Технические средства защиты информации

Основные принципы противодействия угрозам безопасности информации. Группы средств защиты информации, присутствующие в настоящее время на рынке. Стандартный набор средств комплексной защиты информации в составе современной информационной системы.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 17.02.2012
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Технические средства защиты информации

информация защита

Система защиты информации, обрабатываемой с использованием технических средств, должна строиться по определенным принципам. Это обусловлено необходимостью противодействия целому ряду угроз безопасности информации.

Основным принципом противодействия угрозам безопасности информации, является превентивность принимаемых мер защиты, так как устранение последствий проявления угроз требует значительных финансовых, временных и материальных затрат.

Дифференциация мер защиты информации в зависимости от ее важности и частоты и вероятности возникновения угроз безопасности является следующим основным принципом противодействия угрозам.

К принципам противодействия угрозам также относится принцип достаточности мер защиты информации, позволяющий реализовать эффективную защиту без чрезмерного усложнения системы защиты информации.

Противодействие угрозам безопасности информации всегда носит недружественный характер по отношению к пользователям и обслуживающему персоналу автоматизированных систем за счет налагаемых ограничений организационного и технического характера. Поэтому одним из принципов противодействия угрозам является принцип максимальной дружественности системы обеспечения информационной безопасности. При этом следует учесть совместимость создаваемой системы противодействия угрозам безопасности информации с используемой операционной и программно-аппаратной структурой автоматизированной системы и сложившимися традициями учреждения.

Важность реализации этого принципа основана на том, что дополнение функционирующей незащищенной автоматизированной системы средствами защиты информации сложнее и дороже, чем изначальное проектирование и построение защищенной системы.

Из принципа декомпозиции механизма воздействия угроз безопасности информации вытекает принцип самозащиты и конфиденциальности системы защиты информации, заключающийся в применимости принципов противодействия угрозам к самой системе защиты и соблюдении конфиденциальности реализованных механизмов защиты информации в автоматизированной системе. Реализация данного принципа позволяет контролировать целостность системы защиты информации, управлять безопасностью через администратора безопасности, восстанавливать систему защиты при ее компрометации и отказах оборудования.

Средства защиты информации, присутствующие в настоящее время на рынке условно можно разделить на несколько групп:

1. активные и пассивные технические средства, обеспечивающие защиту от утечки информации по различным физическим полям, возникающим при применении средств ее обработки;

2. программные и программно-технические средства, обеспечивающие разграничение доступа к информации на различных уровнях, идентификацию и аутентификацию пользователей;

3. программные и программно-технические средства, обеспечивающие защиту информации и подтверждение ее подлинности при передаче по каналам связи;

4. программно-аппаратные средства, обеспечивающие целостность программного продукта и защиту от несанкционированного его копирования;

5. программные средства, обеспечивающие защиту от воздействия программ-вирусов и других вредоносных программ;

6. физико-химические средства защиты, обеспечивающие подтверждение подлинности документов, безопасность их транспортировки и защиту от копирования.

Особняком стоят защищенные общесистемные программные продукты, исключающие возможность использования недекларированных программных возможностей. Таких систем пока еще не очень много.

В это же ряду стоят и специальные устройства - межсетевые экраны, - обеспечивающие защиту корпоративных сетей от вторжения из глобальных информационных сетей типа Internet.

В настоящее время средства и системы, предназначенные для защиты информации и подтверждения ее подлинности при передаче по каналам связи и, в первую очередь, криптографические устройства, производятся более чем 700 зарубежными фирмами.

Для защиты конфиденциальной информации, передаваемой по каналам связи могут использоваться скремблеры и шифраторы. Фирма Thomson-CSF (Франция) выпускает речевые скремблеры типа TRC 769 защищающие телефонные каналы путем частотно-временных перестановок со скользящим окном. Для защиты конфиденциальной информации в каналах радиосистем связи предназначены устройства фирмы Simens (Германия), Grundy & Pirtners (Великобритания).

Ряд фирм выпускает криптографические устройства ориентированные на работу в сетях, например, шифратор ScaNet фирмы Dowty Network Systems (Великобритания), шифратор Datacryptor-64 фирмы Racal Datacom (США) для пользователей сети с пакетной коммутацией по протоколу X.25 МККТТ. Фирма NFT (Норвегия) разработала серию криптомодулей со скоростями до 10 Мбит/с, предназначенных для засекречивания потоков и применения в локальных сетях. Фирма Xerox (США) создала блок высококачественного шифрования данных Xerox Encription Unit, обеспечивающий защиту особо секретной информации, в локальной сети. Фирма PE Systems (США) поставляет систему GILLAROO для передачи цифровой подписи и защиты секретной информации, передаваемой в сетях и каналах связи. Фирма Calmes Semiconductor Inc. (США) производит криптопроцессор СЛ34С168 для блочного шифрования на скорости до 300 Кбит/с. За последнее время предложены новые алгоритмы шифрования, например NEWDES и FEAL, рассчитанные на шифрование потоков со скоростями до 1 Гбит/с.

В последнее время все более широкое распространение на рынке программно-аппаратных средств защиты информации получают системы предотвращения несанкционированного копирования программных продуктов типа "HASP - ключей".

Основой многих современных систем охраны помещений и защиты от несанкционированного доступа к информации служат электронные идентификационные устройства. Примером такого устройства является автоматический идентификатор, производимый американской фирмой DALLAS SEMICONDUCTOR. Идентификатор может быть встроен в брелок, визитную карточку, пропуск. В зависимости от варианта применения автоматический идентификатор может использоваться с различными дополнительными устройствами: электронными замками, компьютерами.

Наличие в идентификаторе изменяемой памяти позволяет использовать его для широкого класса приложений, например, для хранения личных, периодически изменяемых ключей шифрования пользователя; для хранения информации о состоянии личного счета пользователя для расчетных систем; для хранения информации о разрешенном времени прохода в пропускных системах. Использование идентификатора вместе с электронными замками дает широкие возможности по управлению доступом пользователей в режимные помещения: централизованное оперативное слежение за проходом в помещения, дистанционное управление допуском, гибкое установление правил допуска в помещения (например, по определенным дням и часам).

Еще несколько слов о новейших технологиях основанных на использовании физико-химических свойств материалов и обеспечивающих подтверждение подлинности документов, безопасность их транспортировки и защиту от копирования. Это специальные тонкопленочные материалы с изменяющейся цветовой гаммой на основе технологии Advateg, наносимые на документы и предметы или галографические метки. Они позволяют однозначно идентифицировать подлинность объекта и контролировать несанкционированный доступ к ним. Кроме того, на основе технологии Advateg разработаны специальные конверты, пакеты и другой упаковочный материал, который позволяет гарантировать конфиденциальность документов и материальных средств при их транспортировке даже по обычным почтовым каналам.

Надо ли защищаться?

Ответов на этот вопрос может быть множество, в зависимости от структуры и целей компании. Для одних главной задачей является предотвращение утечки информации (маркетинговых планов, перспективных разработок и т. д.) конкурентам. Другие могут пренебречь конфиденциальностью своей информации и сосредоточить свое внимание на ее целостности (например, для банка важно в первую очередь обеспечить неизменность обрабатываемых платежных поручений). Для третьих компаний на первое место выходит задача обеспечения доступности и безотказной работы корпоративных информационных систем. Например, для провайдера Internet-услуг, компании, имеющей Web-сервер, или оператора связи первейшей задачей является именно обеспечение безотказной работы всех (или наиболее важных) узлов своей информационной системы. Расставить такого рода приоритеты можно только в результате анализа деятельности компании.

Обычно, когда речь заходит о безопасности компании, ее руководство часто недооценивает важность информационной безопасности. Основной упор делается на физической безопасности (пропускной режим, охрана, системы видеонаблюдения и т. д.). Однако за последние годы ситуация существенно изменилась. Для того чтобы проникнуть в тайны компании, нет необходимости перелезать через заборы и обходить периметровые датчики, вторгаться в защищенные толстыми стенами помещения, вскрывать сейфы и т. п. Достаточно войти в информационную систему банка и перевести сотни тысяч долларов на нужные счета, подменить или уничтожить критически важные данные, вывести из строя какой-либо узел корпоративной сети.

Все это может привести к значительному ущербу, причем не только к прямому, который может выражаться в крупных суммах, но и к косвенному, не менее значимому. Выведение из строя того или иного узла сети или модуля КИС приводит к затратам на восстановление его работоспособности, которые заключаются в обновлении или замене программного обеспечения, расходовании дополнительной зарплаты обслуживающего персонала. Атака на Web-сервер компании и замена его содержимого на любое другое может привести к снижению доверия к фирме и, как следствие, к потере части клиентуры и снижению доходов.

От кого защищаться?

В абсолютном большинстве случаев ответ на этот вопрос - от внешних злоумышленников, хакеров. По мнению большинства российских предпринимателей, основная опасность исходит именно от них: проникают в компьютерные системы банков и военных организаций, перехватывают управление спутниками и т. д.

Такая опасность существует, и ее нельзя недооценивать. Но она слишком преувеличена. Статистика показывает: до 70-80% всех компьютерных преступлений связаны с внутренними нарушениями, которые осуществляются сотрудниками компании! Пусть случайному внешнему злоумышленнику (а большинство "взломов" совершают именно такие субъекты) удалось найти слабое место в системе информационной безопасности компании. Используя эту "дыру", он проникает в корпоративную сеть - к финансовым данным, стратегическим планам или перспективным проектам. Что он реально имеет? Не являясь специалистом в области, в которой работает компания, разобраться без посторонней помощи в гигабайтах информации попросту невозможно. Однако свой сотрудник может реально оценить стоимость той или иной информации, и он обладает привилегиями доступа, которые позволяют ему производить несанкционированные манипуляции.

В публикациях достаточно примеров, когда сотрудник компании, считая, что его на работе не ценят, совершает компьютерное преступление, приводящее к многомиллионным убыткам. Часты случаи, когда после увольнения бывший сотрудник компании в течение долгого времени пользуется корпоративным доступом в Internet. При увольнении этого сотрудника никто не подумал о необходимости отмены его пароля на доступ к данным и ресурсам, с которыми он работал в рамках своих служебных обязанностей. Если администрирование доступа поставлено плохо, то часто никто не замечает, что бывшие сотрудники пользуются доступом в Internet и могут наносить ущерб своей бывшей компании. Спохватываются лишь тогда, когда замечают резко возросшие счета за Internet-услуги и утечку конфиденциальной информации. Такой случай достаточно показателен, т. к. иллюстрирует очень распространенные практику и порядок увольнения в российских компаниях.

Однако самая большая опасность может исходить не просто от уволенных или обиженных рядовых сотрудников (например, операторов различных информационных подсистем), а от тех, кто облечен большими полномочиями и имеет доступ к широкому спектру самой различной информации. Обычно это сотрудники ИТ-отделов (аналитики, разработчики, системные администраторы), которые знают пароли ко всем системам, используемым в организации. Их квалификация, знания и опыт, используемые во вред, могут привести к очень большим проблемам. Кроме того, таких злоумышленников очень трудно обнаружить, поскольку они обладают достаточными знаниями о системе защиты ИС компании, чтобы обойти используемые защитные механизмы и при этом остаться "невидимыми".

Поэтому при построении системы защиты необходимо защищаться не только и не столько от внешних злоумышленников, но и от злоумышленников внутренних, т.е. выстраивать комплексную систему информационной безопасности.

От чего защищаться?

При интеграции индивидуальных и корпоративных информационных систем и ресурсов в единую информационную инфраструктуру определяющим фактором является обеспечение должного уровня информационной безопасности для каждого субъекта, принявшего решение войти в это пространство. В едином информационном пространстве должны быть созданы все необходимые предпосылки для установления подлинности пользователя (субъекта), подлинности содержания и подлинности сообщения (т.е. созданы механизмы и инструмент аутентификации). Таким образом, должна существовать система информационной безопасности, которая включает необходимый комплекс мероприятий и технических решений по защите:

· от нарушения функционирования информационного пространства путем исключения воздействия на информационные каналы и ресурсы;

· от несанкционированного доступа к информации путем обнаружения и ликвидации попыток использования ресурсов информационного пространства, приводящих к нарушению его целостности;

· от разрушения встраиваемых средств защиты с возможностью доказательства неправомочности действий пользователей и обслуживающего персонала;

· от внедрения "вирусов" и "закладок" в программные продукты и технические средства.

Особо следует отметить задачи обеспечения безопасности разрабатываемых и модифицируемых систем в интегрированной информационной среде, т. к. в процессе модификации неизбежно возникновение дополнительных ситуаций незащищенности системы. Для решения этой проблемы наряду с общими методами и технологиями следует отметить введение ряда требований к разработчикам, создание регламентов внесения изменений в системы, а также использование специализированных средств.

Лавинообразное распространение вирусов стало большой проблемой для большинства компаний и государственных учреждений. В настоящее время известно более 45000 компьютерных вирусов и каждый месяц появляется более 300 новых разновидностей [Энциклопедия Вирусов, www.viruslist.com/ru/viruses/encyclo-pedia]. По различным данным в 2007 году вирусным атакам было подвержено от 65% до 80% компаний во всем мире. Прямые и косвенные потери исчисляются сотнями миллионов долларов. И эти цифры неуклонно растут.

Компьютерный вирус - это специально написанная программа, которая может "приписывать" себя к другим программам, т.е. "заражать их" с целью выполнения различных нежелательных действий на компьютере и в сети. Когда такая программа начинает работу, то сначала, как правило, управление получает вирус. Вирус может действовать самостоятельно, выполняя определенные вредоносные действия (изменяет файлы или таблицу размещения файлов на диске, засоряет оперативную память, изменяет адресацию обращений к внешним устройствам и т.д.), или "заражает" другие программы. Зараженные программы могут быть перенесены на другой компьютер с помощью дискет или локальной сети.

Формы организации вирусных атак весьма разнообразны, но в целом практически их можно "разбросать" по следующим категориям:

· удаленное проникновение в компьютер - программы, которые получают неавторизованный доступ к другому компьютеру через Internet (или локальную сеть);

· локальное проникновение в компьютер - программы, которые получают неавторизованный доступ к компьютеру, на котором они впоследствии работают;

· удаленное блокирование компьютера - программы, которые через Internet (или сеть) блокируют работу всего удаленного компьютера или отдельной программы на нем;

· локальное блокирование компьютера - программы, которые блокируют работу компьютера, на котором они работают;

· сетевые сканеры - программы, которые осуществляют сбор информации о сети, чтобы определить, какие из компьютеров и программ, работающих на них, потенциально уязвимы к атакам;

· сканеры уязвимых мест программ - программы, проверяют большие группы компьютеров в Интернет в поисках компьютеров, уязвимых к тому или иному конкретному виду атаки;

· "вскрыватели" паролей - программы, которые обнаруживают легко угадываемые пароли в зашифрованных файлах паролей;

· сетевые анализаторы (sniffers) - программы, которые слушают сетевой трафик. Часто в них имеются возможности автоматического выделения имен пользователей, паролей и номеров кредитных карт из трафика;

· модификация передаваемых данных или подмена информации;

· подмена доверенного объекта распределённой ВС (работа от его имени) или ложный объект распределённой ВС (РВС).

· "социальная инженерия" - несанкционированный доступ к информации иначе, чем взлом программного обеспечения. Цель - ввести в заблуждение сотрудников (сетевых или системных администраторов, пользователей, менеджеров) для получения паролей к системе или иной информации, которая поможет нарушить безопасность системы.

К вредоносному программному обеспечению относятся сетевые черви, классические файловые вирусы, троянские программы, хакерские утилиты и прочие программы, наносящие заведомый вред компьютеру, на котором они запускаются на выполнение, или другим компьютерам в сети.

Сетевые черви. Основным признаком, по которому типы червей различаются между собой, является способ распространения червя - каким способом он передает свою копию на удаленные компьютеры. Другими признаками различия КЧ между собой являются способы запуска копии червя на заражаемом компьютере, методы внедрения в систему, а также полиморфизм, "стелс" и прочие характеристики, присущие и другим типам вредоносного программного обеспечения (вирусам и троянским программам). Пример - почтовые черви (Email-Worm). К данной категории червей относятся те из них, которые для своего распространения используют электронную почту. При этом червь отсылает либо свою копию в виде вложения в электронное письмо, либо ссылку на свой файл, расположенный на каком-либо сетевом ресурсе (например, на зараженный файл, расположенный на взломанном или хакерском Web-сайте). В первом случае код червя активизируется при открытии (запуске) зараженного вложения, во втором - при открытии ссылки на зараженный файл. В обоих случаях эффект одинаков - активизируется код червя.

Классические компьютерные вирусы. К данной категории относятся программы, распространяющие свои копии по ресурсам локального компьютера с целью: последующего запуска своего кода при каких-либо действиях пользователя или дальнейшего внедрения в другие ресурсы компьютера.

В отличие от червей, вирусы не используют сетевых сервисов для проникновения на другие компьютеры. Копия вируса попадает на удалённые компьютеры только в том случае, если зараженный объект по каким-либо не зависящим от функционала вируса причинам оказывается активизированным на другом компьютере, например:

· при заражении доступных дисков вирус проник в файлы, расположенные на сетевом ресурсе;

· вирус скопировал себя на съёмный носитель или заразил файлы на нем;

· пользователь отослал электронное письмо с зараженным вложением.

Некоторые вирусы содержат в себе свойства других разновидностей вредоносного программного обеспечения, например "бэкдор-процедуру" или троянскую компоненту уничтожения информации на диске.

Многие табличные и графические редакторы, системы проектирования, текстовые процессоры имеют свои макроязыки для автоматизации выполнения повторяющихся действий. Эти макроязыки часто имеют сложную структуру и развитый набор команд. Макро-вирусы являются программами на макроязыках, встроенных в такие системы обработки данных. Для своего размножения вирусы этого класса используют возможности макроязыков и при их помощи переносят себя из одного зараженного файла (документа или таблицы) в другие.

Скрипт-вирусы. Следует отметить также скрипт-вирусы, являющиеся подгруппой файловых вирусов. Данные вирусы, написаны на различных скрипт-языках (VBS, JS, BAT, PHP и т.д.). Они либо заражают другие скрипт-программы (командные и служебные файлы MS Windows или Linux), либо являются частями многокомпонентных вирусов. Также, данные вирусы могут заражать файлы других форматов (например, HTML), если в них возможно выполнение скриптов.

Троянские программы. В данную категорию входят программы, осуществляющие различные несанкционированные пользователем действия: сбор информации и её передачу злоумышленнику, ее разрушение или злонамеренную модификацию, нарушение работоспособности компьютера, использование ресурсов компьютера в неблаговидных целях. Отдельные категории троянских программ наносят ущерб удаленным компьютерам и сетям, не нарушая работоспособность зараженного компьютера (например, троянские программы, разработанные для массированных DoS-атак на удалённые ресурсы сети).

Хакерские утилиты и прочие вредоносные программы. К данной категории относятся:

· утилиты автоматизации создания вирусов, червей и троянских программ (конструкторы);

· программные библиотеки, разработанные для создания вредоносного ПО;

· хакерские утилиты скрытия кода зараженных файлов от антивирусной проверки (шифровальщики файлов);

· "злые шутки", затрудняющие работу с компьютером;

· программы, сообщающие пользователю заведомо ложную информацию о своих действиях в системе;

· прочие программы, тем или иным способом намеренно наносящие прямой или косвенный ущерб данному или удалённым компьютерам.

К прочим вредоносным относятся разнообразные программы, не представляющие угрозы непосредственно компьютеру, на котором исполняются, а разработаны для создания других вирусов или троянских программ, организации DoS-атак на удаленные серверы, взлома других компьютеров и т. п.

Наиболее массированные атаки проводятся программами типа "троянский конь", которые могут быть незаметно для владельца установлены на его компьютер и так же незаметно функционировать на нём. Самый распространенный вариант "троянского коня" выполняет чаще всего одну функцию - это, как правило, кража паролей, но есть и более "продвинутые" экземпляры. Они реализуют широкий спектр функций для удаленного управления компьютером, в том числе просмотр содержимого экрана, перехват сигналов от нажатий клавиш, кражу или уничтожение данных и информации, изменение и замену файлов и баз данных.

Другим распространенным типом атак являются действия, направленные на выведение из строя того или иного узла сети. Эти атаки получили название "реализация отказа в обслуживании" (Denial of Service Realization), и на сегодняшний день известно более сотни различных вариантов этих действий. Как уже отмечалось, выведение из строя узла сети даже на несколько часов или минут может привести к очень серьезным последствиям. Например, повреждение сервера платежной системы банка приведет к невозможности осуществления платежей и, как следствие, к большим прямым и косвенным финансовым потерям не только самого банка, но и его клиентов.

Именно атаки такого рода сейчас наиболее обсуждаемы. Однако существуют и другие угрозы, которые могут привести к серьезным последствиям. Например, система обнаружения атак RealSecure отслеживает более 600 различных событий, влияющих на безопасность и относящихся к возможности внешних атак.

Общие методики защиты от вирусов в обязательном порядке являются обязательной составной частью "Политики информационной безопасности предприятия". В соответствующих разделах политики описываются принципы антивирусной защиты, применяемые стандарты и нормативные документы, определяющие порядок действий пользователя при работе в локальной и внешних сетях, его полномочия, применяемые антивирусные средства. Наборы обязательных правил могут быть достаточно разнообразны, однако можно сформулировать в общем виде следующие правила для пользователей:

· проверять на вирусы все дискеты, CD-RW, ZIP-диски, побывавшие на другом компьютере, все приобретенные CD;

· использовать антивирусные программы известных проверенных фирм, регулярно (в идеале - ежедневно) обновлять их базы;

· не выгружать резидентную часть (монитор) антивирусной программы из оперативной памяти компьютера;

· использовать только программы и данные, полученные из надежных источников - чаще всего вирусами бывают заражены пиратские копии программ;

· никогда не открывать файлы, прикрепленные к электронным письмам, пришедшим от неизвестных отправителей, и не заходить на сайты, рекламируемые через спам-рассылки (по данным Лаборатории Касперского, в настоящее время около 90% вирусов распространяются именно таким образом).

Аналогично можно сформулировать несколько общих требований к хорошей антивирусной программе. Такая программа должна:

· обеспечивать эффективную защиту в режиме реального времени - резидентная часть (монитор) программы должна постоянно находиться в оперативной памяти компьютера и производить проверку всех файловых операций (при создании, редактировании, копировании файлов, запуске их на исполнение), сообщений электронной почты, данных и программ, получаемых из Internet;

· позволять проверять все содержимое локальных дисков "по требованию", запуская проверку вручную или автоматически по расписанию или при включении компьютера;

· защищать компьютер даже от неизвестных вирусов - программа должна включать в себя технологии поиска неизвестных вирусов, основанные на принципах эвристического анализа;

· уметь проверять и лечить архивированные файлы;

· давать возможность регулярно (желательно ежедневно) обновлять антивирусные базы (через Internet, с дискет или CD).

В настоящее время в России используются главным образом два проверенных качественных антивирусных пакета: Dr.WEB и "Антивирус Касперского". Каждая из этих продуктов имеет свою линейку, ориентированную на разные сферы применения - для использования на локальных компьютерах, для малого и среднего бизнеса, для крупных корпоративных клиентов, для защиты локальных сетей, для почтовых, файловых серверов, серверов приложений. Оба продукта, безусловно, отвечают всем вышеперечисленным требованиям.

Как защищаться?

Наиболее простой способ - купить новейшие рекламируемые средства защиты и установить их у себя в организации, не утруждая себя обоснованием их полезности и эффективности. Если компания богата, то она может позволить себе этот путь. Однако истинный руководитель должен системно оценивать ситуацию и правильно расходовать средства. Во всем мире сейчас принято строить комплексную систему защиту информации и информационных систем в несколько этапов - на основе формирования концепции информационной безопасности, имея в виду в первую очередь взаимосвязь ее основных понятий (рис. 13.2) [Лапонина О.Р. Основы сетевой безопасности. М.: ИНТУИТ.ru, 2005].

Первый этап - информационное обследование предприятия - самый важный. Именно на этом этапе определяется, от чего в первую очередь необходимо защищаться компании.

Вначале строится так называемая модель нарушителя, которая описывает вероятный облик злоумышленника, т. е. его квалификацию, имеющиеся средства для реализации тех или иных атак, обычное время действия и т. п. На этом этапе можно получить ответ на два вопроса, которые были заданы выше: "Зачем и от кого надо защищаться?" На этом же этапе выявляются и анализируются уязвимые места и возможные пути реализации угроз безопасности, оценивается вероятность атак и ущерб от их осуществления.

По результатам этапа вырабатываются рекомендации по устранению выявленных угроз, правильному выбору и применению средств защиты. На этом этапе может быть рекомендовано не приобретать достаточно дорогие средства защиты, а воспользоваться уже имеющимися в распоряжении. Например, в случае, когда в организации есть мощный маршрутизатор, можно рекомендовать воспользоваться встроенными в него защитными функциями, а не приобретать более дорогой межсетевой экран (Firewall).

Взаимосвязанные параметры поля информационной безопасности

Наряду с анализом существующей технологии должна осуществляться разработка политики в области информационной безопасности и свода организационно-распорядительных документов, являющихся основой для создания инфраструктуры информационной безопасности (рис. 13.3). Эти документы, основанные на международном законодательстве и законах Российской федерации и нормативных актах, дают необходимую правовую базу службам безопасности и отделам защиты информации для проведения всего спектра защитных мероприятий, взаимодействия с внешними организациями, привлечения к ответственности нарушителей и т. п.

Составляющие инфраструктуры информационной безопасности

Формирование политики ИБ должно сводиться к следующим практическим шагам.

1. Определение и разработка руководящих документов и стандартов в области ИБ, а также основных положений политики ИБ, включая:

o принципы администрирования системы ИБ и управление доступом к вычислительным и телекоммуникационным средствам, программам и информационным ресурсам, а также доступом в помещения, где они располагаются;

o принципы контроля состояния систем защиты информации, способы информирования об инцидентах в области ИБ и выработку корректирующих мер, направленных на устранение угроз;

o принципы использования информационных ресурсов персоналом компании и внешними пользователями;

o организацию антивирусной защиты и защиты против несанкционированного доступа и действий хакеров;

o вопросы резервного копирования данных и информации;

o порядок проведения профилактических, ремонтных и восстановительных работ;

o программу обучения и повышения квалификации персонала.

2. Разработка методологии выявления и оценки угроз и рисков их осуществления, определение подходов к управлению рисками: является ли достаточным базовый уровень защищенности или требуется проводить полный вариант анализа рисков.

3. Структуризацию контрмер по уровням требований к безопасности.

4. Порядок сертификации на соответствие стандартам в области ИБ. Должна быть определена периодичность проведения совещаний по тематике ИБ на уровне руководства, включая периодический пересмотр положений политики ИБ, а также порядок обучения всех категорий пользователей информационной системы по вопросам ИБ.

Следующим этапом построения комплексной системы информационной безопасности служит приобретение, установка и настройка рекомендованных на предыдущем этапе средств и механизмов защиты информации. К таким средствам можно отнести системы защиты информации от несанкционированного доступа, системы криптографической защиты, межсетевые экраны, средства анализа защищенности и другие.

Для правильного и эффективного применения установленных средств защиты необходим квалифицированный персонал.

С течением времени имеющиеся средства защиты устаревают, выходят новые версии систем обеспечения информационной безопасности, постоянно расширяется список найденных слабых мест и атак, меняется технология обработки информации, изменяются программные и аппаратные средства, приходит и уходит персонал компании. Поэтому необходимо периодически пересматривать разработанные организационно-распорядительные документы, проводить обследование ИС или ее подсистем, обучать новый персонал, обновлять средства защиты.

Следование описанным выше рекомендациям построения комплексной системы обеспечения информационной безопасности поможет достичь необходимого и достаточного уровня защищенности вашей автоматизированной системы.

Чем защищаться?

Условно можно выделить три категории средств защиты - традиционные средства, новые технологии и средства криптографической защиты информации. Криптографические средства вынесены в отдельную категорию, потому что они являют собой совершенно особый класс защитных средств, который не может быть отнесен к какому-либо другому классу.

Традиционные средства защиты строились с учетом классических моделей разграничения доступа, разработанных в 1960-1970-х годах. В то время сети еще не получили столь широкого распространения, да и разрабатывались эти модели в военных ведомствах. К таким средствам можно отнести системы разграничения доступа и межсетевые экраны. Первые средства реализуют разграничение доступа конкретных пользователей к ресурсам конкретного компьютера или всей сети, а вторые - разграничивают доступ между двумя участками сети с различными требованиями по безопасности. Ярким примером систем разграничения доступа являются системы семейства SecretNet, разработанные Научно-инженерным предприятием "Информзащита" и на сегодняшний день являющиеся лидерами российского рынка информационной безопасности.

Из межсетевых экранов можно назвать продукты компаний CheckPoint и CyberGuard - Firewall-1 и CyberGuard Firewall соответственно. В частности, межсетевой экран CheckPoint Firewall-1 по данным независимых агентств охватывает более 40% мирового рынка защитных средств этого класса. К классу межсетевых экранов можно также отнести и многие маршрутизаторы, реализующие фильтрацию данных на основе специальных правил (рис. 13.4).

Однако у этих средств есть свои особенности. Например, если предъявить этим системам украденные идентификатор и секретный элемент (как правило, имя пользователя и пароль), то и системы разграничения доступа, и межсетевые экраны "пропустят" взломщика в корпоративную сеть и дадут доступ к тем ресурсам, к которым допущен пользователь, чьи имя и пароль "уведены". А получить пароль сейчас достаточно просто.

Для этого можно использовать большой арсенал различных средств, начиная от программ-взломщиков, перебирающих за короткое время огромное число возможных паролей, и заканчивая анализаторами протоколов, которые исследуют трафик, передаваемый по сетям, и вычленяют из него именно те фрагменты, которые характеризуют пароли.

Использование комплекса "маршрутизатор-файерволл" в системах защиты информации при подключении к Internet

Для устранения таких недостатков были разработаны новые технологии и различные механизмы защиты, из которых широкое распространение получили анализ защищенности и обнаружение атак. Анализ защищенности заключается в поиске в вычислительной системе и ее компонентах различных уязвимых мест, которые могут стать мишенью для реализации атак. Именно наличие этих мест приводит к возможности несанкционированного проникновения в компьютерные сети и системы. Самым известным продуктом в области анализа защищенности является семейство SAFEsuite американской компании Internet Security Systems, которое состоит из трех систем, обнаруживающих уязвимости ("дыры") и ошибки в программном обеспечении - Internet Scanner, System Scanner и Database Scanner (рис. 13.5).

Обнаружение атак - это новая технология, которая получила распространение в последние годы. Ее отличительная особенность состоит в обнаружении любых атак, в том числе исходящих и от авторизованных пользователей, и пропускаемых межсетевыми экранами и средствами разграничения доступа. На этом рынке также лидирует компания ISS с системой обнаружения атак RealSecure.

Схема применения сканирующей системы информационной безопасности

Необходимо сказать несколько слов о криптографических средствах, которые предназначены для защиты критически важных данных от несанкционированного прочтения и/или модификации. Криптография - это совокупность технических, математических, алгоритмических и программных методов преобразования данных (шифрование данных), которая делает их бесполезными для любого пользователя, у которого нет ключа для расшифровки.

Формальные математические методы криптографии были разработаны Клодом Шенноном [Шеннон К. Математическая теория криптография, 1945]. Он доказал теорему о существовании и единственности абсолютно стойкого шифра - такой системы шифрования, когда текст однократно зашифровывается с помощью случайного открытого ключа такой же длины. В 1976 году американские математики У.Диффи и М.Хеллман обосновали методологию асимметричного шифрования с применением открытой однонаправленной функции (это такая функция, когда по ее значению нельзя восстановить значение аргумента) и открытой однонаправленной функции с секретом.

В 1990-е годы в США были разработаны методы шифрования с помощью особого класса функций - хэш-функций (Hash Function). Хэш-функция (дайджест-функция) - это отображение, на вход которого подается сообщение переменной длины М, а выходом является строка фиксированной длины h(M) - дайджест сообщения. Криптостойкость такого метода шифрования состоит в невозможности подобрать документ М', который обладал бы требуемым значением хэш-функции. Параметры вычисления хэш-функции h являются семейством ключей {К}N. В настоящее время на этих принципах строятся алгоритмы формирования электронной цифровой подписи (ЭЦП).

Наиболее используемыми симметричными алгоритмами шифрования в настоящее время являются DES (Data Encryption Standard), IDEA (International Data Encryption Algorithm), RC2, RC5, CAST, Blowfish. Асимметричные алгоритмы - RSA (Rivest, Shamir, Adleman), алгоритм Эль Гамаля, криптосистема ЕСС на эллиптических кривых, алгоритм открытого распределения ключей Диффи-Хеллмана. Алгоритмы, основанные на применении хэш-функций, - MD4 (Message Digest 4), MD5 (Message Digest 5), SHA (Secure Hash Algorithm).

Наиболее известным программным продуктом, распространяемым свободно, является пакет PGP (Pretty Good Privacy). Пакет разработан в 1995 году Филом Циммерманом (Phil Zimmerman), который использовал упомянутые выше алгоритмы RSA, IDEA, и MD5. PGP состоит из трех частей - алгоритма IDEA, сигнатуры и цифровой подписи. PGP использует три ключа - открытый ключ адресата, секретный ключ владельца и сеансовый ключ, генерируемый при помощи RSA и открытого ключа случайным образом при шифровании сообщения (рис. 13.6). Информацию об этом продукте можно получить по адресу www.mit.edu/network/pgp-form.html.

Схема формирования защищенного сообщения с помощью пакета PGP

Криптографические преобразования обеспечивают решение следующих базовых задач защиты - конфиденциальности (невозможности прочитать данные и извлечь полезную информацию) и целостности (невозможности модифицировать данные для изменения смысла или внесения ложной информации).

Технологии криптографии позволяют реализовать следующие процессы информационной защиты:

· идентификация (отождествление) объекта или субъекта сети или информационной системы;

· аутентификация (проверка подлинности) объекта или субъекта сети;

· контроль/разграничение доступа к ресурсам локальной сети или внесетевым сервисам;

· обеспечение и контроль целостности данных.

Эти средства обеспечивают достаточно высокий уровень защищенности информации, однако в России существует специфика их использования, связанная с действиями государственных органов и не позволяющая широко применять их в коммерческом секторе.

Кто и как должен заниматься организацией защиты?

Вопросы определения стратегии разработки, приобретения и внедрения средств защиты информации, определение круга первоочередных задач и формирование политики информационной безопасности являются прерогативой высшего руководства компании. Вопросы реализации и обеспечения ИБ прямо входят в сферу ответственности руководителя ИТ-департамента (если компания крупная) или ИТ-отдела или ИТ-службы. Доказывать кому-то, что корпоративную информацию и данные нужно тщательно защищать, нет необходимости. Однако те, кому приходилось на практике заниматься вопросами защиты данных и обеспечения информационной безопасности в автоматизированных системах, отмечают следующую особенность - реальный интерес к проблеме защиты информации, проявляемый менеджерами верхнего уровня, и всеобщий энтузиазм довольно быстро сменяются на резкое неприятие на уровне подразделений, отвечающих за работоспособность ИС организации.

Как правило, приводятся следующие аргументы против проведения работ и принятия мер по обеспечению информационной безопасности:

· появление дополнительных ограничений для конечных пользователей и специалистов подразделений обеспечения затрудняют использование и эксплуатацию информационной системы и сетей организации;

· необходимость значительных дополнительных материальных затрат на проведение таких работ, на расширение штата специалистов, занимающихся проблемой информационной безопасности, на их обучение.

Экономия на информационной безопасности может выражаться в различных формах, крайними из которых являются: принятие только самых общих организационных мер обеспечения безопасности информации в ИС, использование только простых дополнительных средств защиты информации (СЗИ).

В первом случае, как правило, разрабатываются многочисленные инструкции, приказы и положения, призванные в критическую минуту переложить ответственность с людей, издающих эти документы, на конкретных исполнителей. Естественно, что требования таких документов (при отсутствии соответствующей технической поддержки) затрудняют повседневную деятельность сотрудников организации и, как показывает опыт, не выполняются.

Во втором случае приобретаются и устанавливаются дополнительные средства защиты. Применение СЗИ без соответствующей организационной поддержки и планового обучения также неэффективно в связи с тем, что без установленных жестких правил обработки информации в ИС и доступа к данным использование любых СЗИ только усиливает существующий беспорядок.

Как показывает опыт практической работы, для эффективной защиты автоматизированной системы организации необходимо решить ряд организационных задач:

· создать специальное подразделение, обеспечивающее разработку правил эксплуатации корпоративной информационной системы, определяющее полномочия пользователей по доступу к ресурсам этой системы и осуществляющее административную поддержку средств защиты (правильную настройку, контроль и оперативное реагирование на поступающие сигналы о нарушениях установленных правил доступа, анализ журналов регистрации событий безопасности и т. п.);

· разработать технологию обеспечения информационной безопасности, предусматривающую порядок взаимодействия подразделений организации по вопросам безопасности при эксплуатации автоматизированной системы и модернизации ее программных и аппаратных средств;

· внедрить технологию защиты информации и КИС путем разработки и утверждения необходимых нормативно-методических и организационно-распорядительных документов (концепций, положений, инструкций и т. п.), а также организовать обучение всех сотрудников, являющихся администраторами и пользователями КИС.

При создании подразделения информационной безопасности надо учитывать, что для эксплуатации простых средств защиты нужен минимальный штат сотрудников, осуществляющих поддержку функционирования СЗИ. В то же время разработка и внедрение технологии обеспечения информационной безопасности требует значительно большего времени, больших трудозатрат и привлечения квалифицированных специалистов, потребность в которых после ее внедрения в эксплуатацию отпадает. Кроме того, разработка и внедрение такой технологии должны проводиться в сжатые сроки, чтобы не отстать от развития самой корпоративной информационной системы организации.

Применение дополнительных средств защиты информации затрагивает интересы многих структурных подразделений организации - не столько тех, в которых работают конечные пользователи информационной системы, сколько подразделений, отвечающих за разработку, внедрение и сопровождение прикладных задач, за обслуживание и эксплуатацию средств вычислительной техники.

Для минимизации расходов на разработку и эффективное внедрение технологии обеспечения информационной безопасности целесообразно привлекать сторонних специалистов, имеющих опыт в проведении подобного рода работ. При этом, в любом случае, ответственность за разработку, внедрение и эффективность работы защитных систем несет высшее руководство компании!

Разрабатываемая технология информационной безопасности должна обеспечивать:

· дифференцированный подход к защите различных АРМ и подсистем (уровень защищенности должен определяться с позиций разумной достаточности с учетом важности обрабатываемой информации и решаемых задач);

· максимальную унификацию средств защиты информации с одинаковыми требованиями к безопасности;

· реализацию разрешительной системы доступа к ресурсам ИС;

· минимизацию, формализацию (в идеале - автоматизацию) реальной выполнимости рутинных операций и согласованность действий различных подразделений по реализации требований разработанных положений и инструкций, не создавая больших неудобств при решении сотрудниками своих основных задач;

· учет динамики развития автоматизированной системы, регламентацию не только стационарного процесса эксплуатации защищенных подсистем, но и процессов их модернизации, связанных с многочисленными изменениями аппаратно-программной конфигурации АРМ;

· минимизацию необходимого числа специалистов отдела, занимающихся защитой информации.

Надо совершенно четко понимать, что соблюдение необходимых требований по защите информации, препятствующих осуществлению несанкционированных изменений в системе, неизбежно приводит к усложнению процедуры правомочной модификации ИС. В этом состоит одно из наиболее остро проявляющихся противоречий между обеспечением безопасности и развитием и совершенствованием автоматизированной системы. Технология обеспечения информационной безопасности должна быть достаточно гибкой и предусматривать особые случаи экстренного внесения изменений в программно-аппаратные средства защищаемой ИС.

Что выбрать?

Универсальных рецептов тут нет. Все зависит от тех целей, которые ставит перед собой руководитель организации или ИТ-отдела. Можно привести только некоторые общие рекомендации. Во-первых, затраты на обеспечение информационной безопасности не должны превышать стоимость защищаемого объекта или величину ущерба, который может возникнуть вследствие атаки на защищаемый объект. Основная проблема - правильно оценить возможную стоимость такого ущерба.

В зависимости от масштаба компании можно выделить три основных класса сетей:

· IECO (International Enterprise Central Office) - центральная сеть международной распределенной компании, которая может насчитывать сотни и тысячи узлов;

· ROBO (Regional Office / Branch Office) - сеть регионального филиала, насчитывающего несколько десятков или сотен узлов;

· SOHO (Small Office / Home Office), - сети небольших филиалов или домашние (мобильные) компьютеры, подключаемые к центральной сети.

Можно также выделить три основных сценария обеспечения информационной безопасности для этих классов сетей, различающихся различными требованиями по обеспечению защиты информации.

При первом сценарии минимальный уровень защищенности обеспечивается за счет возможностей, встроенных в сетевое оборудование, которое установлено на периметре сети (например, в маршрутизаторах). В зависимости от масштабов защищаемой сети эти возможности (защита от подмены адресов, минимальная фильтрация трафика, доступ к оборудованию по паролю и т. д.) реализуются в магистральных маршрутизаторах - например, Cisco 7500 или Nortel BCN, маршрутизаторах региональных подразделений - например, Cisco 2500 или Nortel ASN, и маршрутизаторах удаленного доступа - например, Cisco 1600 или 3Com OfficeConnect. Больших дополнительных финансовых затрат этот сценарий не требует.

Второй сценарий, обеспечивающий средний уровень защищенности, реализуется уже при помощи дополнительно приобретенных средств защиты, к которым могут быть отнесены несложные межсетевые экраны, системы обнаружения атак и т. п. В центральной сети может быть установлен межсетевой экран (например, CheckPoint Firewall-1), на маршрутизаторах могут быть настроены простейшие защитные функции, обеспечивающие первую линию обороны (списки контроля доступа и обнаружение некоторых атак), весь входящий трафик проверяется на наличие вирусов и т. д. Региональные офисы могут защищаться более простыми моделями межсетевых экранов. При отсутствии в регионах квалифицированных специалистов рекомендуется устанавливать программно-аппаратные комплексы, управляемые централизованно и не требующие сложной процедуры ввода в эксплуатацию (например, CheckPoint VPN-1 Appliance на базе Nokia IP330).

Третий сценарий, позволяющий достичь максимального уровня защищенности, предназначен для серверов e-Commerce, Internet-банков и т. д. В этом сценарии применяются высокоэффективные и многофункциональные межсетевые экраны, серверы аутентификации, системы обнаружения атак и системы анализа защищенности. Для защиты центрального офиса могут быть применены кластерные комплексы межсетевых экранов, обеспечивающих отказоустойчивость и высокую доступность сетевых ресурсов (например, CheckPoint VPN-1 Appliance на базе Nokia IP650 или CheckPoint VPN-1 с High Availability Module). Также в кластер могут быть установлены системы обнаружения атак (например, RealSecure Appliance).

Для обнаружения уязвимых мест, которые могут быть использованы для реализации атак, могут быть применены системы анализа защищенности (например, семейство SAFE-suite компании Internet Security Systems). Аутентификация внешних и внутренних пользователей осуществляется при помощи серверов аутентификации (например, CiscoSecure ACS). Ну и, наконец, доступ домашних (мобильных) пользователей к ресурсам центральной и региональных сетей обеспечивается по защищенному VPN-соединению. Виртуальные частные сети (Virtual Private Network - VPN) также используются для обеспечения защищенного взаимодействия центрального и региональных офисов. Функции VPN могут быть реализованы как при помощи межсетевых экранов (например, CheckPoint VPN-1), так и при помощи специальных средств построения VPN.

Казалось бы, после того как средства защиты приобретены, все проблемы снимаются. Однако это не так: приобретение средств защиты - это только верхушка айсберга. Мало приобрести защитную систему, самое главное - правильно ее внедрить, настроить и эксплуатировать. Поэтому финансовые затраты только на приобретении СЗИ не кончаются.

Необходимо заранее заложить в бюджет такие позиции, как обновление программного обеспечения, поддержку со стороны производителя или поставщика и обучение персонала правилам эксплуатации приобретенных средств. Без соответствующего обновления система защиты со временем перестанет быть актуальной и не сможет отслеживать новые и изощренные способы несанкционированного доступа в сеть компании.


Подобные документы

  • Комплексный подход в обеспечении информационной безопасности. Анализ процессов разработки, производства, реализации, эксплуатации средств защиты. Криптографические средства защиты информации. Основные принципы инженерно-технической защиты информации.

    курсовая работа [725,1 K], добавлен 11.04.2016

  • Технические средства защиты информации. Основные угрозы безопасности компьютерной системы. Средства защиты от несанкционированного доступа. Системы предотвращения утечек конфиденциальной информации. Инструментальные средства анализа систем защиты.

    презентация [3,8 M], добавлен 18.11.2014

  • Организация системы защиты информации во всех ее сферах. Разработка, производство, реализация, эксплуатация средств защиты, подготовка соответствующих кадров. Криптографические средства защиты. Основные принципы инженерно-технической защиты информации.

    курсовая работа [37,5 K], добавлен 15.02.2011

  • Методы защиты речевой информации. Технические средства и системы защиты. Проведение оценки защищенности защищаемого помещения. Установка средств защиты информации, предотвращающих утечку информации по акустическому и виброакустическому каналу связи.

    дипломная работа [3,4 M], добавлен 01.08.2015

  • Понятие и сущность информации. Исторические этапы развития информационной безопасности, ее принципы и необходимость, цели обеспечения. Виды угроз и способы защиты. Последствия утечек информации. Классификация различных средств защиты информации.

    реферат [32,8 K], добавлен 21.09.2014

  • Нормативно-правовые акты по защите информации в АС ГРН. Нормативно-технические акты, обеспечивающие защиту информации в АС ГРН. Требования к средствам защиты информации. Выбор средств защиты информации от несанкционированного доступа.

    реферат [16,1 K], добавлен 23.03.2004

  • Пути несанкционированного доступа, классификация способов и средств защиты информации. Каналы утечки информации. Основные направления защиты информации в СУП. Меры непосредственной защиты ПЭВМ. Анализ защищенности узлов локальной сети "Стройпроект".

    дипломная работа [1,4 M], добавлен 05.06.2011

  • Главные каналы утечки информации. Основные источники конфиденциальной информации. Основные объекты защиты информации. Основные работы по развитию и совершенствованию системы защиты информации. Модель защиты информационной безопасности ОАО "РЖД".

    курсовая работа [43,6 K], добавлен 05.09.2013

  • Виды внутренних и внешних умышленных угроз безопасности информации. Общее понятие защиты и безопасности информации. Основные цели и задачи информационной защиты. Понятие экономической целесообразности обеспечения сохранности информации предприятия.

    контрольная работа [26,6 K], добавлен 26.05.2010

  • Основные положения теории защиты информации. Сущность основных методов и средств защиты информации в сетях. Общая характеристика деятельности и корпоративной сети предприятия "Вестел", анализ его методик защиты информации в телекоммуникационных сетях.

    дипломная работа [1,1 M], добавлен 30.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.