Нейронные сети

Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 29.12.2011
Размер файла 402,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нейронные сети

Нейронные сети

Нейронные сети - это одно из направлений исследований в области искусственного интеллекта, основанное на попытках воспроизвести нервную систему человека. А именно: способность нервной системы обучаться и исправлять ошибки, что должно позволить смоделировать, хотя и достаточно грубо, работу человеческого мозга.

Биологический нейрон - это специальная клетка, которая структурно состоит из ядра, тела клетки и отростков. Одной из ключевых задач нейрона является передача электрохимического импульса по всей нейронной сети через доступные связи с другими нейронами. Притом, каждая связь характеризуется некоторой величиной, называемой силой синоптической связи. Эта величина определяет, что произойдет с электрохимическим импульсом при передаче его другому нейрону: либо он усилится, либо он ослабится, либо останется неизменным. Биологическая нейронная сеть обладает высокой степенью связности: на один нейрон может приходиться несколько тысяч связей с другими нейронами. Но, это приблизительное значение и в каждом конкретном случае оно разное. Передача импульсов от одного нейрона к другому порождает определенное возбуждение всей нейронной сети. Величина этого возбуждения определяет реакцию нейронной сети на какие-то входные сигналы. Например, встреча человека со старым знакомым может привести к сильному возбуждению нейронной сети, если с этим знакомым связаны какие-то яркие и приятные жизненные воспоминания. В свою очередь сильное возбуждение нейронной сети может привести к учащению сердцебиения, более частому морганию глаз и к другим реакциям. Встреча же с незнакомым человеком для нейронной сети пройдет практически незаметной, а значит и не вызовет каких-либо сильных реакций.

В 60-80 годах XX века приоритетным направлением исследований в области искусственного интеллекта были экспертные системы. Экспертные системы хорошо себя зарекомендовали, но только в узкоспециализированных областях. Для создания более универсальных интеллектуальных систем требовался другой подход. Наверное, это привело к тому, что исследователи искусственного интеллекта обратили внимание на биологические нейронные сети, которые лежат в основе человеческого мозга. У нейронных сетей много важных свойств, но ключевое из них - это способность к обучению. Обучение нейронной сети в первую очередь заключается в изменении «силы» синоптических связей между нейронами. Следующий пример наглядно это демонстрирует. На сегодняшний день нейронные сети являются одним из приоритетных направлений исследований в области искусственного интеллекта.

В этой модели нейрона можно выделить три основных элемента:

· синапсы, каждый из которых характеризуется своим весом или силой. Осуществляют связь между нейронами, умножают входной сигнал на весовой коэффициент синапса , характеризующий силу синоптической связи;

· сумматор, аналог тела клетки нейрона. Выполняет сложение внешних входных сигналов или сигналов, поступающих по синоптическим связям от других нейронов. Определяет уровень возбуждения нейрона;

· функция активации, определяет окончательный выходной уровень нейрона, с которым сигнал возбуждения (торможения) поступает на синапсы следующих нейронов.

Модель нейрона имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, пропорциональный синоптической силе, и все произведения суммируются, определяя уровень активации нейрона. Здесь множество входных сигналов, обозначенных поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес и поступает на суммирующий блок, обозначенный . Каждый вес соответствует «силе» одной биологической синоптической связи. Множество весов в совокупности обозначается вектором . Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход . Далее поступает на вход функции активации, определяя окончательный сигнал возбуждения или торможения нейрона на выходе. Этот сигнал поступает на синапсы следующих нейронов и т.д.

Рассмотренная простая модель нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, данная модель нейрона не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные на основе этой модели нейрона, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что именно в этой модели нейрона, верно, схвачены важнейшие черты биологического прототипа.

Свойства нейронных сетей

Искусственные нейронные сети индуцированы биологией, так как они состоят из элементов, функциональные возможности которых аналогичны большинству элементарных функций биологического нейрона. Эти элементы затем организуются по способу, который соответствует анатомии мозга. Даже при таком поверхностном сходстве, искусственные нейронные сети демонстрируют удивительное число свойств, присущих мозгу. Например, они обучаются на основе опыта, обобщают предыдущие прецеденты на новые случаи и извлекают существенные свойства из поступающей информации, содержащей излишние данные.

Несмотря на такое функциональное сходство, даже самый оптимистичный их защитник не предположит, что в скором будущем искусственные нейронные сети будут дублировать функции человеческого мозга. Реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, и энтузиазм должен быть умерен в соответствии с современными реалиями. Однако равным образом было бы неверным игнорировать удивительное сходство в функционировании некоторых нейронных сетей с человеческим мозгом. Эти возможности, как бы они ни были ограничены сегодня, наводят на мысль, что глубокое проникновение в человеческий интеллект, а также множество революционных приложений, могут быть не за горами.

Итак, рассмотрим некоторые свойства нейронных сетей.

1. Обучение

Искусственные нейронные сети могут менять свое поведение в зависимости от внешней среды. Этот фактор в большей степени, чем любой другой, ответствен за тот интерес, который они вызывают. После предъявления входных сигналов (возможно, вместе с требуемыми выходами) они самонастраиваются, чтобы обеспечивать требуемую реакцию. Было разработано множество обучающих алгоритмов, каждый со своими сильными и слабыми сторонами. Все еще существуют проблемы относительно того, чему сеть может обучиться и как обучение должно проводиться.

2. Обобщение

Отклик сети после обучения может быть до некоторой степени нечувствителен к небольшим изменениям входных сигналов. Эта внутренне присущая способность видеть образ сквозь шум и искажения жизненно важна для распознавания образов в реальном мире. Она позволяет преодолеть требование строгой точности, предъявляемое обычным компьютером, и открывает путь к системе, которая может иметь дело с тем несовершенным миром, в котором мы живем. Важно отметить, что искусственная нейронная сеть делает обобщения автоматически благодаря своей структуре, а не с помощью использования «человеческого интеллекта» в форме специально написанных компьютерных программ.

3. Абстрагирование

Некоторые из искусственных нейронных сетей обладают способностью извлекать сущность из входных сигналов. Например, сеть может быть обучена на последовательности искаженных версий буквы «А». После соответствующего обучения предъявление такого искаженного примера приведет к тому, что сеть породит букву совершенной формы (в данном случае букву «А»). В некотором смысле она научится порождать то, что никогда не видела. Способность извлекать идеальные прототипы является у людей весьма ценным качеством.

4. Применимость

Искусственные нейронные сети не являются панацеей. Они, очевидно, не годятся для выполнения таких задач, как начисление заработной платы, однако они незаменимы в большом классе других задач, с которыми плохо или вообще не справляются обычные вычислительные системы.

нейронный искусственный сеть

Классификация нейронных сетей

Можно провести следующую классификацию нейронных сетей:

Характер обучения

Классификация нейронных сетей по характеру обучения делит их на:

· нейронные сети, использующие обучение с учителем;

· нейронные сети, использующие обучение без учителя.

Рассмотрим это подробнее.

Нейронные сети, использующие обучение с учителем. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором. Далее веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня.

Нейронные сети, использующие обучение без учителя. Обучение без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы.

Настройка весов

· сети с фиксированными связями - весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи;

· сети с динамическими связями - для них в процессе обучения происходит настройка синоптических весов.

Тип входной информации

· аналоговая - входная информация представлена в форме действительных чисел;

· двоичная - вся входная информация в таких сетях представляется в виде нулей и единиц.

Применяемая модель нейронной сети

Сети прямого распространения - все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.

Реккурентные нейронные сети - сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.

Радиально базисные функции - вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синоптические веса входного и скрытого слоев равны единицы.

Самоорганизующиеся карты или Сети Кохонена - такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Искусственные нейронные сети и экспертные системы

В последние годы над искусственными нейронными сетями доминировали логические и символьно-операционные дисциплины. Так, широко пропагандировались экспертные системы, у которых имеется много заметных успехов, так же, как и неудач. И не безосновательно, например: искусственные нейронные сети не способны «объяснить», как они решают задачу. Внутреннее представление, получающееся в результате обучения, часто настолько сложно, что его невозможно проанализировать, за исключением самых простых случаев. Это напоминает нашу неспособность объяснить, как мы узнаем человека, несмотря на различие в расстоянии, угле, освещении и на прошедшие годы. Экспертная система может проследить процесс своих рассуждений в обратном порядке, так что человек может проверить ее на разумность.

Сторонники искусственных нейронных сетей высказывают мнение, что они заменят собой современный искусственный интеллект, но многое свидетельствует о том, что они будут существовать, объединяясь в системах, где каждый подход используется для решения тех задач, с которыми он лучше справляется.

Эта точка зрения подкрепляется тем, как люди функционируют в нашем мире. Распознавание образов отвечает за активность, требующую быстрой реакции. Так как действия совершаются быстро и бессознательно, то этот способ функционирования важен для выживания во враждебном окружении. Вообразите только, что было бы, если бы наши предки вынуждены были обдумывать свою реакцию на прыгнувшего хищника?

Когда наша система распознавания образов не в состоянии дать адекватную интерпретацию, вопрос передается в высшие отделы мозга. Они могут запросить добавочную информацию и займут больше времени, но качество полученных в результате решений может быть выше. Можно представить себе искусственную систему, подражающую такому разделению труда. Искусственная нейронная сеть реагировала бы в большинстве случаев подходящим образом на внешнюю среду. Так как такие сети способны указывать доверительный уровень каждого решения, то сеть «знает, что она не знает» и передает данный случай для разрешения экспертной системе. Решения, принимаемые на этом более высоком уровне, были бы конкретными и логичными, но они могут нуждаться в сборе дополнительных фактов для получения окончательного заключения. Комбинация двух систем была бы более мощной, чем каждая из систем в отдельности, следуя при этом высокоэффективной модели, даваемой биологической эволюцией.

Представление знаний в нейронных сетях

Относительно реальных приложений «интеллектуальных» систем можно утверждать, что успех решения зависит от хорошего представления знаний. Это касается и нейронных сетей, представляющих собой отдельный класс интеллектуальных систем. Форма представления входных сигналов может быть самой разной. Это приводит к тому, что разработка приемлемых нейросетевых решений становится творческим процессом. Основной задачей нейронной сети является наилучшее обучение модели окружающего мира для решения поставленной задачи. Знания о мире включают два типа информации.

1. Известное состояние окружающего мира, представленное имеющимися в наличии достоверными фактами. Такая информация называется априорной.

2. Наблюдения за окружающим миром (измерения), полученные с помощью сенсоров, адаптированных для конкретных условий, в которых должна функционировать данная нейронная сеть. Обычно такие измерения в значительной мере зашумлены, что потенциально может стать источником ошибок. В любом случае измерения, полученные таким способом, формируют множество информации, примеры из которого используются для обучения нейронной сети.

Примеры могут быть маркированными и немаркированными. В маркированных примерах входному сигналу соответствует желаемый отклик. Немаркированные примеры состоят из нескольких различных реализаций одного входного сигнала. В любом случае набор примеров, будь то маркированных или нет, представляет собой знания об интересующей предметной области, на основании которых и проводится обучение нейронной сети. Множество пар сигналов вход-выход, каждая из которых состоит из входного сигнала и соответствующего ему желаемого выхода, называют обучающими данными или обучающей выборкой нейронной сети. Для примера рассмотрим задачу распознавания цифр. В этой задаче входной сигнал (изображение) представляет собой матрицу, состоящую из черных и белых точек. Каждое изображение представляет одну из десяти рукописных цифр на белом фоне. Желаемым откликом сети нейронной сети является конкретная цифра, изображение которой подается в качестве входного сигнала. Обычно обучающая выборка состоит из большого числа рукописных цифр, что отражает ситуацию, которая может возникнуть в реальном мире. Создание нейронной сети основывается непосредственно на реальных данных, которые говорят сами за себя. Таким образом, нейронные сети не только реализуют полноценную модель среды, но и обеспечивают обработку данных. Набор данных, используемый для обучения нейронной сети, должен содержать как положительные, так и отрицательные примеры. Например, в задаче пассивной эхолокации положительные примеры включают сигналы, отраженные от интересующего объекта (например, подводной лодки). Однако в реальной среде на отклик радара влияют и морские объекты, случайно попавшие в зону сигнала. Чтобы понизить вероятность неверной трактовки сигнала, множество примеров добавляют сигналы, полученные при отсутствии искомого объекта. В нейронной сети заданной архитектуры знания об окружающей среде представляются множеством свободных параметров (т.е. синоптических весов и порогов) сети. Такая форма представления знаний соответствует самой природе нейронных сетей. Именно в ней кроется ключ эффективности нейросетевых моделей. Вопрос представления знаний в нейронной сети является очень сложным.

Обучение нейронной сети

Самым важным свойством нейронных сетей является их способность обучаться на основе данных окружающей среды и в результате обучения повышать свою производительность. Повышение производительности происходит со временем в соответствии с определенными правилами. Обучение нейронной сети происходит посредством интерактивного процесса корректировки синоптических весов и порогов. В идеальном случае нейронная сеть получает знания об окружающей среде на каждой итерации процесса обучения.

С понятием обучения ассоциируется довольно много видов деятельности, поэтому сложно дать этому процессу однозначное определение. Более того, процесс обучения зависит от точки зрения на него. Именно это делает практически невозможным появление какого-либо точного определения этого понятия. Например, процесс обучения с точки зрения психолога в корне отличается от обучения с точки зрения школьного учителя. С позиций нейронной сети, вероятно, можно использовать следующее определение:

Это определение процесса обучения нейронной сети предполагает следующую последовательность событий:

1. В нейронную сеть поступают стимулы из внешней среды.

2. В результате первого пункта изменяются свободные параметры нейронной сети.

3. После изменения внутренней структуры нейронная сеть отвечает на возбуждения уже иным образом.

Несложно догадаться, что не существует универсального алгоритма обучения, подходящего для всех архитектур нейронных сетей. Существует лишь набор средств, представленный множеством алгоритмов обучения, каждый из которых имеет свои достоинства. Алгоритмы обучения отличаются друг от друга способом настройки синоптических весов нейронов. Еще одной отличительной характеристикой является способ связи обучаемой нейронной сети с внешним миром. В этом контексте говорят о парадигме обучения, связанной с моделью окружающей среды, в которой функционирует данная нейронная сеть.

Существуют два концептуальных подхода к обучению нейронных сетей: обучение с учителем и обучение без учителя.

Обучение нейронной сети с учителем предполагает, что для каждого входного вектора из обучающего множества существует требуемое значение выходного вектора, называемого целевым. Эти вектора образуют обучающую пару. Веса сети изменяют до тех пор, пока для каждого входного вектора не будет получен приемлемый уровень отклонения выходного вектора от целевого.

Обучение нейронной сети без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Обучающее множество состоит лишь из входных векторов. Алгоритм обучения нейронной сети подстраивает веса сети так, чтобы получались согласованные выходные векторы, т.е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы.

Многослойные нейронные сети

Вероятно, архитектура многослойных нейронных сетей используется сейчас наиболее часто. Она была предложена в работе в 1986 году и подробно обсуждается почти во всех учебниках по нейронным сетям. Обычно сеть состоит из множества сенсорных элементов (входных узлов), которые образуют входной слой; одного или нескольких скрытых слоев вычислительных нейронов и одного выходного слоя нейронов.

В литературе нет единообразия относительно того, как считать число слоев в многослойных нейронных сетях. Одни предлагают считать число слоев, включая несуммирующий входной слой, другие - считать, только слои, выполняющие суммирование. Согласно определению, многослойная нейронная сеть на рисунке ниже рассматривается как двухслойная. Вход распределительного слоя считается нулевым слоем.

Многослойная нейронная сеть может моделировать функцию практически любой степени сложности, причем число слоев и число элементов в каждом слое определяют сложность функции. Определение числа промежуточных слоев и числа элементов в них является важным вопросом при конструировании. Среди многослойных нейронных сетей можно выделить четыре наиболее значимых и важных класса нейронных сетей:

· сети прямого распространения - все связи направлены строго от входных нейронов к выходным. Такие сети еще называют многослойным персептроном, по аналогии с обычным персептроном Розенблатта, в котором только один слой;

· реккурентные нейронные сети или сети обратного распространения - сигнал в таких сетях с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя;

· радиально базисные функции - вид многослойной нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синоптические веса входного и скрытого слоев равны единицы;

· самоорганизующиеся карты или сеть Кохонена. Такой класс многослойных нейронных сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Размещено на Allbest.ru


Подобные документы

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.

    реферат [1,2 M], добавлен 24.05.2015

  • Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.

    презентация [1,4 M], добавлен 14.10.2013

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Базовые архитектуры компьютеров: последовательная обработка символов по заданной программе и параллельное распознавание образов по обучающим примерам. Искусственные нейронные сети. Прототип для создания нейрона. Поведение искусственной нейронной сети.

    контрольная работа [229,5 K], добавлен 28.05.2010

  • Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.

    презентация [98,6 K], добавлен 16.10.2013

  • Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.

    реферат [78,9 K], добавлен 22.01.2015

  • Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.

    реферат [136,2 K], добавлен 25.04.2016

  • Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.

    презентация [387,5 K], добавлен 11.12.2015

  • Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.

    дипломная работа [2,7 M], добавлен 18.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.