Перспективы развития топологий компьютерных сетей
Повышение эффективности использования вычислительных ресурсов компьютеров. Принципы автоматизации производственных процессов. Классификация компьютерных сетей по физической и логической структуре. Схемы топологий физической и распределенной шины.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.01.2012 |
Размер файла | 668,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство общего и профессионального образования РФ
ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА
КУРСОВАЯ РАБОТА
по дисциплине Компьютерные сети
ТЕМА: «ПЕРСПЕКТИВЫ И РАЗВИТИЕ ТОПОЛОГИЙ КОМПЬЮТЕРНЫХ СЕТЕЙ»
Руководитель Л.А. Кузнецова
Пятигорск 2005
ВВЕДЕНИЕ
Для того чтобы максимально эффективно использовать вычислительные ресурсы компьютеров, их необходимо объединить в сеть. Задолго до того, как появился микропроцессор, большие вычислительные системы объединяли с помощью телеграфных линий связи. Однако бурное развитие компьютерных сетей началось только с появлением LAN (Local Area Network), когда использование компьютера небольшими фирмами стало экономически обоснованным. С появлением возможности объединять LAN в WAN (Wide Area Network) специалисты начали думать об осуществлении идеи полной автоматизации производства - CIM (Computer Integrated Manufacturing). Однако, несмотря на падение цен на микропроцессоры и оперативную память, идея полностью автоматизированного предприятия в то время так и не осуществилась.
LON (Local Operating Network) предназначена именно для автоматизации производства.
Наше время - время информационных технологий. Мы все больше и больше учимся обрабатывать информацию с помощью машин, хранить, передавать и распределять ее. Телефонная сеть, персональный компьютер, радио, Интернет - примеры того, как изменился мир благодаря информационным технологиям.
Компьютер и компьютерные сети все чаще применяются для автоматизации производственных процессов. Fieldbus-системы, которые представляет и LON, могут стать существенной составной частью будущих сетей, базисом для разработок, которые в ближайшем будущем приобретут большую значимость. Идея СIМ стала особенно привлекательной сейчас, объединение компьютерных систем управления в сеть может быть экономически эффективно на основе Fieldbus-технологии (от англ. - полевая шина)[5].
Объединение систем компьютеров в сеть приобретает настолько сложный характер, что плоская архитектура сети теряет всякий смысл. Во всех областях автоматизации предпочтение отдается сетям с вертикальной иерархией систем, в которых на каждом уровне можно реализовать логически обособленный набор функций.
Количество уровней и их вид зависят от набора параметров, определяющих конкретную систему. Разумеется, от начальных условий (набора функций для конкретного уровня) зависит, какая сеть и на каком уровне будет использована. Исходя из общепринятого определения LAN (например, IEEE 802.3), все сети, находящиеся иерархически ниже, должны называться FAN (Fieldbus Area Networks). He должно проводиться разделения на «шины датчиков и исполнительных механизмов», «мультиплексные шины» и так далее, так как основным поводом для него служат маркетинговые интересы. Иерархически вышестоящими по отношению к LAN следует считать WAN, связывающие LAN между собой, а в определенных случаях и FAN (например, при прямом соединении LonWorks сетей ISDN). Для полноты картины назовем GAN - так называемые глобальные спутниковые сети, находящиеся иерархически выше WAN [3].
Сети можно классифицировать по физической и логической структуре. Высказывание «сеть построена по принципу кольцевой или шинной структуры» является неполным. Например, в основе Fieldbus-системы может быть физическая шина, которой на верхнем уровне соответствует логическое кольцо.
Возможен и обратный вариант. Вопрос о том, какая архитектура оптимальна, решают по-разному в каждом конкретном случае. LonWorks предполагает различные топологические структуры, и все они имеют право на существование.
В курсовом проекте необходимо рассмотреть разновидности топологий компьютерных сетей, разобраться в их различиях, преимуществах и недостатках и в последующем объяснить приоритеты выбора топологий или комбинирования нескольких сетевых топологий для обеспечения реализации сетевого взаимодействия на предприятии.
1. ФИЗИЧЕСКИЕ ТОПОЛОГИИ
Термин «сетевая топология» описывает возможные конфигурации компьютерных сетей. Специфика сетевых технологий состоит в необходимости строгого согласования всех характеристик аппаратных и программных сетевых средств для успешного обмена данными. При этом существующие аппаратные средства способны обеспечивать различные возможности (скорость, надежность) по передаче данных в зависимости от способа использования этих устройств. Для учета всех этих особенностей режимов работы оборудования и было введено понятие «сетевая топология». В настоящее время для описания конфигурации сети используют два вида топологий: физическую и логическую.
Физическая топология описывает реально использующиеся способы организации физических соединений различного сетевого оборудования (использующиеся кабели, разъемы и способы подключения сетевого оборудования). Физические топологии различаются по стоимости и функциональности. Ниже приведено описание трех наиболее часто использующихся физических топологий с указанием их преимуществ и недостатков.
1.1 Физическая шина (Physical Bus)
Самая простая форма топологии физической шины представляет собой один основной кабель, оконцованный с обеих сторон специальными типами разъемов - терминаторами, предназначенными для поглощения падающей электромагнитной волны.
Терминаторы представляют собой обычные резисторы, включенные между токонесущей жилой и экраном кабеля. Сопротивление терминаторов равно волновому сопротивлению кабеля [8].
При создании такой сети основной кабель прокладывают последовательно от одного сетевого устройства к другому. Сами устройства подключаются к основному кабелю с использованием подводящих кабелей и T-образных разъемов. Все концы кабеля должны быть к чему-нибудь подключены (например, к компьютеру, к баррел-коннектору для увеличения длины кабеля). К любому свободному концу кабеля должен быть подключен терминатор. В большинстве реализаций физическая среда передачи шинной сети может состоять из одной или нескольких секций кабеля, связанных специальными соединителями. В результате образуется так называемый сегмент кабеля. Пример такой топологии приведен на рисунке 1.
Рис.1. Топология физической шины.
Более сложной формой топологии физической шины является «распределенная шина» (чаще называется «древовидная топология»). В такой топологии основной кабель, начинаясь из одной точки, называемой «корнем» (root), разветвляется в различных направлениях определяемых реальным физическим местоположением сетевых устройств.
В отличие от описанной выше топологии, в топологии «распределенная шина» основной кабель имеет более двух окончаний. Разветвление кабеля осуществляется с использованием специальных разъемов.
Пример такой топологии приведен на рисунке 2.
Рис.2. Топология распределенной шины.
Шинные сети имеют довольно ограниченные возможности по наращиванию в силу затухания сигналов в канале связи.
Каждая врезка и каждый соединитель несколько изменяют характеристики физической среды передачи. Поэтому для каждой реализации имеются, как правило, ограничения на общую длину кабеля связи и его сегментов, на расстояние между соседними точками подключения узлов (то есть минимальную и максимальную длину сегментов) и на количество подключений к кабелю.
В то же время подключение новых узлов осуществляется весьма просто с помощью пассивных врезок. Легко осуществляется и трассировка кабелей шины. В большинстве реализаций несколько оконечных систем могут подключаться к шине через общий приемопередатчик [15].
При реализации физической шины желательно пассивное подключение станции к шине таким образом, чтобы отказ какой-либо станции не влиял на работу шинной сети.
Узлы подключаются непосредственно к соединителям кабельных секций либо с помощью специальной врезки, которая просто прокалывает коаксиальный кабель до контакта с центральным проводником.
При такой топологии сообщения, посылаемые каждой станцией, передаются в широковещательном режиме всем сетевым станциям.
Кроме того, станция может «прослушивать» и принимать все сообщения, которые поступают в ее интерфейс с шиной, однако она не может изъять информацию из шины или осуществить какую-либо перезапись информации, передаваемой по шине.
Каждый узел имеет уникальный идентификатор и принимает сообщение, если в нем адрес узла-получателя либо совпадает с его собственным идентификатором, либо является идентификатором широковещательного или группового сообщения.
Поскольку один общий канал связи (шина) используется всеми абонентами сети, такие сети называются также моноканальными. В моноканальных сетях обычно осуществляется временное уплотнение канала. Частотное уплотнение в линиях связи в настоящее время используется очень редко [4].
1.1.1 Методы доступа к среде и способы организации связи
Для того чтобы передать по шине, свои собственные сообщения, станция должна получить на это соответствующее разрешение (право). Реализация этого права осуществляется через децентрализованную процедуру, которая называется методом доступа к среде.
Управление доступом к среде входит в функции канального уровня и осуществляется в соответствии с протоколом канального уровня.
Если имеется случай последовательно соединенных магистральных линий (сегментов), то в этом случае в местах соединения сегментов устанавливаются специальные связующие элементы:
· повторители, осуществляющие трансляцию сигналов из одного сегмента сети в другой и согласование параметров проводных линий связи. Повторители могут быть двух типов: осуществляющие простое усиление и усиление с восстановлением (в этом случае повторитель рассматривается как открытая система, осуществляющая трансляцию последовательности бит на физическом уровне) и производящие прием - декодирование с исправлением ошибок - кодирование - передачу (в этом случае повторитель осуществляет трансляцию канальных БДП на канальном уровне ЭМВОС);
· мосты, соединяющие однородные сети, производящие трансляцию пакетов: всегда или только в том случае, когда пакет предназначен станциям, находящимся в другом сегменте. В мосте реализуется механизм доступа к среде, причем для каждого из сегментов сети управление доступом производится независимо;
· шлюзы, соединяющие разнородные сети, и осуществляющие преобразование форматов и протоколов передачи данных. В шлюзах для каждого из сегментов реализуется свой возможно различающийся механизм доступа к среде [2].
Магистральная линия может быть также разбита на сегменты. Разбиение делается в двух случаях:
1) когда длина линии большая и необходимо установить повторители или мосты для усиления и восстановления сигналов;
2) если рассмотреть, например, в системе управления рассредоточенными объектами направленность и интенсивность информационных потоков, то очевидным является факт, что интенсивность потока будет убывать по мере удаления от пункта управления. Поэтому иногда целесообразно разделить шину на сегменты и в каждом сегменте использовать сети передачи данных с различными характеристиками. В сегменте, к которому подключен пункт управления, необходимо использовать высокоскоростную сеть передачи данных с дорогостоящим каналом связи, обладающим большой пропускной способностью. В сегментах, расположенных на периферии, можно использовать низкоскоростные сети с дешевыми каналами связи[7].
1.1.2 Расширение ЛВС шинной топологии
Увеличение участка, охватываемого сетью, вызывает необходимость ее расширения. В сети с топологией «шина» кабель обычно удлиняется двумя способами.
При первом можно воспользоваться баррел-коннектором (barrel connector (см. рис.3)).
Рис. 3. Баррел-коннектор.
Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве «стыковок» нередко происходит искажение сигнала.
Для соединения двух отрезков кабеля служит также репитер (repeater (см. рис.4)). В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений [9].
Рис.4. Репитер соединяет отрезки кабеля и усиливает сигнал.
1.1.3 Преимущества и недостатки шинных топологий
Преимущества:
· минимальная длина линий связи; легко расширяется;
· высокая скорость обмена данными между пользователями (нет дополнительных задержек на прохождение сигналов через узлы, как это имеет место в кольцевой топологии);
· шина пассивная топология. Это означает, что компьютеры только «прослушивают» передаваемые по сети данные, но не продвигают их от отправителя к получателю. Поэтому если один из компьютеров выходит из строя, это не сказывается на работе остальных;
· в активных топологиях происходит регенерация сигналов в компьютерах и последующая их передача в сеть.
Недостатки:
· низкая надежность (разрыв линий связи нарушает связь между станциями); при неисправности станции, проявляющейся в том, что станция начинает непрерывную передачу, сеть также становится неработоспособной;
· трудность локализации отказов с точностью до отдельного компонента, подключенного к шине;
· разрыв кабеля или отсоединение одного из концов приводит к прекращению функционирования сети (сеть «падает»);
· если разделение каналов производится не по частоте, а по времени, то всегда имеется задержка между моментом появления данных для передачи и моментом времени, когда эти данные могут быть переданы. Причем эта задержка при большом количестве станций и длинных сообщениях может достигать значительных величин. В этом случае, для управления в реальном масштабе времени необходимо либо увеличивать скорость передачи данных, что может потребовать больших затрат, либо ограничивать длину пакетов, которыми обмениваются станции.
1.1.4 Способы реализации шинных топологий в системе управления рассредоточенными объектами
Для оптоволоконных линий связи достижение полной связности типа «станция-станция» шинная реализация сети требует двух шин. Это объясняется однонаправленным характером оптоволоконного канала.
Чаще всего используются две отдельные встречно направленные шины (см. рис.5).
Рис.5. Шинная реализация сети с двумя встречно направленными шинами
Размещено на http://www.allbest.ru/
В топологии сети Fasnet станции имеют доступ к каждой оптоволоконной шине через соответствующий отвод чтения, за которым размещается отвод записи. Шины между собой не связаны. Первая и последняя станция наряду с функциями контроллеров сети выполняют функции трансляции пакетов.
Как альтернативный вариант можно применять конфигурацию, использующую единственную U- или D-образную оптоволоконную шину (см. рис.6).
Рис.6. Шинная реализация сети с U- или D-образной оптоволоконной шиной
Размещено на http://www.allbest.ru/
В топологии D-сети станция подключается с помощью отводов записи на исходящей стороне и с помощью отвода приема на входящей стороне шины. В этом случае станция, являющейся последней на передачу оказывается первой на прием, что не всегда удобно. Этого недостатка лишена S-шина.
Рис.7. Реализация сети на S-шине
Размещено на http://www.allbest.ru/
В топологии сети Expressnet повышение надежности шинных сетей передачи данных достигается за счет прокладывания дополнительных линий связи. Чаще всего в системе управления рассредоточенными объектами используются дублирующие каналы.
В некоторых системах управления может использоваться несколько дополнительных линий связи. Например, в самолетостроении, в бортовых системах информационного обмена используются триплированная шина, идущая вдоль одного борта, и дублирующая ее триплированная шина - вдоль другого борта.
Если система управления рассредоточенными объектами содержит пункты управления и контролируемые пункты, рассредоточенные по некоторой территории, то в этом случае шинная топология сети передачи данных практически не используется [19].
1.2 Физическая звезда (Physical Star)
компьютер сеть автоматизация топология
Самая простая форма топологии «физическая звезда» состоит из множества кабелей (по одному на каждое подключаемое сетевое устройство) подключенных к одному, центральному устройству. Это центральное устройство называют концентратором (hub). Станция может непосредственно осуществлять доступ только к этому узлу. В сетях с такой топологией через центральный узел проходит весь сетевой трафик.
Эта топология одна из наиболее широко распространенных структур сетей передачи данных. Она широко использовалась в 60-х-70-х годах, поскольку благодаря легкости управления программное обеспечение было не сложным, а поток трафика простым. Весь трафик исходит из центрального узла звезды (главной ЭВМ), а остальные узлы являлись терминалами. В случае использования простой топологии «физическая звезда» реальные пути движения сигналов могут не соответствовать форме звезды. Единственная характеристика, описываемая топологией «физическая звезда» - это способ физического соединения сетевых устройств. Пример самой простой топологии «физическая звезда» приведен на рисунке 8.
Рис.8. Топология физической звезды.
Размещено на http://www.allbest.ru/
Рис.9. Топология распределенной звезды.
В топологии «распределенная звезда» способы соединения устройств могут быть существенно сложнее (см. рис.9). В такой топологии центральные устройства (концентраторы) дополнительно соединяются между собой.
Среди концентраторов выделяются активные (active) и пассивные (passive).
Активные концентраторы регенерируют и передают сигналы так же, как это делают репитеры. Иногда их называют многопортовыми репитерами - они обычно имеют от 8 до 12 портов для подключения компьютеров.
Пассивные концентраторы, например монтажные панели или коммутирующие блоки, просто пропускают через себя сигнал как узлы коммутации, не усиливая и не восстанавливая его. Пассивные концентраторы не надо подключать к источнику питания [16].
Гибридными (hybrid) называются концентраторы, к которым можно подключать кабели различных типов (см. рис.10).
Рис.10. Гибридный концентратор.
Размещено на http://www.allbest.ru/
Сети, построенные на концентраторах, легко расширить, если подключить дополнительные концентраторы.
В настоящее время различают:
· звездообразную сеть с коммутацией, когда центральный узел отвечает за маршрутизацию и выполняет функции пересылки с промежуточным хранением или коммутационные функции без промежуточного хранения. В последнем случае сети строятся на базе метода коммутации каналов. Когда перед началом передачи вызывающая станция запрашивает у центрального узла установление физического или логического соединения с вызываемой станцией (узлом). После установления соединения соответствующий физический или логический путь монопольно используется абонентами-партнерами для обмена данными. По окончании обмена один из абонентов запрашивает у центрального узла разъединения;
· широковещательную звездообразная сеть, предусматривающую использование центрального узла как безбуферного повторителя, который направляет все приходящие сигналы во все исходящие из него линии. Центральный узел производит локализацию неисправностей, которая в данном случае оказывается простой, поскольку сводится к локализации отдельной радиальной связи (канал или оконечный узел). При необходимости дефектная радиальная связь отключается, не нарушая функционирования остальной части сети.
1.2.1 Преимущества и недостатки звездообразной топологии
Преимущества:
· разрыв кабеля в сети с обычной топологией «линейная шина» приведет к «падению» всей сети. Разрыв кабеля, подключенного к концентратору, нарушит работу только данного сегмента. Остальные сегменты останутся работоспособными;
· простота изменения или расширения сети: достаточно просто подключить еще один компьютер или концентратор;
· использование различных портов для подключения кабелей разных типов;
· централизованный контроль и централизованное управление за работой сети и сетевым трафиком: во многих сетях активные концентраторы наделены диагностическими возможностями, позволяющими определить работоспособность соединения;
В тоже время центральный узел является слабым местом такой сети.
Недостатки:
· пропускная способность сети ограничивается пропускной способностью центрального узла;
· выход из строя центрального узла приводит к отказу всей сети. Поэтому часто требуется резервирование наиболее важных устройств центрального узла;
· расширяемость сети ограничивается возможностями центрального узла по подключению канала связи с оконечными системами;
· центральный узел является довольно дорогим устройством, поскольку выполняет все основные функции по управлению сетью;
· максимальная суммарная длина линий связи, поэтому стоимость кабелей и стоимость их прокладки выше, чем при других топологиях с таким же числом узлов.
Для уменьшения этой стоимости используется один из вариантов звездообразной топологии ЛВС называемый «распределенная звездообразная топология», в соответствии с которой оконечные системы соединяются кабелями с соединительной коробкой, называемой концентратором кабелей. Последний может подсоединить к сети, как правило, не более четырех - восьми оконечных систем. Концентраторы кабелей соединяются между собой общим разделяемым многожильным кабелем.
Такая топология имеет широкое применение, когда оконечные системы широко разбросаны по зданию учреждения [14].
1.3 Физическое кольцо с подключением типа «звезда» (Physical Star-Wired Ring)
В этой топологии все сетевые устройства подключаются к центральному концентратору так же, как это происходит при использовании топологии «физическая звезда». Но каждый из концентраторов внутри себя организовывает физические соединения, обеспечивающие построение единого физического кольца. При использовании нескольких концентраторов, кольцо в каждом из концентраторов размыкается, а сами концентраторы подключаются друг к другу с использованием двух кабелей, организуя физическое замыкание кольца. Топология физического кольца используется в сетях IBM Token-Ring.
В этой топологии все концентраторы являются «интеллектуальными» устройствами. При возникновении разрыва физического кольца в любой точке сети концентратор автоматически обнаруживает разрыв и восстанавливает кольцо путем замыкания внутри себя соответствующих портов.
На рисунке 11 показан пример такого восстановления кольца (концентратор А).
Размещено на http://www.allbest.ru/
Рис.11. Топология физического кольца с подключением типа «Звезда».
Кольцо - базовая топология компьютерной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть. При реализации сети типа физического кольца каждая станция подключается к кольцу с помощью активного интерфейса, называемого повторителям сигналов или кольцевым интерфейсом. В такой топологии терминаторы не используются (их просто некуда подсоединять).
Передаваемые по кольцу данные проходят через регистры повторителя и задерживаются там на некоторое время.
Станция подключаются к одному повторителю, включенному в однонаправленное кольцо, или к двум повторителям, связанным в два разнонаправленных кольца.
Из-за простоты реализации наибольшее распространение получили сети с одним кольцом. В однонаправленном кольце пара смежных повторителей связана секцией кабеля - выделенным каналом связи.
Каждое сообщение имеет индентификатор (адрес) узла-получателя.
Передаваемое из узла-источника сообщение проходит по кольцу до узла-потребителя, который опознает свой адрес в сообщении и либо принимает и поглощает сообщение, либо принимает и ретранслирует сообщение (добавив или не добавив соответствующую метку), которое перемещается по кольцу до узла-источника, где поглощается. Каждому из этих двух способов поглощения сообщения соответствует реализация в узлах и повторителях определенного протокола канального уровня.
Наибольшее распространение нашло поглощение сообщения узлом-источником, поскольку это позволяет проконтролировать правильность передачи сообщения.
При большой длине кольца, коротких сообщениях и (или) большой скорости передачи возможна одновременная передача по нему более чем одного сообщения, поскольку кольцо начинает работать как линия задержки с памятью.
С точки зрения надежности самым «слабым» местом в кольцевых сетях являются повторители. Отказ повторителя может либо вывести из строя всю сеть, либо заблокировать доступ в сеть узла, подключенного к этому повторителю. Поэтому повторители обычно состоят из двух частей: основной, с электропитанием от узла, и интерфейсной, с электропитанием от автономного источника и построенной на релейной схеме. При отказе повторителя его интерфейсная часть быстро отключает отказавший повторитель и напрямую соединяет входной и выходной каналы.
Благодаря активному интерфейсу станция имеет возможность удалять знаки (символы) или сообщения, которые она получает из среды, а также производить запись на место знаков и сообщений, передаваемых по среде, когда они проходят через интерфейс.
Активный интерфейс со средой позволяет также усиливать сигналы, которые проходят через него, вследствие чего значительно снижаются вносимые потери.
Это имеет особо важное значение при подключении к оптоволоконной среде, поскольку пассивный интерфейс вносит ощутимые потери, что приводит к существенному ограничению числа станций, которые могут быть пассивно подключены к оптоволоконной шине без введения оптических усилителей [11].
Усиление электрических сигналов и работа по управлению доступом к среде в активном интерфейсе сопряжены с двойным преобразованием: преобразованием принимаемых оптических сигналов в электрические (с необходимой обработкой) и преобразованием передаваемых сигналов в оптические сигналы. В результате скорость доступа станций должна быть выбрана таким образом, чтобы она соответствовала скорости обработки данных электронными устройствами в интерфейсах станций, поскольку скорости по оптическому каналу очень высоки.
Пропускная способность и задержка кольцевой сети зависят от метода передачи сообщений, реализованного в повторителе. В самом простом случае сообщения полностью накапливаются в каждом повторителе для анализа адреса узла-получателя и лишь затем, при необходимости, передаются соседнему повторителю. Однако существуют методы передачи сообщений, позволяющие свести задержку в повторителе ко времени передачи одного бита сообщения. В этом случае станции производят ретрансляцию сообщений с установкой или сбросом отдельных управляющих битов, после того как получен и проанализирован адрес, а станция-контроллер сети принимает и анализирует все сообщение и выставляет новый маркер.
Расширяемость кольцевой сети достаточно высокая. Для подключения нового узла необходимо присвоить ему идентификатор, отличный от идентификаторов других узлов сети, и включить в состав кольца новый повторитель. Подключение новых узлов с удлинением собственно кольцевой сети, как правило, трудоемкая операция. Поэтому сразу пытаются осуществить трассировку кабеля таким образом, чтобы он проходил через все те места, где может понадобиться подключать оконечные системы.
Это усложняет трассировку кабелей перед развертыванием сети. Включение нового повторителя увеличивает задержку сети.
Преимущества:
· все компьютеры имеют равный доступ;
· количество пользователей не существенно влияет на производительность;
Недостатки:
· выход из строя компьютера может привести к отказу всей сети;
· кольцевые сети чувствительны к отказам типа разрыва КС;
· трудно локализовать неисправности;
· подключение нового пользователя или изменение конфигурации сети требует остановки работы всей сети.
В настоящее время наибольшей популярностью пользуется звездообразная топология, поскольку она обеспечивает самый простой способ подключения новых устройств в сеть. В большинстве случаев включение нового устройства в сеть заключается лишь в прокладке отрезка кабеля, соединяющего подключаемое сетевое устройство с концентратором [18].
2. ЛОГИЧЕСКИЕ ТОПОЛОГИИ
Логическая топология определяет реальные пути движения сигналов при передаче данных по используемой физической топологии. Таким образом, логическая топология описывает пути передачи потоков данных между сетевыми устройствами. Она определяет правила передачи данных в существующей среде передачи с гарантированием отсутствия помех влияющих на корректность передачи данных.
Поскольку логическая топология описывает путь и направление передачи данных, то она тесно связана с уровнем MAC (Media Access Control) модели OSI (подуровень канального уровня). Для каждой из существующих логических топологий существуют методы контроля доступа к среде передачи данных (MAC) позволяющие осуществлять мониторинг и контроль процесса передачи данных. Эти методы будут обсуждаться вместе с соответствующей им топологией.
В настоящее время существует три базовые логические топологии: «логическая шина», «логическое кольцо» и «логическая звезда» (коммутация). Каждая из этих топологий обеспечивает преимущества в зависимости от способов использования. Используя рассмотренные ранее рисунки, посвященные физическим топологиям, необходимо всегда помнить, что логическая топология определяет направление и способ передачи, а не схему соединения физических проводников и устройств.
2.1 Логическая шина
В топологии «логическая шина» последовательности данных, называемые «кадрами» (frames), в виде сигналов распространяются одновременно во всех направлениях по существующей среде передачи. Каждая станция в сети проверяет каждый кадр данных для определения того, кому адресованы эти данные.
Когда сигнал достигает конца среды передачи, он автоматически гасится (удаляется из среды передачи) соответствующими устройствами, называемыми «терминаторами» (terminators). Такое уничтожение сигнала на концах среды передачи данных предотвращает отражение сигнала и его обратное поступление в среду передачи. Если бы терминаторов не существовало, то отраженный сигнал накладывался бы на полезный и искажал его.
В топологии «логическая шина» среда передачи совместно и одновременно используется всеми устройствами передачи данных.
Для предотвращения помех при попытках одновременной передачи данных несколькими станциями, только одна станция в любой момент времени имеет право передавать данные. Таким образом, должен существовать метод определения того, какая станция имеет право передавать данные в каждый конкретный момент времени.
Наиболее часто используемым при организации топологии логической шины методом контроля доступа к среде передачи является CSMA/CD - «метод прослушивания несущей, с организацией множественного доступа и обнаружением коллизий» (Carrier Sense Multiple Access/ Collision Detection). Этот метод доступа очень похож на разговор нескольких людей в одной комнате. Для того, чтобы не мешать друг другу, в любой момент времени говорит только один человек, а все остальные слушают. А начинать говорить кто-либо может только, убедившись в том, что в комнате воцарилось молчание. Точно таким же образом работает и сеть. Когда какая-либо станция собирается передавать данные, сначала она «прослушивает» (carrier sense) среду передачи данных в целях обнаружения какой-либо уже передающей данные станции.
Если какая-либо станция в данный момент выполняет передачу, то станция ждет окончания процесса передачи. Когда среда передачи освобождается, ожидавшая станция начинает передачу своих данных. Если в этот момент начинается передача еще одной или несколькими станциями, тоже ожидавшими освобождения среды передачи, то возникает «коллизия» (collision). Все передающие станции обнаруживают коллизию и посылают специальный сигнал, информирующий все станции сети о возникновении коллизии. После этого все станции замолкают на случайный промежуток времени перед повторной попыткой передачи данных. После этого алгоритм работы начинается сначала.
Сеть, базирующаяся на топологии логической шины, может также использовать и технологию «передачи маркера» (token passing) для контроля доступа к среде передачи данных. При использовании этого метода контроля каждой станции назначается порядковый номер, указывающий очередность в передаче данных. После передачи данных станцией с максимальным номером, очередь возвращается к первой станции. Порядковые номера, назначаемые станциям, могут не соответствовать реальной последовательности физического подключения станций к среде передачи данных.
Для контроля того, какая станция в текущий момент времени имеет право передать данные, используется контрольный кадр данных, называемый «маркером доступа». Этот маркер передается от станции к станции в последовательности, соответствующей их порядковым номерам. Станция, получившая маркер, имеет право передать свои данные. Однако каждая передающая станция ограничена временем, в течение которого ей разрешается передавать данные. По окончании этого времени станция обязана передать маркер следующей станции.
Работа такой сети начинается с того, что первая станция, имеющая маркер доступа, передает свои данные и получает на них ответы в течение ограниченного промежутка времени (time slot). Если станция завершает обмен данными ранее окончания выделенного ей времени, она просто передает маркер станции со следующим порядковым номером. Далее процесс повторяется. Такой последовательный процесс передачи маркера продолжается непрерывно, предоставляя возможность каждой станции через строго определенный промежуток времени получить возможность передать данные [13]. На рисунке 12 показана сеть Ethernet (физическая шина, логическая шина).
Рис.12. Сеть Ethernet на базе тонкого коаксиального кабеля (физическая шина, логическая шина).
Размещено на http://www.allbest.ru/
Топология «логической шины» базируется на использовании топологий «физическая шина» и «физическая звезда». Метод контроля доступа и типы физических топологий выбираются в зависимости от требований к проектируемой сети.
Например, каждая из сетей: Ethernet, 10Base-T Ethernet и ARCnet® используют топологию «логическая шина». Кабели в сетях Ethernet (тонкий коаксиальный кабель) подключаются с использованием топологии «физическая шина», а сети 10Base-T Ethernet и ARCnet базируются на топологии «физическая звезда». Вместе с тем, сети Ethernet (физическая шина) и 10Base-T Ethernet (физическая звезда) используют CSMA/CD в качестве метода контроля доступа к среде передачи данных, а в ARCnet (физическая звезда) применяется маркер доступа.
На рисунке 13 проиллюстрирована сеть 10Base-T Ethernet (физическая звезда, логическая шина).
Рис.13. Сеть 10 Base-T (физическая звезда, логическая шина).
Следует обратить внимание на то, что сигнал (показан стрелками) исходит от одной (передающей в данный момент) станции и распространяется во всех направлениях существующей среды передачи.
2.2 Логическое кольцо
В топологии «логическое кольцо» кадры данных передаются по физическому кольцу до тех пор, пока не пройдут через всю среду передачи данных. Топология «логическое кольцо» базируется на топологии «физическое кольцо с подключением типа «звезда»». Каждая станция, подключенная к физическому кольцу, получает данные от предыдущей станции и повторяет этот же сигнал для следующей станции. Таким образом, данные, повторяясь, следуют от одной станции к другой до тех пор, пока не достигнут станции, которой они были адресованы. Получающая станция, копирует данные из среды передачи и добавляет к кадру атрибут, указывающий на успешное получение данных. Далее кадр с установленным «атрибутом доставки» продолжает путешествие по кольцу до тех пор, пока не достигнет станции, изначально отправившей эти данные. Станция, проанализировав «атрибут доставки» и убедившись в успешности передачи данных, удаляет свой кадр из сети. Рисунок 14 демонстрирует процесс передачи данных в виде «логического кольца» в сети, базирующейся на топологии «физическое кольцо с подключением типа «звезда»».
Рис.14. Топология логическое кольцо.
Метод контроля доступа к среде передачи в таких сетях всегда базируется на технологии «маркеров доступа». Однако последовательность получения права на передачу данных (путь следования маркера), не всегда может соответствовать реальной последовательности подключения станций к физическому кольцу. IBM's Token-Ring является примером сети, использующей топологию «логического кольца», базирующегося на «физическом кольце с подключением типа «звезда»».
2.3 Логическая звезда (коммутация)
В топологии «логическая звезда» используется метод коммутации, обеспечивающий ограничение распространения сигнала в среде передачи в пределах некоторой ее части. Механизм такого ограничения является основополагающим. В чистом виде, коммутация предоставляет выделенную линию передачи данных каждой станции. Когда одна станция передает сигнал другой станции подключенной к тому же самому коммутатору, то коммутатор передает сигнал только по среде передачи данных, соединяющей эти две станции. Рисунок 15 показывает способ передачи данных между двумя станциями, подключенными к одному и тому же коммутатору.
Рис.15. Коммутация.
При таком подходе возможна одновременная передача данных между несколькими парами машин, так как данные, передающиеся между любыми двумя станциями, остаются «невидимыми» для других пар станций. Большинство технологий коммутации создаются на базе существующих сетевых стандартов, привнося в них новый уровень функциональности. Например, рассмотренный ранее стандарт сети 10Base-T (метод контроля CSMA/CD), позволяет применять коммутацию.
Некоторые коммутаторы разрабатываются для поддержки возможностей одновременного использования нескольких сетевых стандартов. Например, один коммутатор может иметь порты для подключения станций как по стандарту 10Base-T Ethernet, так и FDDI (Fiber Distributed Data Interface).
Коммутаторы имеют встроенную логику, позволяющую им интеллектуально управлять процессом передачи данных между машинами. Внутренней логике коммутаторов свойственно высокое быстродействие, т.к. они должны обеспечивать возможность одновременной передачи данных с максимальной скоростью между каждой парой портов. Таким образом, использование коммутаторов позволяет существенно увеличить производительность сети [10].
Коммутация иллюстрирует то, что логическая топология определяется не только методом контроля доступа к среде передачи, но и множеством других аспектов схем электронных соединений (коммутатор является достаточно сложным и дорогим электронным устройством). Комбинируя новые технологии коммутации с существующими логическими схемами соединения, инженеры получают возможность создания новых логических топологий.
Несколько коммутаторов могут быть соединены между собой с использованием одной или нескольких физических топологий. Коммутаторы могут быть использованы не только для соединения индивидуальных станций, но и целых групп станций.
Такие группы носят название «сегментов сети».
3. ИЕРАРХИЧЕСКАЯ И ЯЧЕИСТАЯ ТОПОЛОГИИ
Древовидная (иерархическая, вертикальная) топология - топология сети, в которой узлы и связи между ними образуют неориентированный ациклический граф, не содержащий замкнутых путей и позволяющий соединить единственным образом пару любых узлов (см. рис. 16).
Такая сеть имеет две и более сетевые шины, отходящие от главной точки.
Рис.16. Древовидная топология
Размещено на http://www.allbest.ru/
Сетевая иерархическая топология в настоящее время является одной из самых распространенных. Программное обеспечение для управления сетью является относительно простым, и эта топология обеспечивает точку концентрации для управления и диагностирования ошибок.
В большинстве случаев сетью управляет станция А на самом верхнем уровне иерархии и распространение трафика между станциями также инициируется станцией А.
Многие фирмы реализуют распределенный подход к иерархической сети, при котором в системе подчиненных станций каждая станция обеспечивает непосредственное управление станциями, находящимися ниже в иерархии. Из станции B производится управление станциями C и D. Это уменьшает нагрузку на центральную станцию А.
В то время как иерархическая топология является привлекательной с точки зрения простоты управления, она несет в себе потенциально трудно разрешимые проблемы. Когда управление сетью (всем трафиком между станциями) производится из верхнего узла А могут образоваться не только «узкие места» (с точки зрения пропускной способности), но и проблемы надежности. В случае самого верхнего уровня функции сети нарушаются полностью, если только в качестве резерва не предусмотрен другой узел.
Однако в прошлом иерархические топологии широко применялись, и многие годы будут находить применение. Они допускают постепенную эволюцию в направлении более сложной сети, поскольку могут сравнительно легко добавляться подчиненные станции [1].
Ячеистая топология (смешанная или многосвязная) - соединяет каждую рабочую станцию сети со всеми другими рабочими станциями этой же сети (см. рис.17). Топология относится к полносвязным, в отличие от других - неполносвязных.
Рис.17. Ячеистая топология
Такого рода топология наиболее часто используются в крупномасштабных и региональных вычислительных сетях, но иногда они применяются и в ЛВС. Привлекательность ячеистой топология заключается в относительной устойчивости к перегрузкам и отказам. Благодаря множественности путей из станции в станцию трафик может быть направлен в обход отказавших или занятых узлов.
Даже, несмотря на то, что данный подход отмечается сложностью и дороговизной (протоколы ячеистых сетей могут быть достаточно сложными с точки зрения логики, чтобы обеспечить эти характеристики), некоторые пользователи предпочитают ячеистые сети сетям других типов вследствие их высокой надежности. Надежность ячеистой сети обеспечивается таким соединением узлов коммутации каналами связи, чтобы между любой парой станций имелось, по меньшей мере, два пути передачи сообщений.
Введение избыточных каналов между узлами коммутации, то есть увеличение связности сети, - стандартный способ повышения надежности.
В узлах коммутации ячеистой сети обычно реализуется статическая (по фиксированным путям) или динамическая (адаптивная) маршрутизация сообщений, передаваемых в виде пакетов или по виртуальным каналам, что приводит к необходимости строить узлы коммутации на базе спецпроцессоров с достаточным быстродействием и емкостью оперативной памяти. В результате для одного и того же числа оконечных систем стоимость смешанной сети выше стоимости любой другой сети.
Возможности по наращиванию ячеистой сети определяются максимальным числом каналов ввода/вывода узла коммутации, предназначенных для подключения оконечных систем. Обычно это число не превышает четырех - восьми. Если в определенном месте исчерпаны возможности узла коммутации по подключению оконечных систем, то установка дополнительного узла коммутации позволяет подключить к сети новые оконечные системы.
Чтобы удовлетворить требованиям прикладной области к задержке сообщений, узлы коммутации часто соединяются каналами связи с таким расчетом, чтобы на путях передачи сообщений между оконечными системами было не более двух транзитных узлов коммутации. В силу этого подключение новых оконечных систем может иногда повлечь за собой пересмотр связей между узлами коммутации.
При малом числе оконечных систем иногда допускается полная связанность узлов коммутации.
Показатели скорости передачи сообщений по каналам связи ячеистой сети и время задержки сообщения в сети хуже, чем у сетей других типов [17].
4. ПОДКЛЮЧЕНИЕ К СЕТИ
Рассмотрев вопросы, связанные с аппаратной реализацией различных топологических компонентов сети и показав различия между логическими и физическими топологиями, необходимо рассмотреть способы подключения оборудования в сети. Небольшая сеть обычно состоит из ПК и периферийных устройств, таких как принтеры, сетевых адаптеров для ПК и сетевых кабелей, сетевого оборудования, такого как концентраторы и коммутаторы, которые соединяют между собой ПК и принтеры, сетевой операционной системы, например Windows.
На рисунке 18 показаны некоторые ранее рассмотренные сетевые устройства, подключенные к компьютерной сети.
Размещено на http://www.allbest.ru/
Рис.18. Компьютерная сеть
Изображенная сеть состоит из следующих компонентов: три компьютера подключены к одному концентратору 10Base-T с использованием неэкранированной витой пары. На каждый компьютер установлены сетевые карты 10Base-T Ethernet. К одному из компьютеров также подключен лазерный принтер. Компьютер в центральной нижней части рисунка является сервером и осуществляет контроль над всей сетью. Два оставшиеся компьютера - это рабочие станции. Рабочие станции используют сеть, контролируемую сервером. Одна рабочая станция - это персональный компьютер типа IBM PC, другая - компьютер Apple® Macintosh [20].
Концентратор 10Base-T обеспечивает физическое соединение всех трех компьютеров. Он также несет функции повторителя сигналов. При формировании сети из нескольких устройств необходимо соблюдать ряд правил, относящихся к числу концентраторов, которые можно соединять друг с другом, длине используемого кабеля, типу используемого кабеля. Когда необходимо подключить к сети больше пользователей, можно просто использовать еще один концентратор, подключив его к существующему оборудованию сети. Концентраторы просто передают поступающую к ним информацию на все остальные порты. Существует ограничение на число концентраторов, которые можно соединять вместе, поскольку большое число концентраторов вызывает чувствительность сети к коллизиям.
Например, в сетях Ethernet 10Ваsе-Т максимальное количество расположенных подряд концентраторов не должно превышать четырех. Проблема может быть решена путем размещения между концентраторами одного коммутатора. Коммутатор разделяет сеть на сегменты и в данном случае его следует расположить так, чтобы между персональным компьютером и коммутатором находилось не более двух концентраторов. Именно такая структура соответствует требованиям Ethernet и гарантирует корректную работу сети.
В небольшой сети (до 20 рабочих мест) концентратор или группа концентраторов вполне могут справиться с сетевым трафиком. В этом случае концентратор просто служит для соединения всех пользователей сети. В сети большего размера (около 50 пользователей) может появиться необходимость использовать коммутаторы для разделения сети на сегменты, чтобы уменьшить количество необязательного трафика.
Линии между различными компонентами сети обозначают среду передачи: витую пару. Эта сеть использует топологию «физическая звезда», но базируется на логической топологии «логическая шина». Принтер в этой сети подключен непосредственно к серверу с использованием параллельного порта этого компьютера. Такое подключение является стандартным для большинства принтеров. Сервер принимает задания на печать документов поступающих от каждой из рабочих станций. Поступившие задания на печать далее поступают к принтеру через параллельный порт сервера по соответствующему кабелю. Несмотря на то, что такой способ является наиболее простым для предоставления возможности нескольким станциям печатать документы на одном принтере, тем не менее, существуют и другие способы подключения принтеров к сети. Вы можете, например, подключить принтер к специальному серверу печати или компьютеру со специальным программным обеспечением, предоставляющим возможность одновременно выполнять функции рабочей станции и сервера печати. Сейчас множество принтеров выпускается со встроенной в него сетевой картой, таким образом, принтер может подключаться непосредственно к среде передачи в любой точке сети.
Сетевая плата (также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер, NIC (англ. network interface card)) - печатная плата, позволяющая взаимодействовать компьютерам между собой, посредством локальной сети. На сетевой плате для подключения к локальной сети имеются разъёмы для подключения кабеля витой пары и/или BNC-коннектор для коаксиального кабеля, а также несколько информационных светодиодов, сообщающих о наличии подключения и передаче информации [12].
Некоторые компьютеры имеют заранее установленный сетевой адаптер. Сетевой адаптер должен быть по скорости совместим с концентратором, к которому подключается ПК. Так, сетевой адаптер Ethernet соответствует концентратору Ethernet, а сетевой адаптер Fast Ethernet - концентратору Fast Ethernet. Индикаторы сетевой платы передают информацию, связанную с исправностью сетевого соединения, режимом работы (полу или полнодуплексный), скоростью передачи данных (10 или 100 Мбит/с), идет передача данных или нет.
Существует ряд характеристик, которые в ряде случаев следует учитывать при выборе сетевых карттакие как наличие Boot ROM, то есть возможность загрузки с сетевой карты (а не, например, с жесткого диска), наличие режима Bus master, то есть возможность независимой работы с шиной, поддержка удаленного управления и администрирования (например, SNMP).
ЗАКЛЮЧЕНИЕ
В результате проведенной работы, где внимание было акцентировано в основном на типах топологических соединений, их структуре и способах организации, стало возможным и необходимым сделать ряд выводов, позволяющих определить выбор той или иной из них.
Определение способов организации сети и конкретной топологии ее организации, или нескольких топологий, зависит от структуры предприятия, организации его подуровней управления и исполнительных звеньев, сферы хозяйственной деятельности и формы управления. Дело в том, что топология сети на предприятиях различных типов строится по принципу организации информационных связей между отдельными структурными подразделениями и организации автоматизированной информационной технологии для концентрации информационных ресурсов и определения размещения автоматизированного банка данных.
Например, персонал малых предприятий работает в среде локальных вычислительных сетей различных топологий, сочетающих в себе распределенную обработку данных с явной децентрализацией при локальном применении средств вычислительной техники на рабочих местах пользователей для решения специальных задач специалистом с централизацией информационных ресурсов в автоматизированном банке данных. Локальные вычислительные сети средних предприятий представляют собой двухуровневую вычислительную сеть, на верхнем уровне которой организована коммуникационная среда для обмена информацией между локальными серверами, а на нижнем уровне подключены локальные сети различных топологий каждого функционального подразделения к локальному серверу для обеспечения пользования и доступа к корпоративным ресурсам.
В крупных предприятиях формируется база современного программно-аппаратного комплекса, включающего телекоммуникационные средства связи, многомашинные комплексы с применением высокоскоростных корпоративных вычислительных сетей. Корпоративные сети крупных предприятий имеют трехуровневую иерархическую структуру, организованную в соответствии со структурой территориально-разобщенных подразделений: центральный сервер системы, установленный в центральном офисе, локальные сервера в подразделениях и филиалах, станции клиентов у персонала компании.
Подобные документы
Компьютерные сети и их классификация. Аппаратные средства компьютерных сетей и топологии локальных сетей. Технологии и протоколы вычислительных сетей. Адресация компьютеров в сети и основные сетевые протоколы. Достоинства использования сетевых технологий.
курсовая работа [108,9 K], добавлен 22.04.2012Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат [134,0 K], добавлен 21.10.2013Особенности совместного использования информации на удаленных друг от друга компьютерах. Классификация, структура, юридические и негативные аспекты, новые возможности компьютерных сетей. Обзор вспомогательного программного обеспечения и оборудования.
реферат [41,0 K], добавлен 22.10.2010Понятие и характеристики компьютерных сетей. Классификация сетей по ряду признаков: по назначению, территориальной распространенности, по типу функционального взаимодействия, типу среды передачи, топологии сетей, скорости передач, по сетевым ОС.
презентация [510,5 K], добавлен 12.09.2011Функции компьютерных сетей (хранение и обработка данных, доступ пользователей к данным и их передача). Основные показатели качества локальных сетей. Классификация компьютерных сетей, их главные компоненты. Топология сети, характеристика оборудования.
презентация [287,4 K], добавлен 01.04.2015Классификация и виды компьютерных сетей, их функциональные особенности, принцип работы и взаимодействие компонентов. Линии связи и каналы передачи данных, типы и принципы построения сетей по данному признаку. Организация рабочего места администратора.
отчет по практике [34,6 K], добавлен 18.06.2014Основные признаки классификации компьютерных сетей как нового вида связи и информационного сервиса. Особенности локальных и глобальных сетей. Объекты информационных сетевых технологий. Преимущества использования компьютерных сетей в организации.
курсовая работа [1,9 M], добавлен 23.04.2013Описание нетрадиционных и мультипроцессорных архитектур вычислительных систем. Принципы параллельной и конвейерной обработки данных. Теория массового обслуживания и управления ресурсами компьютерных систем. Базовые топологии локальных и глобальной сетей.
книга [4,2 M], добавлен 11.11.2010Назначение и классификация компьютерных сетей. Распределенная обработка данных. Классификация и структура вычислительных сетей. Характеристика процесса передачи данных. Способы передачи цифровой информации. Основные формы взаимодействия абонентских ЭВМ.
контрольная работа [36,8 K], добавлен 21.09.2011Преимущества объединения компьютерных сетей. Виды локальных вычислительных сетей и их характеристика. Internet как глобальная компьютерная сеть, ее назначение и средства поиска информации. Сервис World Wide Web: Web-каналы, Web-страница, гиперссылка.
контрольная работа [26,7 K], добавлен 10.03.2009