Проектирование систем нечеткого управления. Работа с оболочкой проектирования нечетких систем CubiCalc

Нечеткие и лингвистические переменные в описании объектов и явлений с помощью нечетких множеств. Логико-лингвистическое описание систем. Особенности модели управления паровым котлом. Анализ системы CubiCalc на примере модели управления грузовиком TRACKXY.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 20.02.2012
Размер файла 174,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лабораторная работа 2

по дисциплине

ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

РАЗДЕЛ - «НЕЧЕТКИЕ МНОЖЕСТВА И НЕЧЕТКАЯ ЛОГИКА»

ПРОЕКТИРОВАНИЕ СИСТЕМ НЕЧЕТКОГО УПРАВЛЕНИЯ

РАБОТА C ОБОЛОЧКОЙ ПРОЕКТИРОВАНИЯ НЕЧЕТКИХ СИСТЕМ CUBICALC

СОДЕРЖАНИЕ

1 Нечеткое управление. Нечеткие и лингвистические переменные

2 Логико-лингвистическое описание систем. Нечеткие модели

3 Модель управления паровым котлом

4 Нечеткие системы

5 Конструктор нечетких систем CubiCalc

6 Знакомство с системой CubiCalc на примере модели управления грузовиком TRACKXY

Задание 1

Задание 2

Задание 3

1 НЕЧЕТКОЕ УПРАВЛЕНИЕ. НЕЧЕТКИЕ И ЛИНГВИСТИЧЕСКИЕ ПЕРЕМЕННЫЕ

Управляющие контроллеры, построенные на принципах нечеткой логики - наиболее важное применение теории нечетких множеств. Отличие их функционирования от обычных контроллеров заключается в том, что для описание системы управления используются знания экспертов, выраженные в лингвистической форме. Эти знания могут быть выражены естественным образом в виде лингвистических переменных, которые принимают в качестве своих значений слова и выражения естественного языка, их значениями являются нечеткие переменные.

Понятие нечеткой и лингвистической переменных используется при описании объектов и явлений с помощью нечетких множеств.

Нечеткая переменная характеризуется тройкой <, X, >, где - наименование переменной, X - универсальное множество, - нечеткое множество на X, описывающее ограничения на значения нечеткой переменной .

Лингвистической переменной называется набор < ,T,X,G,M>, где - наименование лингвистической переменной; Т - множество ее значений (терм-множество), представляющих собой наименования нечетких переменных, областью определения каждой из которых является множество X. Множество T называется базовым терм-множеством лингвистической переменной; G - синтаксическая процедура, позволяющая оперировать элементами терм-множества T, в частности, генерировать новые термы (значения). М - семантическая процедура, позволяющая превратить каждое новое значение лингвистической переменной, образуемое процедурой G, в нечеткую переменную, т.е. сформировать соответствующее нечеткое множество.

Замечание. Чтобы избежать большого количества символов

- символ используют как для названия самой переменной, так и для всех ее значений;

- пользуются одним и тем же символом для обозначения нечеткого множества и его названия, например терм «молодой», являющийся значением лингвистической переменной = «возраст», одновременно есть и нечеткое множество М («молодой»).

Пример: Пусть эксперт определяет толщину выпускаемого изделия с помощью понятий «малая толщина», «средняя толщина» и «большая толщина», при этом минимальная толщина равна 10 мм, а максимальная - 80 мм. Формализация такого описания может быть проведена с помощью следующей лингвистической переменной < , T, X, G, M >, где - толщина изделия; T - {«малая толщина», «средняя толщина», «большая толщина»}; X - [10, 80]; G - процедура образования новых термов с помощью связок «и», «или» и модификаторов типа «очень», «не», «слегка» и др.

Например: «малая или средняя толщина», «очень малая толщина» и др.; М - процедура задания на X = [10, 80] нечетких подмножеств А1 = «малая толщина», А2 = «средняя толщина», А3 = «большая толщина», а также нечетких множеств для термов из G(T) в соответствии с правилами трансляции нечетких связок и модификаторов «и», «или», «не», «очень», «слегка» и др. операции над нечеткими множествами вида: А В, АВ, А2 , А0,5 и др. Функции принадлежности нечетких множеств: «малая толщина» = А1 , «средняя толщина» = А2, « большая толщина» = А3 на рис. 1.

Рисунок 1 - Функции принадлежности значений лингвистической переменной «Толщина»

Функция принадлежности нечеткого множества «малая или средняя толщина» представлена на рис. 2.

Рисунок 2 - Функция принадлежности понятия «Малая или средняя толщина»

2 ЛОГИКО-ЛИНГВИСТИЧЕСКОЕ ОПИСАНИЕ СИСТЕМ. НЕЧЕТКИЕ МОДЕЛИ

Логико-лингвистические методы описания систем основаны на том, что поведение исследуемой системы описывается на естественном (или близком к естественному) языке в терминах лингвистических переменных.

Входные и выходные параметры системы рассматриваются как лингвистические переменные, а качественное описание процесса задается совокупностью высказываний следующего вида:

L1:если < A1 > то < B1 >,

L2: если < A2 > то < B2 >,

Lk: если < Ak > то < Bk >,

где < Ai >, i = 1,2,..,k - составные нечеткие высказывания, определенные на значениях входных лингвистических переменных, а < Bi >, i = 1,2,..,k - высказывания, определенные на значениях выходных лингвистических переменных. Рассмотрим пример решения задачи нечеткого логического управления: построение модели управления паровым котлом.

3 МОДЕЛЬ УПРАВЛЕНИЯ ПАРОВЫМ КОТЛОМ

Прототипом модели послужил паровой двигатель (лабораторный) с двумя входами (подача тепла, открытие дросселя) и двумя выходами (давление в котле, скорость двигателя).

Цель управления: поддержание заданного давления в котле (зависит от подачи тепла) и заданной скорости двигателя (зависит от открытия дросселя). В соответствии с этим, схема системы управления двигателем выглядит следующим образом:

Рассмотрим одну часть задачи - управление давлением.

Входные лингвистические переменные:

РЕ - отклонение давления (разность между текущим и заданным значениями);

СРЕ - скорость изменения отклонения давления.

Выходная лингвистическая переменная:

НС - изменение количества тепла.

Значения лингвистических переменных:

NB - отрицательное большое;

NM - отрицательное среднее;

NS - отрицательное малое;

NO - отрицательное близкое к нулю;

ZO - близкое к нулю;

PO - положительное близкое к нулю;

PS - положительное малое;

PM - положительное среднее;

PB - положительное большое.

Управляющие правила (15 правил), связывающие лингвистические значения входных и выходных переменных, имеют вид: «Если отклонение давления = Аi и, если скорость отклонения давления = Вi , то изменение количества подаваемого тепла равно Сi», где Аi, Вi ,Сi - перечисленные выше лингвистические значения.

Полный набор правил задавался таблицей:

N

Отклонение давления РЕ

Скорость изменения отклонения давления СРЕ

Изменение количества подаваемого тепла НС

1

NB

NB или NM

PB

2

NB или NM

NS

PM

3

NS

PS или NO

PM

4

NO

PB или PM

PM

5

NO

NB или NM

NM

6

PO или ZO

NO

NO

7

PO

NB или NM

PM

8

PO

PB или PM

NM

9

PS

PS или NO

NM

10

PB или PM

NS

NM

11

PB

NB или NM

NB

12

NO

PS

PS

13

NO

NS

NS

14

PO

PS

PS

15

PO

PS

NS

4 НЕЧЕТКИЕ СИСТЕМЫ

система нечеткий управление

Под нечеткой системой понимают модель с одним или несколькими входами, заданными в виде лингвистических переменных, с одним либо несколькими выходами (четкими либо нечеткими), функционирующую на базе нечетких правил.

Нечеткие правила, обычно имеют продукционную форму, а их вид зависит от типа модели.

Наиболее распространены в настоящее время модели Мамдани, нечеткие правила в которых имеют следующую форму:

R1: ЕСЛИ есть A11 И есть A21 И … И есть An1 ТО y есть B1 (1) где - входные лингвистические переменные, y - выходная лингвистическая переменная, а Aij, Bi - нечеткие переменные, определяющие их значения.

В нечетких моделях Мамдани как на входе, так и на выходе мы имеем информацию, задаваемую значениями лингвистических переменных.

Пример правила в нечеткой модели Мамдани:

ЕСЛИ влажность ВЫСОКАЯ и температура СРЕДНЯЯ ТО установить угол поворота клапана МАЛЕНЬКИМ.

Общая схема нечетких систем Мамдани представлена ниже

Когда на входы нечеткой системы поступают конкретные значения параметров, модель осуществляет нечеткий вывод и формирует непосредственное значение на выходе модели. Пример нечеткого вывода в максиминных моделях Мамдани с дефаззификацией по методу центра тяжести представлен на рисунке 1. Нечеткий вывод на каждом из правил Ri нечеткой модели здесь осуществляется следующим образом:

- вычисляем степень принадлежности

- находим

Рисунок 1 - Пример вывода на нечеткой модели Мамдани

- находим нечеткое множество

Результаты нечеткого вывода каждого из нечетких правил объединяются.

5 КОНСТРУКТОР НЕЧЕТКИХ СИСТЕМ CUBICALC

Система CubiCalc является интерактивной оболочкой для проектирования моделей систем нечеткого управления, основанных на нечетких продукционных правилах.

Принимая на вход четкие значения переменных лингвистического характера, она способна обработать их с привлечением нечетких продукционных правил согласно модели Мамдани, и сформировать на выходе системы значения выходных переменных.

Нечеткие продукционные правила в системе CubiCalc имеют следующий вид (1).

Примером такого правила может служить следующее

ЕСЛИ давление в резервуаре маленькое И температура воды большая, И рост давления маленький, И рост температуры небольшой ТО немного повернуть регулятор потока воды.

В данном правиле

- давление,

- температура,

- рост давления,

- рост температуры,

- угол поворота регулятора потока воды - есть лингвистические переменные, принимающие соответственно следующие значения в виде нечетких переменных - маленькое, большая, маленький, небольшой, немного.

6 ЗНАКОМСТВО С СИСТЕМОЙ CUBICALC НА ПРИМЕРЕ МОДЕЛИ УПРАВЛЕНИЯ ГРУЗОВИКОМ TRACKXY

1. Запустить систему CubiCalc и познакомиться с основными функциями меню данной системы.

2. Загрузить демонстрационную программу TRUCKXY -модель системы управления грузовиком для въезда его в узкие ворота.

3. В режиме пошагового исполнения (клавиша (F8)) поработать с данной моделью, запустив ее несколько раз, исследовав траекторию движения грузовика (окно Track Yard), активацию нечетких правил (окно X vs Y activation), результат нечеткого вывода в виде угла нечеткого множества угла поворота руля (окно Theta Resultant) (рис. 2). Несколько траекторий движения грузовика внести в отчет по лабораторной работе.

Формально модель работы данной системы задается в разделе PROJECT меню и включает в себя следующие основные разделы.

1. Меню Variables - конструктор входных, выходных лингвистических и временных переменных модели.

2. Меню Adjectives - конструктор лингвистических переменных модели, позволяющий формировать их значения - нечеткие переменные.

3. Меню Values - исследование текущих значений определенных в модели переменных.

4. Меню Rules - конструктор нечетких продукционных правил модели вида (1), согласно которым происходит функционирование системы.

5. Меню Initialization - раздел инициализации значений переменных модели.

6. Меню Preprocessing (предобработка) - раздел действий, выполняемых перед каждым циклом отработки нечетких правил.

7. Меню Postprocessing (постобработка) - раздел действий, выполняемых после каждого цикла отработки нечетких правил.

8. Меню Simulation (моделирование) - раздел действий, определяющих функционирование нечеткой модели (изменение значений переменных моделей по результатам нечеткого вывода).

9. Plots - графики, отображающие работу модели.

Вернемся к модели управления грузовиком. Работа данной модели основана на следующих интуитивных соображениях эксперта -

Расстояние грузовика до ворот по Y описывается с помощью двух категорий - БОЛЬШОЕ и МАЛЕНЬКОЕ.

Если расстояние БОЛЬШОЕ, то поступаем по обычным правилам модели (в модели они заданы), если МАЛЕНЬКОЕ, то стараемся отогнать грузовик от нижней границы и выгнать на середину площадки.

В модели управления грузовиком кроме расстояния до ворот Y вводятся, также следующие переменные -

Эти переменные

Значения лингвистической переменной Phi (ориентация грузовика):

VL0 - Намного левее от нулевого угла.

L0 - Левее от нулевого угла

M0 - Более-менее нулевой угол.

R0 - Правее от нулевого угла.

VR0 - Намного правее от нулевого угла.

VL90 - Намного левее 90 градусов

L90 - Левее 90 градусов

M90 - Более менее 90 градусов

R90 - Правее 90 градусов

VR90 - Намного правее 90 градусов

VL180 - Намного левее 180 градусов

L180 - Левее 180 градусов

M180 - Более-менее 180 градусов

R180 - Правее 180 градусов

VR180 - Намного правее 180 градусов

Значения лингвистической переменной Phi45 (ориентация грузовика по отношению к 45 градусов):

VL45 - Намного правее 45 градусов

L45 - Левее 45 градусов

M45 - Более - менее 45 градусов

R45 - Правее 45 градусов

VR45 - Намного правее 45 градусов

Значения лингвистической переменной Phi135 (ориентация грузовика по отношению к 135 градусам):

VL135 - Намного левее 135 градусов

L135 - Левее 135 градусов

M135 - Более-менее 135 градусов

R135 - Правее 135 градусов

VR135 - Намного правее 135 градусов

Значение лингвистической переменной X (горизонтальная позиция):

LG_LEFT - Намного левее от центра

LEFT - Левее центра

LG_LCTR - Близко к центру слева

LCTR - Очень близко к центру слева

CENTER - Более-менее в центре

RCTR - Очень близко к центру справа

LG_RCTR - Близко к центру справа

RIGHT - Правее центра

LG_RIGHT - Намного правее справа от центра

Значение лингвистической переменной Theta (Поворот руля):

NB - Намного против часовой стрелки

NM - Средне против часовой стрелки

NS - Немного против часовой стрелки

ZE - Нулевой поворот

PS - Немного по часовой стрелке

PM - Средне по часовой стрелке

PB - Намного по часовой стрелке

3. Вызвать пункт меню Project -> Variables, изучить все линвистические переменные модели TRACKXY, изучить их семантику и ответить на следующие вопросы (ответы на них внести в отчет):

3.1. Сколько переменных, и какие присутствуют в разработанной модели?

3.2. Какие типы переменных поддерживает система CubiCalc?

3.3. Какие переменные в модели TRACKXY являются входными, какие выходными, какие временными?

3.4. Что понимается в модели CubiCalc под понятием «Повернуть руль намного против часовой стрелки»? «Находиться очень близко к центру слева»? Внесите их в отчет и дайте естественно языковую интерпретацию их значениям.

3.5. Для каждой их нечетких переменных модели проинтерпретировать два произвольных их значения (их функции принадлежности). Внести их в отчет и проинтерпретировать семантику.

4. Войти в раздел Project -> Rules и изучить правила, по которым функционирует модель TRUCKXY. Ответить на следующие вопросы:

4.1. Сколько правил включает нечеткая модель системы?

4.2. Переведите на естественный язык 10 любых правил данной системы и внесите их естественно-языковую интерпретацию в отчет по лабораторной работе.

5. Изучите действия, которые выполняются на фазе инициализации системы?

6. Во вкладке Simulation изучите действия, по которым моделируется поведение системы на каждой итерации.

7. Во вкладке Plots изучите графики, которые отражают результаты работы системы. Какие типы графиков доступны для создания?

8. Запустить модель на выполнение и посмотреть результаты работы модели.

9. Попытаться изменить функционирование модели - например, увеличьте скорость автомобиля, измените значения лингвистических переменных (например, переопределите ряд значений лингвистической переменной X). После этого заново запустить модель и изучить, насколько корректно она функционирует, будет ли грузовик въезжать в ворота в данном случае. Показать результаты модифицированной модели преподавателю.

ЗАДАНИЕ 1

Задача: имеется некая техническая система, на вход которой подается информация с двух датчиков - датчика температуры (пределы изменения 0 - 100 С) и давления (пределы изменения 100 - 1000 МПа).

Назначение системы - управление вентилем подачи пара согласно следующему набору правил.

Вентиль может быть повернут влево или вправо максимум на 90 градусов (влево - отрицательный угол, то есть пределы изменения угла поворота: [-90, 90])

Набор правил.

1. Если температура маленькая и давление маленькое, то повернуть вентиль очень сильно влево.

2. Если температура маленькая и давление среднее, то повернуть вентиль сильно влево.

3. Если температура маленькая и давление большое, то повернуть вентиль немного влево.

4. Если температура средняя и давление маленькое, то повернуть вентиль немного влево.

5. Если температура средняя и давление среднее, то повернуть вентиль в нейтральное положение.

6. Если температура средняя и давление большое, то повернуть вентиль немного вправо.

7. Если температура большая и давление малое, то повернуть вентиль немного вправо.

8. Если температура большая и давление среднее, то повернуть вентиль сильно вправо.

9. Если температура большая и давление большое, то повернуть вентиль очень сильно вправо.

Модель изменения температуры и давления (simulation) после выполнения каждого цикла имеет следующий вид:

Температура = температура - угол поворота вентиля / 4 + uniform () * 10-uniform() * 10 + Давление / 100.

Давление = давление - угол поворота вентиля / 4 + uniform () * 10-uniform() * 10 + Темпаратура / 10.

В 5 случаях из 100 после выполнения каждого цикла температура поднимается вверх на 5 градусов.

В 5 случаях из 100 после выполнения каждого цикла давление поднимается на 25 МПа.

Где uniform () - случайное число от 0 до 1.

Перед первым запуском, проинициализировать данные переменные следующим образом:

Температура = 50

Давление = 600

Описать систему, функционирующую по данным правилам и отображающую диаграмму срабатывания правил, графики изменения значений переменных давления и температуры с течением времени.

Поработать с созданной моделью. Что Вы можете сказать по поводу ее устойчивости? Добиться устойчивой работы модели (без выходов параметры за предельные для них границы) в течение длительного времени.

ЗАДАНИЕ 2

В системе CubiCalc возможно задание правил не в альтернативной форме, а в нормализованной. В данном случае указывать селектор SYNTAX_ALTERNATE в блоке правил не нужно.

При формировании нечетких правил в нормализованной форме, их форма записи является более расширенной, чем в альтернативной. В нормализованной форме правила функционирования модели нечеткой системы записываются следующим образом: (Вес правила) IF Условие THEN заключение

В условии перечисляются перечень условий вида Лингвистическая переменная Is значение, объединенные связками И (AND), ИЛИ (OR), НЕ (NOT). Вместо AND может использоваться знак &, вместо OR знак |, вместо NOT знак !.

Вес правила определяет степень его универсальности (достоверности).

К значениям переменных в условиях могут применяться модификаторы ОЧЕНЬ (VERY) и немного (SOMEWHAT).

Пример правила - (0.7) IF X is Large AND (Y is Small OR U is Negative) THEN Z is Large естественно-языковая интерпретация которого выглядит следующим образом: «С достоверностью 0.7, если X является большим и (Y малое или U отрицательное), то Z является большим». Где X, Y,U - лингвистические переменные, а большое, маленькое, отрицательное - их значения.

ЗАДАНИЕ 3

Задание: входами технической системы является информация с трех датчиков - яркость света (1-1000 Лк), температура воды (0-60), давление (100-1000 МПа). Назначение системы - управление углом поворота вентиля [-90; 90] согласно следующему набору правил.

Набор прави.

1. (Вес 1) ЕСЛИ освещенность малая И температура малая И давление малое ТО повернуть вентиль сильно влево.

2. (Вес 0.8) ЕСЛИ освещенность малая И температура малая И давление среднее ТО повернуть вентиль сильно влево.

3. (Вес 0.6) ЕСЛИ освещенность малая И температура малая И давление большое ТО повернуть вентиль достаточно влево.

4. (Вес 1) ЕСЛИ освещенность малая И температура средняя И давление малое ТО повернуть вентиль сильно влево.

5. (Вес 0.3) ЕСЛИ освещенность малая И температура средняя И давление среднее ТО повернуть вентиль в нейтральное положение.

6. (Вес 0.9) ЕСЛИ освещенность малая И температура средняя И давление большое ТО повернуть вентиль достаточно вправо.

7. (Вес 0.8) ЕСЛИ освещенность малая И температура большая И давление малое ТО повернуть вентиль достаточно вправо.

8. (Вес 1) ЕСЛИ освещенность малая И температура большая И давление среднее ТО повернуть вентиль сильно вправо.

9. (Вес 1) ЕСЛИ освещенность малая И температура немного (SOMEWHAT) большая И давление немного (SOMEWHAT) большое ТО повернуть вентиль сильно вправо.

10. (Вес 1) ЕСЛИ освещенность большая И (Температура очень (VERY) малая ИЛИ давление ОЧЕНЬ (VERY) малое) ТО повернуть вентиль сильно влево.

11. (Вес 0.6) ЕСЛИ освещенность большая И температура средняя И давление среднее ТО повернуть вентиль в нейтральное положение.

12. (Вес 0.8) ЕСЛИ температура большая И давление большое ТО повернуть вентиль достаточно вправо.

Таким образом, техническая система имеет 3 входных лингвистических переменных:

1. Яркость со значениями:

- малая;

- большая.

2. Температура со значениями

- малая;

- средняя;

- большая.

3. Давление со значениями

- малое;

- среднее;

- высокое

И одну выходную лингвистическую переменную - угол поворота вентиля с базовым терм-множеством значений:

- сильно влево;

- достаточно влево;

- нейтральное положение;

- достаточно вправо;

- сильно вправо.

Остальные значения лингвистических переменных образуются от элементов базового терм-множества с помощью модификаторов ОЧЕНЬ (VERY), НЕМНОГО (SOMEWHAT), НЕ (NOT)

Модель изменения яркости, температуры и давления (simulation) после выполнения каждого цикла имеет следующий вид:

Температура = температура - угол поворота вентиля / 4 + uniform () * 10-uniform() * 10 + Давление / 200 + Яркость / 200.

Давление = давление - угол поворота вентиля / 4 + uniform () * 10-uniform() * 10 + Темпаратура / 10.

В 5 случаях из 100 после выполнения каждого цикла температура поднимается вверх на 5 градусов.

В 5 случаях из 100 после выполнения каждого цикла давление поднимается на 5 МПа.

Яркость = Яркость + uniform ()-uniform (); ЕСЛИ Яркость > 999 ТО Яркость = 999; ЕСЛИ Яркость < 1 ТО Яркость = 1;

Где uniform () - случайное число от 0 до 1.

Перед первым запуском, проинициализировать данные переменные следующим образом: Температура = 50, Давление = 600, Яркость = 500. Создать модель в системе CubiCalc, функционирующую по выше описанным законам и отображающую диаграмму срабатывания правил, графики изменения значений переменных давления и температуры с течением времени. Исследовать работу модели и сделать выводу по устойчивости ее работы. Добиться того, чтобы модель работала устойчиво с течением длительного времени.

Размещено на Allbest.ru


Подобные документы

  • Основные этапы систем нечеткого вывода. Правила нечетких продукций, используемые в них. Нечеткие лингвистические высказывания. Определение алгоритмов Цукамото, Ларсена, Сугено. Реализации нечеткого вывода Мамдани на примере работы уличного светофора.

    курсовая работа [479,6 K], добавлен 14.07.2012

  • Исследование методов автоматического проектирования нечетких систем управления (НСУ). Методы автоматической настройки семантики лингвистических переменных. Искусственные нейронные сети, генетические алгоритмы. Коэволюционный алгоритм для формирования НСУ.

    дипломная работа [2,3 M], добавлен 02.06.2011

  • Разработка методов дихотомической оценки нечетких моделей знаний операторов информационной системы о государственных и муниципальных платежах. Механизмы и принципы управления базами нечетких моделей знаний операторов, методика и этапы их идентификации.

    диссертация [2,0 M], добавлен 30.01.2014

  • Понятия в области метрологии. Представление знаний в интеллектуальных системах. Методы описания нечетких знаний в интеллектуальных системах. Классификация интеллектуальных систем, их структурная организация. Нечеткие системы автоматического управления.

    курсовая работа [768,2 K], добавлен 16.02.2015

  • Общие понятия и классификация локальных систем управления. Математические модели объекта управления ЛСУ. Методы линеаризации нелинейных уравнений объектов управления. Порядок синтеза ЛСУ. Переходные процессы с помощью импульсных переходных функций.

    курс лекций [357,5 K], добавлен 09.03.2012

  • Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.

    дипломная работа [332,2 K], добавлен 30.11.2012

  • Методы проектирования систем автоматического управления: экспериментальный и аналитический. Моделирование замкнутой системы управления. Системы в динамике: слежение, стабилизация, алгоритм фильтрации. Математические модели систем, воздействий, реакция.

    контрольная работа [522,9 K], добавлен 05.08.2010

  • Теория автоматического управления как наука, предмет и методика ее изучения. Классификация систем автоматического управления по различным признакам, их математические модели. Дифференциальные уравнения систем автоматического управления, их решения.

    контрольная работа [104,1 K], добавлен 06.08.2009

  • Область применения систем управления. Разработка математической модели исходной систем автоматического управления (САУ). Синтез корректирующих устройств. Анализ качества исходной и скорректированной САУ. Расчёт параметров корректирующих устройств.

    курсовая работа [1,6 M], добавлен 25.02.2014

  • Построение модели объекта управления. Получение модели "вход-состояние-выход". Методика определения параметров регулятора. Схема имитационного моделирования системы и статистического анализа во временной области. Анализ случайных величин и процессов.

    курсовая работа [2,5 M], добавлен 23.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.