленной передачи и/или частотного разделения по каналам можно реализовать любые топологии (кольцо, звезда, комбинированные топологии) как на радиоканале, так и на инфракрасном канале.
Согласование, экранирование и гальваническая развязка линий связи
Как уже отмечалось, электрические линии связи (витые пары, коаксиальные кабели) требуют проведения специальных мер, без которых невозможна не только безошибочная передача данных, но и вообще любое функционирование сети. Оптоволоконные кабели решают все подобные проблемы автоматически.
Согласование электрических линий связи применяется для обеспечения нормального прохождения сигнала по длинной линии без отражений и искажений. Следует отметить, что в локальных сетях кабель работает в режиме длинной линии даже при минимальных расстояниях между компьютерами, так как скорости передачи информации и частотный спектр сигнала очень велики.
Принцип согласования кабеля прост: на его концах необходимо установить согласующие резисторы (терминаторы) с сопротивлением, равным волновому сопротивлению используемого кабеля.
Как уже упоминалось, волновое сопротивление - это параметр данного типа кабеля, зависящий только от его устройства (сечения, количества и формы проводников, толщины и материала изоляции и т.д.). Величина волнового сопротивления обязательно указывается в сопроводительной документации на кабель и составляет обычно от 50--100 Ом для коаксиального кабеля, до 100--150 Ом для витой пары или плоского многопроводного кабеля. Точное значение волнового сопротивления легко можно измерить с помощью генератора прямоугольных импульсов и осциллографа как раз по отсутствию искажения формы передаваемого по кабелю импульса. Обычно требуется, чтобы отклонение величины согласующего резистора не превышало 10% в ту или другую сторону.
Если согласующее, нагрузочное сопротивление Rн меньше волнового сопротивления кабеля Rв, то фронт передаваемого прямоугольного импульса на приемном конце будет затянут, если же Rн больше Rв, то на фронте будет колебательный процесс (рис.3.1).
Рис. 3.1. Передача сигналов по электрическому кабелю
Сетевые адаптеры, их приемники и передатчики специально рассчитываются на работу с данным типом кабеля с известным волновым сопротивлением. Поэтому даже при идеально согласованном на концах кабеле, волновое сопротивление которого существенно отличается от стандартного, сеть, скорее всего, работать не будет или будет работать со сбоями.
Здесь же стоит упомянуть о том, что сигналы с пологими фронтами передаются по длинному электрическому кабелю лучше, чем сигналы с крутыми фронтами. Их форма значительно меньше искажается (рис. 3.2). Это связано с разницей величин затухания для разных частот (высокие частоты затухают сильнее). Меньше всего искажается форма синусоидального сигнала, он просто уменьшается по амплитуде. Для улучшения качества передачи нередко используются трапециевидные или колоколообразные импульсы (рис. 3.3), близкие по форме к полуволне синуса, для чего искусственно затягиваются или сглаживаются фронты изначально прямоугольных сигналов.
Рис. 3.2. Затухание сигналов в электрическом кабеле
Рис. 3.3. Трапециевидный и колоколообразный импульсы
Экранирование электрических линий связи применяется для снижения влияния на кабель внешних электромагнитных полей. Экран представляет собой медную или алюминиевую оболочку (плетеную или из фольги), в которую заключаются провода кабеля. Экранирование будет работать, если экран заземлен, поскольку необходимо, чтобы наведенные на него токи стекали на землю. Кроме того, экранирование заметно уменьшает и внешние излучения кабеля, что важно для обеспечения секретности передаваемой информации. Побочными полезными эффектами экранирования являются увеличение прочности кабеля и трудности с механическим подключением к кабелю для подслушивания. Экран заметно повышает не только стоимость кабеля, но также и его механическую прочность.
Снизить влияние наведенных помех можно и без экрана, если использовать дифференциальную передачу сигнала (рис. 3.4). В этом случае передача идет по двум проводам, причем оба провода являются сигнальными. Передатчик формирует противофазные сигналы, а приемник реагирует на разность сигналов в обоих проводах. Условием согласования является равенство сопротивлений согласующих резисторов R половине волнового сопротивления кабеля Rв. Если оба провода имеют одинаковую длину и проложены рядом (в одном кабеле), то помехи действуют на оба провода примерно одинаково, и в результате разностный сигнал между проводами практически не искажается. Именно такая дифференциальная передача применяется обычно в кабелях из витых пар. Но экранирование и в этом случае существенно улучшает помехоустойчивость.
Рис. 3.4. Дифференциальная передача сигналов по витой паре
Гальваническая развязка компьютеров от сети при использовании электрического кабеля совершенно необходима. Дело в том, что по электрическим кабелям (как по сигнальным проводам, так и по экрану) могут идти не только информационные сигналы, но и так называемый выравнивающий ток, возникающий вследствие неидеальности заземления компьютеров.
Когда компьютер не заземлен, на его корпусе образуется наведенный потенциал около 110 вольт переменного тока (половина питающего напряжения).
При автономной работе компьютера отсутствие заземления, как правило, не оказывает серьезного влияния на его работу. Правда, иногда увеличивается количество сбоев в работе машины. Но при соединении нескольких территориально разнесенных компьютеров электрическим кабелем заземление становится серьезной проблемой. Если один из соединяемых компьютеров заземлен, а другой нет, то возможен выход из строя одного из них или обоих. Поэтому компьютеры крайне желательно заземлять.
В случае использования трехконтактной вилки и розетки, в которых есть нулевой провод, это получается автоматически. При двухконтактной вилке и розетке необходимо принимать специальные меры, организовывать заземление отдельным проводом большого сечения. Стоит также отметить, что в случае трехфазной сети желательно обеспечить питание всех компьютеров от одной фазы.
Но проблема осложняется еще и тем, что "земля", к которой присоединяются компьютеры, обычно далека от идеала. Теоретически заземляющие провода компьютеров должны сходиться в одной точке, соединенной короткой массивной шиной с зарытым в землю массивным проводником. Такая ситуация возможна только если компьютеры не слишком разнесены, и заземление действительно сделано грамотно. Обычно же заземляющая шина имеет значительную длину, в результате чего стекающие по ней токи создают довольно большую разность потенциалов между ее отдельными точками. Особенно велика эта разность потенциалов в случае подключения к шине мощных и высокочастотных потребителей энергии.
Присоединенные к одной и той же шине, но в разных точках, компьютеры имеют на своих корпусах разные потенциалы (рис. 3.5). В результате по электрическому кабелю, соединяющему компьютеры, потечет выравнивающий ток (переменный с высокочастотными составляющими).
Рис. 3.5. Выравнивающий ток при отсутствии гальванической развязки
Хуже, когда компьютеры подключаются к разным шинам заземления. Выравнивающий ток может достигать в этом случае величины в несколько ампер. Подобные токи смертельно опасны для малосигнальных узлов компьютера. Кроме того выравнивающий ток существенно влияет на передаваемый сигнал, порой полностью забивая его. Даже тогда, когда сигналы передаются без участия экрана (например, по двум проводам, заключенным в экран) вследствие индуктивного действия выравнивающий ток мешает передаче информации. Именно поэтому экран всегда должен быть заземлен только в одной точке.
Однако если каждый из компьютеров самостоятельно заземлен, то заземление экрана в одной точке становится невозможным без гальванической развязки компьютеров от сети. Таким образом не должно быть связи по постоянному току между корпусом ("землей") компьютера и экраном ("землей") сетевого кабеля. В то же время, информационный сигнал должен передаваться из компьютера в сеть и из сети в компьютер. Для гальванической развязки обычно применяют импульсные трансформаторы, которые входят в состав сетевого оборудования (например, сетевых адаптеров). Трансформатор пропускает высокочастотные информационные сигналы, но обеспечивает полную изоляцию по постоянному току.
Рис. 3.6. Правильное соединение компьютеров сети (гальваническая развязка условно показана в виде прямоугольника)
Грамотное соединение компьютеров локальной сети электрическим кабелем обязательно должно включать в себя следующее (рис. 3.6):
· оконечное согласование кабеля с помощью терминаторов;
· гальваническую развязку компьютеров от сети;
· заземление каждого компьютера;
· заземление экрана (если, конечно, он есть) в одной точке.
Не стоит пренебрегать каким-либо из этих требований. Например, гальваническая развязка сетевых адаптеров часто рассчитывается на допустимое напряжение изоляции всего лишь 100 В, что при отсутствии заземления одного из компьютеров может легко привести к выходу из строя его адаптера.
Следует отметить, что для присоединения коаксиального кабеля обычно применяются разъемы в металлическом корпусе. Этот корпус не должен соединяться ни с корпусом компьютера, ни с "землей" (на плате адаптера он установлен с пластиковой изоляцией от крепежной планки). Заземление экрана кабеля сети лучше производить не через корпус компьютера, а отдельным специальным проводом, что обеспечивает лучшую надежность. Пластмассовые корпуса разъемов RJ-45 для кабелей с неэкранированными витыми парами снимают эту проблему.
Важно также учитывать, что экран кабеля, заземленный в одной точке, является радиоантенной с заземленным основанием. Он может улавливать и усиливать высокочастотные помехи с длиной волны, кратной его длине. Для снижения этого "антенного эффекта" применяется многоточечное заземление экрана по высокой частоте. В каждом сетевом адаптере "земля" сетевого кабеля соединяется с "землей" компьютера через высоковольтные керамические конденсаторы. Для примера на рис. 3.7 показана упрощенная схема гальванической развязки, применяемая в сетевых адаптерах Ethernet.
Рис. 3.7. Схема гальванической развязки в сети Ethernet
Приемопередатчик напрямую связан с кабелем сети, но гальванически развязан с помощью трансформаторов от компьютера и остальной части сетевого адаптера. Это продиктовано особенностями протокола CSMA/CD и манчестерского кода, применяемых в Ethernet. Для обеспечения полной развязки питание приемопередатчика осуществляется посредством преобразователя питающего напряжения, имеющего внутри также трансформаторную гальваническую развязку. Оплетка коаксиального кабеля соединена с общим проводом компьютера через высоковольтный конденсатор. Параллельно конденсатору включен резистор с большим сопротивлением (1 МОм), который предотвращает электрический удар пользователя при одновременном касании им оплетки кабеля (корпуса разъема) и корпуса компьютера.
В случае применения витых пар все гораздо проще. Каждая витая пара имеет развязывающие импульсные трансформаторы на обоих своих концах. Ни один из проводов витой пары не заземляется (они оба сигнальные). К тому же разъемы для витых пар имеют пластмассовый корпус.
Кодирование информации в локальных сетях
Информация в кабельных локальных сетях передается в закодированном виде, то есть каждому биту передаваемой информации соответствует свой набор уровней электрических сигналов в сетевом кабеле. Модуляция высокочастотных сигналов применяется в основном в бескабельных сетях, в радиоканалах. В кабельных сетях передача идет без модуляции или, как еще говорят, в основной полосе частот.
Правильный выбор кода позволяет повысить достоверность передачи информации, увеличить скорость передачи или снизить требования к выбору кабеля. Например, при разных кодах предельная скорость передачи по одному и тому же кабелю может отличаться в два раза. От выбранного кода напрямую зависит также сложность сетевой аппаратуры (узлы кодирования и декодирования кода). Код должен в идеале обеспечивать хорошую синхронизацию приема, низкий уровень ошибок, работу с любой длиной передаваемых информационных последовательностей.
Некоторые коды, используемые в локальных сетях, показаны на рис. 3.8. Далее будут рассмотрены их преимущества и недостатки.
Рис. 3.8. Наиболее распространенные коды передачи информации
Код NRZ
Код NRZ (Non Return to Zero - без возврата к нулю) - это простейший код, представляющий собой обычный цифровой сигнал. Логическому нулю соответствует высокий уровень напряжения в кабеле, логической единице - низкий уровень напряжения (или наоборот, что не принципиально). Уровни могут быть разной полярности (положительной и отрицательной) или же одной полярности (положительной или отрицательной). В течение битового интервала (bit time, BT), то есть времени передачи одного бита никаких изменений уровня сигнала в кабеле не происходит.
К несомненным достоинствам кода NRZ относятся его довольно простая реализация (исходный сигнал не надо ни специально кодировать на передающем конце, ни декодировать на приемном конце), а также минимальная среди других кодов пропускная способность линии связи, требуемая при данной скорости передачи. Ведь наиболее частое изменение сигнала в сети будет при непрерывном чередовании единиц и нулей, то есть при последовательности 1010101010..., поэтому при скорости передачи, равной 10 Мбит/с (длительность одного бита равна 100 нс) частота изменения сигнала и соответственно требуемая пропускная способность линии составит 1 / 200нс = 5 МГц (рис. 3.9).
Рис. 3.9. Скорость передачи и требуемая пропускная способность при коде NRZ
Рис. 3.10. Передача в коде NRZ с синхросигналом
Самый большой недостаток кода NRZ - это возможность потери синхронизации приемником во время приема слишком длинных блоков (пакетов) информации. Приемник может привязывать момент начала приема только к первому (стартовому) биту пакета, а в течение приема пакета он вынужден пользоваться только внутренним тактовым генератором (внутренними часами). Например, если передается последовательность нулей или последовательность единиц, то приемник может определить, где проходят границы битовых интервалов, только по внутренним часам. И если часы приемника расходятся с часами передатчика, то временной сдвиг к концу приема пакета может превысить длительность одного или даже нескольких бит. В результате произойдет потеря переданных данных. Так, при длине пакета в 10000 бит допустимое расхождение часов составит не более 0,01% даже при идеальной передаче формы сигнала по кабелю.
Во избежание потери синхронизации, можно было бы ввести вторую линию связи для синхросигнала (рис. 3.10). Но при этом требуемое количество кабеля, число приемников и передатчиков увеличивается в два раза. При большой длине сети и значительном количестве абонентов это невыгодно.
В связи с этим код NRZ используется только для передачи короткими пакетами (обычно до 1 Кбита).
Большой недостаток кода NRZ состоит еще и в том, что он может обеспечить обмен сообщениями (последовательностями, пакетами) только фиксированной, заранее обговоренной длины. Дело в том, что по принимаемой информации приемник не может определить, идет ли еще передача или уже закончилась. Для синхронизации начала приема пакета используется стартовый служебный бит, чей уровень отличается от пассивного состояния линии связи (например, пассивное состояние линии при отсутствии передачи - 0, стартовый бит - 1). Заканчивается прием после отсчета приемником заданного количества бит последовательности (рис. 3.11).
Рис. 3.11. Определение окончания последовательности при коде NRZ
Наиболее известное применение кода NRZ - это стандарт RS232-C, последовательный порт персонального компьютера. Передача информации в нем ведется байтами (8 бит), сопровождаемыми стартовым и стоповым битами.
Три остальных кода (RZ, манчестерский код, бифазный код) принципиально отличаются от NRZ тем, что сигнал имеет дополнительные переходы (фронты) в пределах битового интервала. Это сделано для того, чтобы приемник мог подстраивать свои часы под принимаемый сигнал на каждом битовом интервале. Отслеживая фронты сигналов, приемник может точно синхронизовать прием каждого бита. В результате небольшие расхождения часов приемника и передатчика уже не имеют значения. Приемник может надежно принимать последовательности любой длины. Такие коды называются самосинхронизирующимися. Можно считать, что самосинхронизирующиеся коды несут в себе синхросигнал.
Код RZ
Код RZ (Return to Zero - с возвратом к нулю) - этот трехуровневый код получил такое название потому, что после значащего уровня сигнала в первой половине битового интервала следует возврат к некоему "нулевому", среднему уровню (например, к нулевому потенциалу). Переход к нему происходит в середине каждого битового интервала. Логическому нулю, таким образом, соответствует положительный импульс, логической единице - отрицательный (или наоборот) в первой половине битового интервала.
В центре битового интервала всегда есть переход сигнала (положительный или отрицательный), следовательно, из этого кода приемник легко может выделить синхроимпульс (строб). Возможна временная привязка не только к началу пакета, как в случае кода NRZ, но и к каждому отдельному биту, поэтому потери синхронизации не произойдет при любой длине пакета.
Еще одно важное достоинство кода RZ - простая временная привязка приема, как к началу последовательности, так и к ее концу. Приемник просто должен анализировать, есть изменение уровня сигнала в течение битового интервала или нет. Первый битовый интервал без изменения уровня сигнала соответствует окончанию принимаемой последовательности бит (рис. 3.12). Поэтому в коде RZ можно использовать передачу последовательностями переменной длины.
Рис. 3.12. Определение начала и конца приема при коде RZ
Недостаток кода RZ состоит в том, что для него требуется вдвое большая полоса пропускания канала при той же скорости передачи по сравнению с NRZ (так как здесь на один битовый интервал приходится два изменения уровня сигнала). Например, для скорости передачи информации 10 Мбит/с требуется пропускная способность линии связи 10 МГц, а не 5 МГц, как при коде NRZ (рис. 3.13).
Рис. 3.13. Скорость передачи и пропускная способность при коде RZ
Другой важный недостаток - наличие трех уровней, что всегда усложняет аппаратуру как передатчика, так и приемника.
Код RZ применяется не только в сетях на основе электрического кабеля, но и в оптоволоконных сетях. Правда, в них не существует положительных и отрицательных уровней сигнала, поэтому используется три следующие уровня: отсутствие света, "средний" свет, "сильный" свет. Это очень удобно: даже когда нет передачи информации, свет все равно присутствует, что позволяет легко определить целостность оптоволоконной линии связи без дополнительных мер (рис. 3.14).
Рис. 3.14. Использование кода RZ в оптоволоконных сетях
Манчестерский код
Манчестерский код (или код Манчестер-II) получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от RZ имеет не три, а всего два уровня, что способствует его лучшей помехозащищенности и упрощению приемных и передающих узлов. Логическому нулю соответствует положительный переход в центре битового интервала (то есть первая половина битового интервала - низкий уровень, вторая половина - высокий), а логической единице соответствует отрицательный переход в центре битового интервала (или наоборот).
Как и в RZ, обязательное наличие перехода в центре бита позволяет приемнику манчестерского кода легко выделить из пришедшего сигнала синхросигнал и передать информацию сколь угодно большими последовательностями без потерь из-за рассинхронизации. Допустимое расхождение часов приемника и передатчика может достигать 25%.
Подобно коду RZ, при использовании манчестерского кода требуется пропускная способность линии в два раза выше, чем при применении простейшего кода NRZ. Например, для скорости передачи 10 Мбит/с требуется полоса пропускания 10 МГц (рис. 3.15).
Рис. 3.15. Скорость передачи и пропускная способность при манчестерском коде
Как и при коде RZ, в данном случае приемник легко может определить не только начало передаваемой последовательности бит, но и ее конец. Если в течение битового интервала нет перехода сигнала, то прием заканчивается. В манчестерском коде можно передавать последовательности бит переменной длины (рис. 3.16). Процесс определения времени передачи называют еще контролем несущей, хотя в явном виде несущей частоты в данном случае не присутствует.
Рис. 3.16. Определение начала и конца приема при манчестерском коде
Манчестерский код используется как в электрических, так и в оптоволоконных кабелях (в последнем случае один уровень соответствует отсутствию света, а другой - его наличию).
Основное достоинство манчестерского кода - постоянная составляющая в сигнале (половину времени сигнал имеет высокий уровень, другую половину - низкий). Постоянная составляющая равна среднему значению между двумя уровнями сигнала.
Если высокий уровень имеет положительную величину, а низкий - такую же отрицательную, то постоянная составляющая равна нулю. Это дает возможность легко применять для гальванической развязки импульсные трансформаторы. При этом не требуется дополнительного источника питания для линии связи (как, например, в случае использования оптронной гальванической развязки), резко уменьшается влияние низкочастотных помех, которые не проходят через трансформатор, легко решается проблема согласования.
Если же один из уровней сигнала в манчестерском коде нулевой (как, например, в сети Ethernet), то величина постоянной составляющей в течение передачи будет равна примерно половине амплитуды сигнала. Это позволяет легко фиксировать столкновения пакетов в сети (конфликт, коллизию) по отклонению величины постоянной составляющей за установленные пределы.
Частотный спектр сигнала при манчестерском кодировании включает в себя только две частоты: при скорости передачи 10 Мбит/с это 10 МГц (соответствует передаваемой цепочке из одних нулей или из одних единиц) и 5 МГц (соответствует последовательности из чередующихся нулей и единиц: 1010101010...). Поэтому с помощью простейших полосовых фильтров можно легко избавиться от всех других частот (помехи, наводки, шумы).
Бифазный код
Бифазный код часто рассматривают как разновидность манчестерского, так как их характеристики практически полностью совпадают.
Данный код отличается от классического манчестерского кода тем, что он не зависит от перемены мест двух проводов кабеля. Особенно это удобно в случае, когда для связи применяется витая пара, провода которой легко перепутать. Именно этот код используется в одной из самых известных сетей Token-Ring компании IBM.
Принцип данного кода прост: в начале каждого битового интервала сигнал меняет уровень на противоположный предыдущему, а в середине единичных (и только единичных) битовых интервалов уровень изменяется еще раз. Таким образом, в начале битового интервала всегда есть переход, который используется для самосинхронизации. Как и в случае классического манчестерского кода, в частотном спектре при этом присутствует две частоты. При скорости 10 Мбит/с это частоты 10 МГц (при последовательности одних единиц: 11111111...) и 5 МГц (при последовательности одних нулей: 00000000...).
Имеется также еще один вариант бифазного кода (его еще называют дифференциальным манчестерским кодом). В этом коде единице соответствует наличие перехода в начале битового интервала, а нулю - отсутствие перехода в начале битового интервала (или наоборот). При этом в середине битового интервала переход имеется всегда, и именно он служит для побитовой самосинхронизации приемника. Характеристики этого варианта кода также полностью соответствуют характеристикам манчестерского кода.
Здесь же стоит упомянуть о том, что часто совершенно неправомерно считается, что единица измерения скорости передачи бод - это то же самое, что бит в секунду, а скорость передачи в бодах равняется скорости передачи в битах в секунду. Это верно только в случае кода NRZ. Скорость в бодах характеризует не количество передаваемых бит в секунду, а число изменений уровня сигнала в секунду. И при RZ или манчестерском кодах требуемая скорость в бодах оказывается вдвое выше, чем при NRZ. В бодах измеряется скорость передачи сигнала, а в битах в секунду - скорость передачи информации. Поэтому, чтобы избежать неоднозначного понимания, скорость передачи по сети лучше указывать в битах в секунду (бит/с, Кбит/с, Мбит/с, Гбит/с).
Другие коды
Все разрабатываемые в последнее время коды призваны найти компромисс между требуемой при заданной скорости передачи полосой пропускания кабеля и возможностью самосинхронизации. Разработчики стремятся сохранить самосинхронизацию, но не ценой двукратного увеличения полосы пропускания, как в рассмотренных RZ, манчестерском и бифазном кодах.
Чаще всего для этого в поток передаваемых битов добавляют биты синхронизации. Например, один бит синхронизации на 4, 5 или 6 информационных битов или два бита синхронизации на 8 информационных битов. В действительности все обстоит несколько сложнее: кодирование не сводится к простой вставке в передаваемые данные дополнительных битов. Группы информационных битов преобразуются в передаваемые по сети группы с количеством битов на один или два больше. Приемник осуществляет обратное преобразование, восстанавливает исходные информационные биты. Довольно просто осуществляется в этом случае и обнаружение несущей частоты (детектирование передачи).
Так, например, в сети FDDI (скорость передачи 100 Мбит/с) применяется код 4В/5В, который 4 информационных бита преобразует в 5 передаваемых битов. При этом синхронизация приемника осуществляется один раз на 4 бита, а не в каждом бите, как в случае манчестерского кода. Но зато требуемая полоса пропускания увеличивается по сравнению с кодом NRZ не в два раза, а только в 1,25 раза (то есть составляет не 100 МГц, а всего лишь 62,5 МГц). По тому же принципу строятся и другие коды, в частности, 5В/6В, используемый в стандартной сети 100VG-AnyLAN, или 8В/10В, применяемый в сети Gigabit Ethernet.
В сегменте 100BASE-T4 сети Fast Ethernet использован несколько иной подход. Там применяется код 8В/6Т, предусматривающий параллельную передачу трех трехуровневых сигналов по трем витым парам. Это позволяет достичь скорости передачи 100 Мбит/с на дешевых кабелях с витыми парами категории 3, имеющих полосу пропускания всего лишь16 МГц (см. табл. 2.1). Правда, это требует большего расхода кабеля и увеличения количества приемников и передатчиков. К тому же принципиально, чтобы все провода были одной длины и задержки сигнала в них не слишком различались.
Подобные документы
Беспроводная технология передачи информации. Развитие беспроводных локальных сетей. Стандарт безопасности WEP. Процедура WEP-шифрования. Взлом беспроводной сети. Режим скрытого идентификатора сети. Типы и протоколы аутентификации. Взлом беспроводной сети.
реферат [51,8 K], добавлен 17.12.2010Функции компьютерных сетей (хранение и обработка данных, доступ пользователей к данным и их передача). Основные показатели качества локальных сетей. Классификация компьютерных сетей, их главные компоненты. Топология сети, характеристика оборудования.
презентация [287,4 K], добавлен 01.04.2015Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.
реферат [1,8 M], добавлен 03.02.2009Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.
презентация [72,8 K], добавлен 04.05.2012Передача информации между компьютерами. Анализ способов и средств обмена информацией. Виды и структура локальных сетей. Исследование порядка соединения компьютеров в сети и её внешнего вида. Кабели для передачи информации. Сетевой и пакетный протоколы.
реферат [1,9 M], добавлен 22.12.2014Понятие и структура компьютерных сетей, их классификация и разновидности. Технологии, применяемые для построения локальных сетей. Безопасность проводных локальных сетей. Беспроводные локальные сети, их характерные свойства и применяемые устройства.
курсовая работа [441,4 K], добавлен 01.01.2011Определение и отличительные признаки локальной сети. Методы коммутации каналов, сообщений, пакетов и ячеек. Особенности, различия и достоинства топологий сетей: "общая шина", "звезда", "кольцо", "дерево", "полносвязная", "многосвязная", "смешанная".
курсовая работа [440,8 K], добавлен 16.05.2012Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат [134,0 K], добавлен 21.10.2013Анализ системы распределенных локальных сетей и информационного обмена между ними через Интернет. Отличительные черты корпоративной сети, определение проблем информационной безопасности в Интернете. Технология построения виртуальной защищенной сети – VPN.
курсовая работа [3,7 M], добавлен 02.07.2011Классификация вычислительных сетей. Функции локальных вычислительных сетей: распределение данных, информационных и технических ресурсов, программ, обмен сообщениями по электронной почте. Построение сети, адресация и маршрутизаторы, топология сетей.
доклад [23,2 K], добавлен 09.11.2009