Швидкі алгоритми сортування

Аналіз швидких алгоритмів сортування. Побудова алгоритмів обчислення зворотньої підстановки при розв’язанні задач. Методи сортування: деревом, пірамідальний, швидкий та цифровий. Нові інформаційні технології, їх значення та ефективність в роботі програм.

Рубрика Программирование, компьютеры и кибернетика
Вид научная работа
Язык украинский
Дата добавления 13.12.2011
Размер файла 57,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Швидкі алгоритми сортування

Виконала:

учениця 10- Б класу

Портянко Оксана

Зміст

Вступ

1. Аналіз швидких алгоритмів сортування

1.1 Сортування деревом

1.2 Пірамідальне сортування

2. Швидке сортування Хоара

3. Метод цифрового сортування

Висновок

Література

Вступ

В наш час нові інформаційні технології посідають дуже важливе місце не лише в спеціалізованих, але й в повсякденних сферах життя. Комп'ютери застосовуються в бізнесі, менеджменті, торгівлі, навчанні та багатьох інших сферах діяльності людини.

Комп'ютерні технології дуже зручні для виконання різноманітних операцій, але в різних сферах застосування ці операції різні. Тому, кожна окрема галузь, яка використовує специфічні технічні засоби, потребує своїх власних програм, які забезпечують роботу комп'ютерів.

Розробкою програмного забезпечення займається така галузь науки, як програмування. Вона набуває все більшого й більшого значення останнім часом, адже з кожним днем комп'ютер стає все більш необхідним, все більш повсякденним явищем нашого життя. Адже обчислювальна техніка минулих років вже майже повністю вичерпала себе і не задовольняє тим потребам, що постають перед людством.

Таким чином, нові інформаційні технології дуже актуальні в наш час і потребують багато уваги для подальшої розробки та вдосконалення. Поряд з цим, велике значення має також і програмування, яке є одним із фундаментальних розділів інформатики і тому не може залишатись осторонь.

Програмування містить цілу низку важливих внутрішніх задач. Однією з найбільш важливих таких задач для програмування є задача сортування. Під сортуванням звичайно розуміють перестановки елементів будь-якої послідовності у визначеному порядку. Ця задача є однією з найважливіших тому, що її метою є полегшення подальшої обробки певних даних і, насамперед, задачі пошуку. Так, одним з ефективних алгоритмів пошуку є бінарний пошук. Він працює швидше ніж, наприклад, лінійний пошук, але його можливо застосовувати лише за умови, що послідовність вже упорядкована, тобто відсортована.

Взагалі, відомо, що в будь-якій сфері діяльності, що використовує комп'ютер для запису, обробки та збереження інформації, усі дані зберігаються в базах даних, які також потребують сортування. Певна впорядкованість для них дуже важлива, адже користувачеві набагато легше працювати з даними, що мають певний порядок. Так, можна розташувати всі товари по назві або відомості про співробітників чи студентів за прізвищем або роком народження, тощо.

Задача сортування в програмуванні не вирішена повністю. Адже, хоча й існує велика кількість алгоритмів сортування, все ж таки метою програмування є не лише розробка алгоритмів сортування елементів, але й розробка саме ефективних алгоритмів сортування. Ми знаємо, що одну й ту саму задачу можна вирішити за допомогою різних алгоритмів і кожен раз зміна алгоритму приводить до нових, більш або менш ефективних розв'язків задачі. Основними вимогами до ефективності алгоритмів сортування є перш за все ефективність за часом та економне використання пам'яті. Згідно цих вимог, прості алгоритми сортування (такі, як сортування вибором і сортування включенням) не є дуже ефективними.

Алгоритм сортування обмінами, хоча і завершує свою роботу (оскільки він використовує лише цикли з параметром і в тілі циклів параметри примусово не змінюються) і не використовує допоміжної пам'яті, але займає багато часу. Навіть, якщо внутрішній цикл не містить жодної перестановки, то дії будуть повторюватись до тих пір, поки не завершиться зовнішній цикл.

Алгоритм сортування вибором ефективніше сортування обмінами за критерієм М(n), тобто за кількістю пересилань, але також є не дуже ефективним. З цих причин було розроблено деякі нові алгоритми сортування, що отримали назву швидких алгоритмів сортування. Це такі алгоритми, як сортування деревом, пірамідальне сортування, швидке сортування Хоара та метод цифрового сортування.

Метою нашої дослідницької роботи є ознайомлення з цими швидкими алгоритмами сортування, спроба проаналізувати їх і висвітлити кожен з них і написати програму, яка б виконувала сортування деякої послідовності за допомогою різних швидких алгоритмів сортування.

1. Аналіз швидких алгоритмів сортування

1.1 Сортування деревом

Алгоритм сортування деревом ТreeSort власне кажучи є поліпшенням алгоритму сортування вибором. Процедура вибору найменшого елемента удосконалена як процедура побудови т.зв. сортуючого дерева. Сортуюче дерево - це структура даних, у якій представлений процес пошуку найменшого елемента методом попарного порівняння елементів, що стоять поруч. Алгоритм сортує масив у два етапи.

I етап : побудова сортуючого дерева;

II етап : просівання елементів по сортуючому дереву.

Розглянемо приклад: Нехай масив A складається з 8 елементів (мал. 1, 1-а рядок). Другий рядок складається з мінімумів елементів першого рядка, які стоять поруч. Кожний наступний рядок складений з мінімумів елементів, що стоять поруч, попереднього рядка.

Мал.1

Ця структура даних називається сортуючим деревом. У корені сортуючого дерева розташований найменший елемент. Крім того, у дереві побудовані шляхи елементів масиву від листів до відповідного величині елемента вузла - розгалуження. (На мал.1 шлях мінімального елемента a5 - від листа a5 до кореня відзначений товстою лінією.) Коли дерево побудоване, починається етап просівання елементів масиву по дереву. Мінімальний елемент пересилається у вихідний масив B і усі входження цього елемента в дереві заміняються на спеціальний символ M.

Мал.2

Потім здійснюється просівання елемента уздовж шляху, відзначеного символом M, починаючи з листка, сусіднього з M (На мал 2. униз) і до кореня. Крок просівання - це вибір найменшого з двох елементів, що зустрілися на шляху до кореня дерева і його пересилання у вузол, відзначений M. Просівання 2-го елемента показано на мал 3. (Символ М більше, ніж будь-який елемент масиву).

1.2 Пірамідальне сортування

Алгоритм пірамідального сортування HeapSort також використовує представлення масиву у виді дерева. Цей алгоритм не вимагає допоміжних масивів, сортуючи “на місці”. Розглянемо спочатку метод представлення масиву у виді дерева:

Нехай A[1 n] - деякий масив. Зіставимо йому дерево, використовуючи наступні правила:

1.A[1] - корінь дерева ;

2.Якщо A[i] - вузол дерева і 2i Ј n, то A[2*i] - вузол - “лівий син” вузла A[i]

3.Якщо A[i] - вузол дерева і 2i + 1 Ј n, то A[2*i+1] - вузол - “правий син” вузла A[i]

Правила 1-3 визначають у масиві структуру дерева, причому глибина дерева не перевершує [log2 n] + 1. Вони ж задають спосіб руху по дереву від кореня до листків. Рух вгору задається правилом 4:

4.Якщо A[i] - вузол дерева і i > 1, то A[i mod 2] - вузол - “батько” вузла A[i]

2. Швидке сортування Хоара

Удосконаливши метод сортування, який грунтується на обмінах, К. Хоар запропонував алгоритм QuickSort сортування масивів, що дає на практиці відмінні результати і дуже просто програмується. Автор назвав свій алгоритм швидким сортуванням.

Ідея К. Хоара полягає в наступному:

1 Виберемо деякий елемент x масиву A випадковим образом;

2.Переглядаємо масив у прямому напрямку (i = 1, 2, .), шукаючи в ньому елемент A[i] не менший за x;

3.Переглядаємо масив у зворотньому напрямку (j = n, n-1, ), шукаючи в ньому елемент A[j] не більший за x;

4.Змінюємо місцями A[i] і A[j];

Пункти 2-4 повторюємо доти, поки i < j;

У результаті такого зустрічного проходу початок масиву A[1 i] і кінець масиву A[j n] виявляються розділеними “бар"єром” x: A[k] ( x при k < i, A[k] ( x при k > j , причому на поділ ми затратимо не більш за x; n/2 перестановок. Тепер залишилося проробити ті ж дії з початком і кінцем масиву, тобто застосувати їх рекурсивно.

Аналіз складності алгоритму в середньому, що використовує гіпотезу про рівну імовірність усіх входів, показує, що:

C(n) = O(n log2 n), M(n) = O(n log2 n)

У гіршому випадку, коли в якості бар"єрного вибирається, наприклад, максимальний елемент підмассиву, складність алгоритму квадратична.

сортування алгоритм програма метод

3. Метод цифрового сортування

Іноді при розв'язанні задач типу задачі сортування можна використовувати особливості типу перетворюваних даних для одержання ефективного алгоритму. Розглянемо одну з таких задач - задачу про звертання підстановки.

Підстановкою безлічі 1 n назвемо двовимірний масив A[1 2, 1 n] виду

1 2 n-1 n

j1 j2 jn-1 jn

у якому 2-ий рядок містить всі елементи відрізка 1 n. Підстановка B називається зворотньою до підстановки A, якщо B виходить з A сортуванням стовпчиків A у порядку зростання елементів 2-го рядка з наступною перестановкою рядків. Потрібно побудувати алгоритм обчислення зворотньої підстановки. З визначення випливає, що стовпчик [i, ji] підстановки A потрібно перетворити в стовпчик [ji , i] і поставити на ji-те місце в підстановці B.

Складність процедури Reverse лінійна, оскільки тіло арифметичного циклу складається з двох операторів присвоювання, в той час як стовпчики підстановки відсортована.

Висновок

Отже, ми розглянули як працюють швидкі алгоритми сортування і спробували визначити їх складність.

Застосування того чи іншого алгоритму сортування для вирішення конкретної задачі є досить складною проблемою, вирішення якої потребує не лише досконалого володіння саме цим алгоритмом, але й всебічного розглядання того чи іншого алгоритму, тобто визначення усіх його переваг і недоліків.

Звичайно, необхідність застосування саме швидких алгоритмів сортування очевидна. Адже прості алгоритми сортування не дають бажаної ефективності в роботі програми. Але завжди треба пам'ятати й про те, що кожний швидкий алгоритм сортування поряд із своїми перевагами може містити і деякі недоліки.

Так, алгоритм сортування деревом, хоча й працює однаково на всіх входах (так, що його складність в гіршому випадку співпадає зі складністю в середньому), але цей алгоритм має і досить суттєвий недолік: для нього потрібна додаткова пам'ять розміром 2n-1.

Розглядаючи такий швидкий алгоритм сортування, як пірамідальне сортування, можна зазначити, що цей алгоритм ефективніший ніж попередній, адже він сортує “на місці” , тобто він не потребує додаткових масивів. Крім того, цей алгоритм (“ з точністю до мультиплікативної константи” (4, 74)) оптимальний: його складність співпадає з нижньою оцінкою задачі, тобто за критеріями C(n) та M(n) він має складність O(n log2 n), але містить складний елемент в умові. Тобто, в умові A[left] має бути строго менше ніж x , а A[right] - строго більше за x. Якщо ж замість “строго більше” та “строго менше” поставити знаки, що позначають “більше, або дорівнює” та “менше, або дорівнює”, то індекси left і right пробіжать увесь масив і побіжать далі. Вийти з цієї ситуації можна було б шляхом ускладнення умов продовження перегляду, але це б погіршило ефективність програми.

В нашій роботі ми розглянули деякі швидкі алгоритми сортування та їх реалізацію мовою Pascal, дослідили не лише переваги таких алгоритмів, ефективність їх використання, але й визначили деякі недоліки окремих алгоритмів, що заважають вживати їх для вирішення першої ліпшої задачі сортування.

Отже, головною задачею, яку має вирішити людина, яка повинна розв'язати задачу сортування - це визначення як позитивних, так і усіх негативних характеристик різних алгоритмів сортування, передбачення кінцевого результату. До того ж , треба враховувати головне - чи , можливо, цю задачу задовольнить один з класичних простих алгоритмів сортування.

Література

1. Абрамов С.А., Зима Е.В. Начала программирования на языке Pascal. - М.: Наука, 1987.

2. Абрамов В.Г. Введение в язык Pascal: Учебное пособие для студентов вузов по специальности Прикладная математика. - М.: Наука, 1988.

3. Джонс Ж., Харроу К. Решение задач в системе Турбо-Паскаль/ Перевод с английского Улановой, Широкого. - М.: Финансы и статистика, 1991.

4. Зуев Е.А. Язык программирования Турбо Паскаль 6.0, 7.0. - М.: Радио и связь, 1993.

5. Культин Н.Б. Программирование в TurboPascal 7.0 и Delphi. - Санкт-петербург,1999.

6. Львов М.С., Співаковський О.В. Основи алгоритмізації та програмування. - Херсон, 1997.

7. Перминов О. Н. Программирование на языке Паскаль. - М.: Радио и связь, 1988.

8. Перминов О.Н. Язык программирования Pascal. - М.: Радио и свіязь,1989.

9. Турбо Паскаль 7.0 Издание 10-е стереотипное. - Санкт-Петербург: “Печатный Двор”, 1999.

10. Фаронов В.В. TurboPascal 7.0 . Начальный курс. - М.: “Нолидж”, 2000.

Размещено на Allbest.ru


Подобные документы

  • Вирішення задач сортування в програмуванні та розробка ефективних алгоритмів сортування. Знайомство з теоретичним положенням, що стосуються методів сортування файлів, реалізації їх на мові програмування Turbo Pascal. Методи злиття впорядкованих серій.

    курсовая работа [46,9 K], добавлен 16.09.2010

  • Особливості методів сортування масивів прямим та бінарним включенням. Порівняльна характеристика швидкодії алгоритмів сортування способами включення із зменшуваними швидкостями, обміну на великих відстанях, вибору при допомозі дерева (Тree і Heap Sorts).

    курсовая работа [58,9 K], добавлен 16.09.2010

  • Характеристика швидкодії алгоритмів сортування масивів прямим і бінарним включенням, методами "бульбашки", "камінця", та шейкерного відбору, визначення їх переваг та недоліків. Огляд функцій сортування із стандартної бібліотеки мови програмування С++.

    курсовая работа [452,1 K], добавлен 16.09.2010

  • Прості алгоритми сортування та їх програмування. Сортування вставками - алгоритм сортування на основі порівнянь. Злиття двох упорядкованих послідовностей (сортування злиттям). Ідея алгоритму швидкого сортування. Алгоритм сортування на основі порівнянь.

    лабораторная работа [631,3 K], добавлен 19.08.2010

  • Задача сортування даних в програмуванні. Алгоритм сортування обміном за критерієм або вибором, деревом, пірамідальне, швидке, сортування Хоара та метод цифрового сортування. Системні вимоги та інструкція для користувача. Алгоритм та лістинг програми.

    курсовая работа [20,6 K], добавлен 08.08.2009

  • Приклад реалізації крок за кроком методу сортування масивів "бульбашка", характеристика етапів. Графічне представлення методу, фрагмент програми його реалізації. Алгоритми сортування масивів методами вибору та вставок, опис особливостей їх реалізації.

    презентация [824,2 K], добавлен 26.11.2014

  • Розгляд основ сучасної технології підготовки та рішення на електронних обчислювальних машинах розрахункових задач військового та прикладного характеру. Побудова блок схеми, програмної реалізації алгоритму сортування. Оцінка трудомісткості сортування.

    курсовая работа [301,5 K], добавлен 08.07.2015

  • Вивчення можливостей інтегрованого середовища розробки програм Qt Creator. Ознайомлення з основами паралельних обчислень мовою програмування С++ в цьому середовищі. Переваги та конструкції OpenMP, сортування масиву злиттям. Тестування програми сортування.

    курсовая работа [87,5 K], добавлен 28.10.2015

  • Алгоритм покриття за методом "мінімальній стовпець - максимальний рядок". Підпрограми основного алгоритму. Розробка програми сортування методом простих включень (бульбашковим методом). Словесний опис алгоритму, його контрольний приклад та ефективність.

    курсовая работа [36,4 K], добавлен 06.03.2013

  • Визначення поняття алгоритма як набору інструкцій, які можна реалізувати чисто механічно, незалежно від розумових здібностей і можливостей виконавця. Словесний опис алгоритму сортування Шейкер та його роботи. Метод побудови одного найкоротшого покриття.

    курсовая работа [38,1 K], добавлен 27.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.