Сложные алгоритмы

Алгоритмы, содержащие команды повторения. Основные этапы подготовки циклов "До", "Пока" и "Для". Программы для языка Бейсик. Свойства алгоритмов. Виды алгоритмов и их реализация. Методы изображение алгоритмов. Нахождение максимального из двух значений.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 12.12.2011
Размер файла 83,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сложные алгоритмы

Алгоритмы, содержащие команды повторения, называют циклическими. Команды повторения составляют цикл. Цикл - это такая форма организации действий, при которой одна последовательность действий повторяется несколько раз (или ни разу), до тех пор, пока выполняются некоторые условия.

Существуют три вида циклов. Это: цикл «До», цикл «Пока», цикл «Для…». Они все состоят из нескольких этапов. Это:

Подготовка цикла, в которую входят начальные присвоения;

Тело цикла - команды повторения цикла;

Условие - обязательная часть циклов «До» и «Пока».

Рассмотрим цикл «До». Цикл «До» это такой цикл, где тело цикла выполняется перед условием. Его лучше использовать в той циклической структуре, где заранее известно число повторений блока условия.

Это простейшая блок-схема цикла «До».

присвоение

тело цикла

условие

Приведу программы на языке Бейсик:

10 A=0

20 A=A+1

30 IF NOT A=10 THEN GOTO 20

40 PRINT A

50 END

10 A=0

20 A=A+0.01

30 IF INT(A)=0 THEN GOTO 20

40 PRINT A

50 END

Этот цикл выполняется не менее одного раза.

Блок-схемы на эти программы:

1)

нач

А:=0

А:=А+1

- А=10

+

вывод А

кон

2)

нач

А:=0

А:=А+0.01

+

INT(A)=0

вывод А

кон

Теперь рассмотрим цикл «Пока»

Цикл «Пока» это такой цикл, где тело цикла выполняется, пока выполняются некоторые условия. Его лучше использовать там, где сразу неизвестны начальные значения цикла.

Этот цикл может не выполнится.

Приведу программы для языка Бейсик:

1)

10 INPUT A

20 IF A=>50 THEN GOTO 50

30 A=A+1

40 GOTO 20

50 PRINT A

60 END

2)

10 INPUT A

20 IF A<50 THEN A=A+1: GOTO 20

30 PRINT A

40 END

Блок-схемы на эти программы:

нач

ввод А

+ А=>50

-

А:=А+1

вывод А

кон

нач

ввод А

- A<50

+

А:=А+1

вывод А

кон

В блок-схемах различий очень мало, но во 2 случае в программа на Бейсике заметно упрощается. Хотя их цели одинаковы.

Оформление в алгоритмах такое:

пока

нц

серия повторяющихся команд

кц

Цикл «Для…»

Цикл «Для…» это цикл с параметром, что приводит к тому, что условие не нужно. В этом случае обязательны два параметра. Это - начальное и конечное значение цикла. А также не обязательным это шаг цикла.

Для А от Х до У шаг Z

Х - начальное значение

У - конечное значение

шаг или приращение

А - переменная, которой присваивается значения начиная с Х до У с шагом Z.

Пример в программе на языке Бейсик:

10 X=1: Y=10: Z=1: B=0

20 FOR A=X TO Y STEP Z

30 B=B+1

40 NEXT A

50 PRINT A

60 END

В этой записи можно использовать числовые значения, вместо переменных. И если шаг равен 1, то строка STEP Z не обязательна.

На алгоритмическом языке запись такая:

Для А от Х до У шаг Z

нц

серия повторяющихся команд

кц

Существует также пустой цикл - это цикл без тела цикла. В большинстве случаев он применяется для создания пауз в программах.

Наиболее в алгоритмах и программах применяются два вида циклов. Это циклы «Пока» и «Для…».

Циклы очень часто используют в прикладных программах и алгоритмах.

Определение алгоритма

Слово «Алгоритм» происходит от algorithmi - латинского написания имени аль-Хорезми, под которым в средневековой Европе знали величайшего математика из Хорезма (город в современном Узбекистане) Мухаммеда бен Мусу, жившего в 783-850 гг. В своей книге «Об индийском счете» он сформулировал правила записи натуральных чисел с помощью арабских цифр и правила действий над ними столбиком. В дальнейшем алгоритмом стали называть точное предписание, определяющее последовательность действий, обеспечивающую получение требуемого результата из исходных данных. Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством. Создание алгоритма, пусть даже самого простого, - процесс творческий. Он доступен исключительно живым существам, а долгое время считалось, что только человеку. Другое дело - реализация уже имеющегося алгоритма. Ее можно поручить субъекту или объекту, который не обязан вникать в существо дела, а возможно, и не способен его понять. Такой субъект или объект принято называть формальным исполнителем. Примером формального исполнителя может служить стиральная машина-автомат, которая неукоснительно исполняет предписанные ей действия, даже если вы забыли положить в нее порошок. Человек тоже может выступать в роли формального исполнителя, но в первую очередь формальными исполнителями являются различные автоматические устройства, и компьютер в том числе. Каждый алгоритм создается в расчете на вполне конкретного исполнителя. Те действия, которые может совершать исполнитель, называются его его допустимыми действиями. Совокупность допустимых действий образует систему команд исполнителя. Алгоритм должен содержать только те действия, которые допустимы для данного исполнителя.

Свойства алгоритмов

Данное выше определение алгоритма нельзя считать строгим - не вполне ясно, что такое «точное предписание» или «последовательность действий, обеспечивающая получение требуемого результата». Поэтому обычно формулируют несколько общих свойств алгоритмов, позволяющих отличать алгоритмы от других инструкций.

Такими свойствами являются:

Дискретность (прерывность, раздельность) - алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

Определенность - каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

Результативность (конечность) - алгоритм должен приводить к решению задачи за конечное число шагов.

Массовость - алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Правила выполнения арифметических операций или геометрических построений представляют собой алгоритмы. При этом остается без ответа вопрос, чем же отличается понятие алгоритма от таких понятий, как «метод», «способ», «правило». Можно даже встретить утверждение, что слова «алгоритм», «способ», «правило» выражают одно и то же (т.е. являются синонимами), хотя такое утверждение, очевидно, противоречит «свойствам алгоритма».

Само выражение «свойства алгоритма» не совсем корректно. Свойствами обладают объективно существующие реальности. Можно говорить, например, о свойствах какого-либо вещества. Алгоритм - искусственная конструкция, которую мы сооружаем для достижения своих целей. Чтобы алгоритм выполнил свое предназначение, его необходимо строить по определенным правилам. Поэтому нужно говорить все же не о свойствах алгоритма, а о правилах построения алгоритма, или о требованиях, предъявляемых к алгоритму.

Первое правило - при построении алгоритма, прежде всего, необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные.

Это правило позволяет сразу отделить алгоритмы от «методов» и «способов». Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.

Второе правило - для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т.е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти.

В школьной «теории алгоритмов» эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил. В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило - дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.

Четвертое правило - детерминированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки.

Пятое правило - сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Итак, алгоритм - неопределяемое понятие теории алгоритмов. Алгоритм каждому определенному набору входных данных ставит в соответствие некоторый набор выходных данных, т.е. вычисляет (реализует) функцию. При рассмотрении конкретных вопросов в теории алгоритмов всегда имеется в виду какая-то конкретная модель алгоритма.

Виды алгоритмов и их реализация

Алгоритм применительно к вычислительной машине - точное предписание, т.е. набор операций и правил их чередования, при помощи которого, начиная с некоторых исходных данных, можно решить любую задачу фиксированного типа.

Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

Механические алгоритмы, или иначе детерминированные, жесткие (например алгоритм работы машины, двигателя и т.п.);

Гибкие алгоритмы, например стохастические, т.е. вероятностные и эвристические.

Механический алгоритм задает определенные действия, обозначая их в единственной и достоверной последовательности, обеспечивая тем самым однозначный требуемый или искомый результат, если выполняются те условия процесса, задачи, для которых разработан алгоритм.

Вероятностный (стохастический) алгоритм дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.

Эвристический алгоритм (от греческого слова «эврика») - это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя. К эвристическим алгоритмам относят, например, инструкции и предписания. В этих алгоритмах используются универсальные логические процедуры и способы принятия решений, основанные на аналогиях, ассоциациях и прошлом опыте решения схожих задач.

Линейный алгоритм - набор команд (указаний), выполняемых последовательно во времени друг за другом.

Разветвляющийся алгоритм - алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.

Циклический алгоритм - алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов.

Цикл программы - последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.

Вспомогательный (подчиненный) алгоритм (процедура) - алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи. В некоторых случаях при наличии одинаковых последовательностей указаний (команд) для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм.

Методы изображение алгоритмов

На практике наиболее распространены следующие формы представления алгоритмов:

словесная (записи на естественном языке);

графическая (изображения из графических символов);

псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);

программная (тексты на языках программирования).

Словесное описание алгоритма

Данный способ получил значительно меньшее распространение из-за его многословности и отсутствия наглядности.

Рассмотрим пример на алгоритме нахождение максимального из двух значений:

Определим форматы переменных X, Y, M, где X и Y - значения для сравнения, M - переменная для хранения максимального значения;

получим два значения чисел X и Y для сравнения;

сравним X и Y.

если X меньше Y, значит большее число Y.

Поместим в переменную M значение Y.

Если X не меньше (больше) Y, значит большее число X.

Поместим в переменную M значение X.

Словесный способ не имеет широкого распространения по следующим причинам:

такие описания строго не формализуемы;

страдают многословностью записей;

допускают неоднозначность толкования отдельных предписаний.

Блок-схема алгоритма

А этот способ оказался очень удобным средством изображения алгоритмов и получил широкое распространение в научной и учебной литературе.

Структурная (блок-, граф-) схема алгоритма - графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок (линий перехода) блоков - графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия.

Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, т.к. зрительное восприятие обычно облегчает процесс написания программы, ее корректировки при возможных ошибках, осмысливание процесса обработки информации.

Можно встретить даже такое утверждение: «Внешне алгоритм представляет собой схему - набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации «. Здесь форма представления алгоритма смешивается с самим алгоритмом.

Принцип программирования «сверху вниз» требует, чтобы блок-схема поэтапно конкретизировалась и каждый блок «расписывался» до элементарных операций. Но такой подход можно осуществить при решении несложных задач. При решении сколько-нибудь серьезной задачи блок-схема «расползется» до такой степени, что ее невозможно будет охватить одним взглядом.

Блок-схемы алгоритмов удобно использовать для объяснения работы уже готового алгоритма, при этом в качестве блоков берутся действительно блоки алгоритма, работа которых не требует пояснений. Блок-схема алгоритма должна служить для упрощения изображения алгоритма, а не для усложнения.

В таблице приведены наиболее часто употребляемые символы.

алгоритм цикл бейсик программа

Название символа

Обозначение и пример заполнения

Пояснение

Процесс

Вычислительное действие или последовательность действий

Решение

Проверка условий

Модификация

Начало цикла

Предопределенный процесс

Вычисления по подпрограмме, стандартной подпрограмме

Ввод-вывод

Ввод-вывод в общем виде

Пуск-останов

Начало, конец алгоритма, вход и выход в подпрограмму

Документ

Вывод результатов на печать

Блок «процесс» применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок «решение» используется для обозначения переходов управления по условию. В каждом блоке «решение» должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок «модификация» используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок «предопределенный процесс» используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

Пример блок - схемы алгоритма нахождения максимального из двух значений

Литература

1. Вычислительная техника и программирование. Под ред. А.В. Ретрова. - М.: Высшая школа, 1990

2. Кузнецов А.А. и др. Основы информатики. - М.: Дрофа, 1998

3. Кушниренко А.Г. и др. Информатика. - М.: Дрофа, 1998

4. Лебедев Г.В., Кушниренко А.Г. 12 лекций по преподаванию курса информатики. - М.: Дрофа, 1998

5. Шауцукова Л.З. Информатика 10 - 11. М.: Просвещение, 2000

Размещено на Allbest.ru


Подобные документы

  • Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.

    реферат [187,4 K], добавлен 21.01.2014

  • Критерии и основные стратегии планирования процессора. Разработка моделей алгоритмов SPT (Shortest-processing-task-first) и RR (Round-Robin). Сравнительный анализ выбранных алгоритмов при различных условиях и различном количестве обрабатываемых данных.

    курсовая работа [179,3 K], добавлен 21.06.2013

  • Алгоритм - определенная последовательность действий для получения решения задачи, его сущность и свойства. Основные характеристики разветвляющегося, циклического и линейного алгоритмов. Применение базовых алгоритмов при написании программных продуктов.

    презентация [221,5 K], добавлен 01.03.2012

  • Методы реализации алгоритмов сортировки и алгоритмов поиска на языках программирования высокого уровня. Программирование алгоритмов сортировки и поиска в рамках создаваемого программного средства на языке Delphi. Создание руководства пользователя.

    курсовая работа [1,7 M], добавлен 16.04.2012

  • Обнаружение деталей и их границ изображения. Применение ранговых алгоритмов. Использование алгоритмов адаптивного квантования мод в режиме пофрагментной обработки. Обобщенная линейная фильтрация изображений. Восстановление отсутствующих участков.

    курсовая работа [1,8 M], добавлен 17.06.2013

  • Реализация алгоритмов Краскала и Прима для построения минимального остовного дерева взвешенного связного неориентированного графа. Анализ трудоемкости алгоритмов, их псевдокоды и тестирование. Применение алгоритма Краскала на практике в работе авиалиний.

    курсовая работа [142,0 K], добавлен 25.12.2012

  • Понятие и свойства алгоритмов: рекурсивного, сортировки и поиска. Простая программа и структурный подход к разработке алгоритмов. Язык блок-схем и проектирования программ (псевдокод). Рассмотрение принципов объектно-ориентированного программирования.

    презентация [53,1 K], добавлен 13.10.2013

  • Свойства и виды алгоритмов. Составление программы, которая бы определила предыдущий и последующий символ для символа 'F' по таблице кодировки. Алгоритм нахождения максимального из двух значений. Программа замены местами в матрице элементов строк.

    курсовая работа [133,4 K], добавлен 16.05.2015

  • Последовательность действий, понятных для исполнителя и ведущая к решению поставленной задачи. Форма представления алгоритма для исполнения его машиной. Основные свойства алгоритмов и способы их записи. Линейный, разветвляющийся и циклический алгоритмы.

    презентация [128,2 K], добавлен 22.10.2012

  • Создание схем алгоритмов и составление программы на языке Pascal для вычисления значений заданных функций. Сущность и порядок нахождения значения определенного интеграла. Анализ работы подпрограмм. Разработка тестов для проверки правильности алгоритмов.

    контрольная работа [831,0 K], добавлен 24.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.