Классификация вычислительных систем

Предпосылки появления и закономерности развития электронной вычислительной техники. Признаки структурной и функциональной организации вычислительных систем. Основные принципы построения, закладываемые при их создании. Средства специализации ВС.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 22.11.2011
Размер файла 140,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

Российской федерации

ГОУ ВПО «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ

ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ (РИНХ)»

ГУКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ И ПРАВА (филиал)

Домашнее задание по курсу

«Информационные системы в экономике»

Классификация вычислительных систем

студента II курса

заочной формы обучения гр. 521-зк

Золотарёва Н.В.

г. Гуково

2011 г.

Вычислительные машины за свою полувековую историю прошли стремительный и впечатляющий путь, отмеченный частыми сменами поколений ЭВМ. В этом процессе развития можно выявить целый ряд закономерностей:

· весь период развития средств электронной вычислительной техники отмечен доминирующей ролью классической структуры ЭВМ (структуры фон Неймана), основанной на методах последовательных вычислений;

· основным направлением совершенствованием ЭВМ является неуклонный рост производительности (быстродействия) и интеллектуальности вычислительных средств;

· совершенствование ЭВМ осуществлялось в комплексе (элементно-конструкторская база, структурно-аппаратные решения, системно-программный и пользовательский, алгоритмический уровни);

· в настоящее время наметился кризис классической структуры ЭВМ, связанный с исчерпанием всех основных идей последовательного счета. Возможности электроники также не безграничны, давление пределов ощутимо и здесь.

Дальнейшее поступательное развитие вычислительной техники напрямую связано с переходом к параллельным вычислениям, с идеями построения многопроцессорных систем и сетей, объединяющих большое количество отдельных процессоров и (или) ЭВМ. Здесь появляются огромные возможности совершенствования средств вычислительной техники. Но следует отметить, что при несомненных практических достижениях в области параллельных вычислений до настоящего времени отсутствует их единая теоретическая база.

Термин вычислительная система появился в начале - середине 60-х гг. при создании ЭВМ третьего поколения. Это время знаменовалось переходом на новую элементную базу - интегральные схемы. Следствием этого явилось появление новых технических решений: разделение процессов обработки информации, и ее ввода-вывода, множественный доступ и коллективное использование вычислительных ресурсов в пространстве и во времени. Появились сложные режимы работы ЭВМ - многопользовательская и многопрограммная обработка.

Отражая эти новшества, и появился термин «вычислительная система». Он не имеет единого толкования в литературе, его иногда даже используют применительно к однопроцессорным ЭВМ. Однако общим здесь является подчеркивание возможности построения параллельных ветвей в вычислениях, что не предусматривалось классической структурой ЭВМ.

Под вычислительной системой (ВС) будем понимать совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для сбора, хранения, обработки и распределения информации. Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку. Создание ВС преследует следующие основные цели: повышение производительности системы за счет ускорения процессоров обработки данных, повышение надежности и достоверности вычислений, предоставление пользователям дополнительных сервисных услуг и т.д.

Параллелизм в вычислениях в значительной степени усложняет управление вычислительным процессом, использование технических и программных ресурсов. Эти функции выполняет операционная система ВС.

Самыми важными предпосылками появления и развития вычислительных систем служат экономические факторы. Анализ характеристик ЭВМ различных поколений показал, что в пределах интервала времени, характеризующегося относительной стабильностью элементной базы, связь стоимости и производительности ЭВМ выражается квадратичной зависимостью - «законом Гроша»:

Сэвм= К12эвм

Построение же вычислительных систем позволяет значительно сократить затраты, так как для них существует линейная формула:

Свс2

где: Сэвм, Свс - соответственно стоимость ЭВМ и ВС;

К1 и К2 - коэффициенты пропорциональности, зависящие от технического уровня развития вычислительной техники;

Пэвм, П1 - производительность ЭВМ и i-го из n комплектующих вычислителей (ЭВМ или процессоров).

Рис. 1.1. Зависимость стоимости Свс и Сэвм от производительности

На рис. 1.1 представлены графики изменения стоимости вычислений для ЭВМ и ВС существует критический порог сложности решаемых задач Пкр, после которого применение автономных ЭВМ становится экономически невыгодным, неэффективным. Критический порог определяется точкой пересечения двух приведенных зависимостей.

Кроме выигрыша в стоимости технических средств, следует учитывать и дополнительные преимущества. Наличие нескольких вычислений в системе позволяет совершенно по - новому решать проблемы надежности, достоверности результатов обработки, резервирования, централизации хранения обработки данных, децентрализации управления и т.д.

Основные принципы построения, закладываемые при создании ВС:

· возможность работы в разных режимах;

· модульность структуры технических и программных средств, что позволяет совершенствовать и модернизировать вычислительные системы без коренных их переделок;

· унификация и стандартизация технических и программных решений;

· иерархия в организации управления процессорами;

· способность систем к адаптации, самонастройке и самоорганизации;

· обеспечение необходимым сервисом пользователей при выполнении вычислений.

В настоящее время накоплен большой практический опыт в разработке и использовании ВС самого разнообразного применения. Эти системы очень сильно отличаются друг от друга своими возможностями и характеристиками. Различия наблюдаются уже на уровне структуры.

Структура ВС - это совокупность комплексируемых элементов и их связей. В качестве элементов ВС выступают отдельные ЭВМ и процессоры. В ВС, относящихся к классу больших систем, можно рассматривать структуры технических, программных средств, структуры управления и т.д.

Существует большое количество признаков, по которым классифицируют вычислительные системы: по целевому назначению и выполняемым функциям, по типам и числу ЭВМ или процессоров, по архитектуре системы, режимам работы, методам управления элементами системы, степени разобщенности элементов вычислительной системы и др. Однако основными из них являются признаки структурной и функциональной организации вычислительной системы.

По назначению вычислительные системы делят на универсальные и специализированные. Универсальные ВС предназначаются для решения самых различных задач. Специализированные системы ориентированы на решение узкого класса задач. Специализация ВС может устанавливаться различными средствами:

· во-первых, сама структура системы (количество параллельно работающих элементов, связи между ними и т.д.) может быть ориентирована на определенные виды обработки информации: матричные вычисления, решение алгебраических, дифференциальных и интегральных уравнений и т.п. Практика разработки ВС типа суперЭВМ показала, что, чем выше их производительность, тем уже класс эффективно решаемых ими задач;

· во-вторых, специализация ВС может закладываться включением в их состав специального оборудования и специальных пакетов обслуживания техники.

По типу вычислительные системы можно разделить на многомашинные и многопроцессорные ВС. Исторически многомашинные вычислительные системы (ММС) появились первыми. Уже при использовании ЭВМ первых поколений возникали задачи повышения производительности, надежности и достоверности вычислений. Для этих целей использовали комплекс машин, схематически показанный на рис. 1.2, а.

электронный вычислительный система

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис. 1.2. Типы ВС: а - многомашинные комплексы;

б - многопроцессорные системы

Положения 1 и 3 электронного ключа (ЭК) обеспечивали режим повышенной надежности. При этом одна из машин выполняла вычисления, а другая находилась в «горячем» или «холодном» резерве, т.е. в готовности заменить основную ЭВМ. Положение 2 электронного ключа соответствовало случаю, когда обе машины обеспечивали параллельный режим вычислений. Здесь возможны две ситуации:

а) обе машины решают одну и ту же задачу и периодически сверяют результаты решения. Тем самым обеспечивался режим повышенной достоверности, уменьшалась вероятность появления ошибок в результатах вычислений. Примерно по такой же схеме построены управляющие бортовые вычислительные комплексы космических аппаратов, ракет, кораблей. Например, американская космическая система «Шатл» содержала пять вычислительных машин, работающих по такой схеме;

б) обе машины работают параллельно, но обрабатывают собственные потоки заданий. Возможность обмена информацией между машинами сохраняется. Этот вид работы относится к режиму повышенной производительности. Она широко используется в практике организации работ на крупных вычислительных центрах, оснащенных несколькими ЭВМ высокой производительности.

Схема представленная на рис. 1.2, а, была неоднократно повторена в различных модификациях при проектировании разнообразных специализированных ММС. Основные различия ММС заключаются, как правило, в организации связи и обмена информацией между ЭВМ комплекса. Каждая из них сохраняет возможность автономной работы и управляется собственной ОС. Любая другая подключаемая ЭВМ комплекса рассматривается как специальное периферийное оборудование. В зависимости от территориальной разобщенности ЭВМ и используемых средств сопряжения обеспечивается различная оперативность их информационного взаимодействия.

Многопроцессорные системы (МПС) строятся при комплексировании нескольких процессоров (рис. 1.2, б). В качестве ресурса они имеют оперативную память (ООП). Параллельная работа процессоров и использование ООП обеспечивается под управлением единой операционной системы. По сравнению с ММС здесь достигается наивысшая оперативность взаимодействия вычислителей-процессоров. Многие исследователи считают, что использование МПС является основным магистральным путем развития вычислительной техники новых поколений.

Однако МПС имеет и существенные недостатки. Они в первую очередь связаны с использованием ресурсов общей оперативной памяти. При большом количестве комплексируемых процессоров возможно возникновение конфликтных ситуаций, когда несколько процессоров обращаются с операциями типа «чтение» и «запись» к одним и тем же областям памяти. помимо процессоров к ООП подключаются все каналы (процессоры ввода-вывода), средства измерения времени и т.д. Поэтому вторым серьезным недостатком МПС является проблема коммутации абонентов и доступа их к ООП. От того, насколько удачно решаются эти проблемы, и зависит эффективность применения МПС. Это решение обеспечивается аппаратно-программными средствами. процедуры взаимодействия очень сильно усложняют структуру ОС МПС. Накопленный опыт построения подобных систем показал, что они эффективны при небольшом числе комплексируемых процессоров (от 2-4 до 10). В отечественных системах «Эльбрус» обеспечивалась возможность работы до 10 процессоров, до 32 модулей памяти, до 4 процессоров ввода-вывода и до 16 процессоров связи.

Создание подобных коммутаторов представляет собой сложную техническую задачу, тем более, что они должны быть дополнены буферами для организации очередей запросов. Для разрешения конфликтных ситуаций необходимы схемы приоритетного обслуживания. До настоящего времени в номенклатуре технических средств ЭВТ отсутствуют высокоэффективные коммутаторы общей памяти.

По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы. Однородные системы предполагают комплексирование однотипных ЭВМ (процессоров), неоднородные-разнотипных. В однородных системах значительно упрощается разработка и обслуживание технических и программных (в основном ОС) средств. В них обеспечивается возможность стандартизации и унификации соединений и процедур взаимодействия элементов системы. Упрощается обслуживание систем, облегчается модернизация и их развитие. Вместе с тем существуют и неоднородные ВС, в которых комплексируемые элементы очень сильно отличаются по своим техническим и функциональным характеристикам. Обычно это связано с необходимостью параллельного выполнения многофункциональной обработки. Так, при построении ММС, обслуживающие каналы связи, целесообразно объединять в комплекс связные, коммуникационные машины и машины обработки данных. В таких системах коммуникационные ЭВМ выполняют функции связи, контроля получаемой и передаваемой информации, формирование пакетов задач и т.д. ЭВМ обработки данных не занимаются не свойственными им работами по обеспечению взаимодействия в сети, а все их ресурсы переключаются на обработку данных. Неоднородные системы находят применение и МПС. Многие ЭВМ, в том числе и ПЭВМ, могут использовать сопроцессоры: десятичной арифметики, матричные и т.п.

По степени территориальной разобщенности вычислительных модулей ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) типов. Обычно такое деление касается только ММС. Многопроцессорные системы относятся к системам совмещенного типа. Более того, учитывая успехи микроэлектроники, это совмещение может быть очень глубоким. При появлении новых СБИС появляется возможность иметь в одном кристалле несколько параллельно работающих процессоров.

В совмещенных и распределенных ММС сильно различается оперативность взаимодействия в зависимости от удаленности ЭВМ. Время передачи информации между ЭВМ, соединенными простым кабелем, может быть много меньше времени передачи данных по каналам связи. Как правило, все выпускаемые в мире ЭВМ имеют средства прямого взаимодействия и средства подключения к сетям ЭВМ. Для ПЭВМ такими средствами являются нуль-модемы, модемы и сетевые карты как элементы техники связи.

По методам управления элементами ВС различают централизованные, децентрализованные и со смешанным управлением. Помимо параллельных вычислений, производимых элементами системы, необходимо выделять ресурсы на обеспечение управления этими вычислениями. В централизованных ВС за это отвечает главная, или диспетчерская, ЭВМ (процессор). Ее задачей является распределение нагрузки между элементами, выделение ресурсов, контроль состояния ресурсов, координация взаимодействия. Централизованный орган управления в системе может быть жестко фиксирован, или эти функции могут передаваться другой ЭВМ (процессору), что способствует повышению надежности системы. Централизованные системы имеют более простые ОС. В децентрализованных системах функции управления распределения между ее элементами. Каждая ЭВМ (процессор) системы сохраняет известную автономию, а необходимое взаимодействие между элементами устанавливается по специальным наборам сигналов. С развитием ВС и, в частности, сетей ЭВМ интерес к децентрализованным системам постоянно растет.

В системах со смешанным управлением совмещаются процедуры централизованного и децентрализованного управления. Перераспределение функций осуществляется в ходе вычислительного процесса, исходя из сложившейся ситуации.

По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.

По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах. Первые, как правило, используют режим реального масштаба времени. Этот режим характеризуется жесткими ограничениями на время решения задач в системе и предполагает высокую степень автоматизации процедур ввода-вывода и обработки данных.

Размещено на Allbest.


Подобные документы

  • Определение перспектив, направлений и тенденций развития вычислительных систем как совокупности техники и программных средств обработки информации. Развитие специализации вычислительных систем и проблема сфер применения. Тенденции развития информатики.

    реферат [19,5 K], добавлен 17.03.2011

  • Архитектуры вычислительных систем сосредоточенной обработки информации. Архитектуры многопроцессорных вычислительных систем. Классификация и разновидности компьютеров по сферам применения. Особенности функциональной организации персонального компьютера.

    контрольная работа [910,2 K], добавлен 11.11.2010

  • Классификация Флинна как наиболее ранняя и известная классификация архитектур вычислительных систем, ее структура и содержание, признаки. Общая характеристика используемых классов. Описание и значение других распространенных методов классификации.

    лекция [173,1 K], добавлен 22.10.2014

  • История развития вычислительной техники, основные характеристики. Основное отличие вычислительной системы от компьютера, виды архитектур. Классификация уровней программного параллелизма. Главные особенности векторной, матричной обработки регистров.

    курсовая работа [36,0 K], добавлен 21.07.2012

  • История развития вычислительной техники. Понятие высокой готовности и отказоустойчивости системы. Разработка функциональной схемы отказоустойчивого кластера и структурной схемы виртуального стенда. Технико-экономическое обоснование объекта проектирования.

    дипломная работа [2,7 M], добавлен 26.02.2013

  • Классификация вычислительных систем по способам взаимодействия потоков выполняемых команд и потоков обрабатываемых данных, их разновидности и функциональные особенности. Принципы расширения классификации Флинна. Виды топологии соединительной сети.

    презентация [175,6 K], добавлен 11.10.2014

  • Классификации архитектур вычислительных систем. Организация компьютерных систем. Устройство центрального процессора. Принципы разработки современных компьютеров. Эволюция микропроцессорных систем. Увеличение числа и состава функциональных устройств.

    дипломная работа [1,4 M], добавлен 29.01.2009

  • Периодизация развития электронных вычислительных машин. Счетные машины Паскаля и Лейбница. Описаний эволюционного развития отечественных и зарубежных пяти поколений электронных вычислительных машин. Сущность внедрения виртуальных средств мультимедиа.

    доклад [23,6 K], добавлен 20.12.2008

  • Применение и развитие измерительной техники. Сущность, значение и классификация информационных измерительных систем, их функции и признаки. Характеристика общих принципов их построения и использования. Основные этапы создания измерительных систем.

    реферат [25,9 K], добавлен 19.02.2011

  • Основные этапы развития вычислительных устройств до начала 50-х годов (появление серийных ЭВМ с хранимой программой). История создания новых полностью электронных цифровых компьютеров. Принципы Неймана как основополагающие концепции построения ЭВМ.

    реферат [36,7 K], добавлен 07.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.