Сущность САПР

Характеристика системы автоматизированного проектирования летательных аппаратов, двигателя и других объектов авиационной техники. Основные понятия математического моделирования. Теоретические и экспериментальные методы получения функциональных моделей.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 22.11.2011
Размер файла 20,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Сущность САПР

1.1 Принципы САПР

1.2 Основные понятия математического моделирования

2. Обобщенная математическая модель

3. Требования к математической модели

3.1 Методы получения моделей

3.2 Использование математических моделей

Заключение

Список использованных источников

Введение

Что же такое система автоматизированного проектирования?

(САПР) авиационной техники -- организационно-техническая система, обеспечивающая автоматизацию проектирования летательных аппаратов, двигателя и других объектов авиационной техники через методическое, программное, техническое, информационное и организационное обеспечение и соответствующую структуру проектного предприятия.

Методическое обеспечение состоит из методов, математических моделей и языков описания объектов, а также нормативно-технической документации по проектированию.

Программное обеспечение включает пакеты прикладных программ, сервисные программные средства и компоненты математического обеспечения ЭВМ.

Техническое обеспечение составляют ЭВМ, их периферийные устройства и другие устройства вычислительной и организационной техники.

Информационное обеспечение образуют банки данных и системы управления базами данных (информационно-справочные системы). К организационному обеспечению относятся положения, инструкции, руководства и другие документы, определяющие взаимодействие подразделений проектного предприятия и отдельных лиц при разработке, внедрении и эксплуатации системы. В данной контрольной работе рассмотрим математические модели

1. Сущность САПР

1.1 Принципы САПР

САПР как сложная техническая система создаётся в соответствии с принципами включения, системного единства, развития, комплексности, информационного единства, совместимости, инвариантности. Принцип включения предполагает, что требования к САПР некоторого изделия (например, двигателя) или подсистеме САПР определяются со стороны САПР изделия более высокого уровня (например, самолёта) или системы в целом.

Принцип системного единства предусматривает обеспечение связей между подсистемами и компонентами САПР, совместимость средств обеспечения и наличие подсистемы управления.

Принцип развития требует функционирования САПР как развивающейся открытой системы, в которой предусмотрена возможность замены существующих компонентов и включения новых. Принцип комплексности предусматривает связанность проектирования объекта как целого и его элементов на всех стадиях разработки.

Принцип информационного единства предполагает использование единой терминологии, способов представления данных, условных обозначений и т. д., принятых соответствующими нормативными документами отраслевого значения.

Принцип совместимости требует согласования языков, символов и технических характеристик средств связи между компонентами для обеспечения совместного функционирования всех подсистем и системы в целом.

Принцип инвариантности предусматривает требования к построению компонентов, функционирование которых непосредственно не связано с конкретным объектом проектирования, что способствует снижению затрат при разработке САПР.

В зависимости от проектируемого объекта САПР авиационной техники распадается на ряд автономных систем -- САПР самолёта (вертолёта), двигателя и др. САПР осуществляет проектирование объекта от первичного описания на стадии технического предложения до изготовления и стендовых или лётных испытаний. Структурно САПР включает функциональные (объектные) подсистемы, решающие целевую задачу, и подсистемы управления ходом разработки объекта. Функциональные подсистемы САПР решают три основные задачи: проектирование объекта на этапе технических предложений (аванпроекта) и эскизного проектирования; конструирование агрегатов, узлов и деталей изделий; технологическую подготовку производства. Функциональные подсистемы обеспечивают также автоматизацию экспериментальных исследований, включая проектирование экспериментальных объектов, моделей и т. п., и обработку получаемых при испытаниях данных. Проектирование объекта на стадии технических предложений осуществляется в САПР с помощью подсистемы формирования его облика, которая позволяет проектировщику в режиме диалога с ЭВМ решать задачу автоматизации проектирования летательного аппарата или другого объекта с использованием математической модели объекта, банка возможных технических решений, а также опыта и интуиции проектировщика.

1.2 Основные понятия математического моделирования

автоматизированный математическое моделирование авиационный

Нас окружают сложные технические системы. В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью.

В широком смысле модель определяют как отражение наиболее существенных свойств объекта.

Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели:

Ўинвариантная - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

Ўаналитическая - запись модели в виде результата аналитического решения исходных уравнений модели;

Ў алгоритмическая - запись соотношений модели и выбранного численного метода решения в форме алгоритма.

Ўсхемная (графическая) - представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

Ўфизическая ;

Ўаналоговая.

Наиболее универсальным является математическое описание процессов - математическое моделирование. В понятие математического моделирования включают и процесс решения задачи на ЭВМ.

Математическое моделирование включает следующие шаги:

1) выбор расчетной схемы и определение необходимой детализации;

2) математическое описание (составление системы уравнений);

3) выбор метода решения;

4) приведение модели (включающей уравнения, метод, исходные данные и начальные условия) к виду, удобному для решения на ЭВМ;

5) составление программы для ЭВМ;

6) проведение расчетов (моделирование);

7) при необходимости повторить шаги 3 - 6;

8) анализ результатов;

9) при необходимости повторить шаги 1 - 8;

10) оформление отчета (описание, схемы, рисунки, графики, формулы);

11) при необходимости повторить шаги 1 - 10, 3 - 10, 8 - 10.

Развитие ЭВМ и программного обеспечения приводит к ускорению и облегчению выполнения каждого шага моделирования.

До недавнего времени преобладал традиционный подход, отработанный на “больших” ЭВМ.

При этом каждый этап был изолирован от других и рассчитан на работу специализированной группы. Так постановкой задачи занимались “постановщики”, разрабатывали методы решения и программировали математики и программисты, обработкой на ЭВМ и построением графиков решения занимались операторы и т.д. Большое количество времени (человеческого и машинного) требовалось на отладку программ. Решение на ЭВМ проводилось в основном в пакетном режиме. Т.е. закладывали пакет входных данных (на перфокартах, магнитных лентах или в другом виде) и получали выходные данные (в основном на бумаге, реже на магнитном носителе).

При традиционном подходе хорошо решаются многовариантные задачи на хорошо отработанных моделях. Увеличение быстродействия ЭВМ и развитие графического интерфейса позволило получать и отображать результаты в графическом виде в темпе решения, что значительно сократило объем промежуточных распечаток и бумажных отчетов. При системном подходе к моделированию должен рассматриваться весь комплекс вопросов: планирование, проведение и обработка результатов вычислительного эксперимента.

Важной задачей является обработка результатов вычислений. На этом этапе используются методы, хорошо зарекомендовавшие себя при экспериментах с реальными объектами. Результаты, полученные на математических моделях, могут быть сравнимы с результатами натурного эксперимента.

Первые персональные компьютеры в основном облегчали этап оформления результатов моделирования (шаг 10). Здесь используются текстовые редакторы, графические редакторы, программы построения графиков.

Для построения графиков результатов использовался известный многим пакет GRAPHER, первые версии которого работали еще под MS DOS.

Современные пакеты подготовки печатной продукции включают средства оформления текста, подготовки математических формул, графиков, схем, таблиц. Современные технологии позволяют подготовить документ, включающий как объекты документы других типов или гиперссылки на другие документы и программы обработки.

Наибольшее применение (по количеству) в задачах моделирования получили персональные компьютеры. Изначально широкое их использование определялось не их быстродействием, а возможностью гармонично настроить рабочее место исследователя, организовать передачу данных между задачами, получить законченный отчет.

2. Обобщенная математическая модель

Математическая модель описывает зависимость между исходными данными и искомыми величинами. Элементами обобщенной математической модели являются:

-множество входных данных (переменные) X,Y;

X - совокупность варьируемых переменных; Y - независимые переменные (константы);

- математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);

- множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функию.

Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.

Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров Rx (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.

Множество независимых переменных Y образуют метрическое пространство входных данных Ry. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry. Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.

Это могут быть:

- технические параметры объекта, не подлежащие изменению в процессе проектирования;

- физические возмущения среды, с которой взаимодействует объект проектирования;

- тактические параметры, которые должен достигать объект проектирования.

Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей RG.

3. Требования к математической модели

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.

Адекватность. Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Универсальность - определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации - затратами машинного времени и памяти.

3.1 Методы получения моделей

Получение моделей в общем случае - процедура неформализованная. Основные решения, касающиеся выбора вида математических соотношений, характера используемых переменных и параметров, принимает проектировщик. В тоже время такие операции, как расчет численных значений параметров модели, определение областей адекватности и другие, алгоритмизированы и решаются на ЭВМ. Поэтому моделирование элементов проектируемой системы обычно выполняется специалистами конкретных технических областей с помощью традиционных экспериментальных исследований.

Методы получения функциональных моделей элементов делят на: теоретические и экспериментальные.

Теоретические методы основаны на изучении физических закономерностей протекающих в объекте процессов, определении соответствующего этим закономерностям математического описания, обосновании и принятии упрощающих предположений, выполнении необходимых выкладок и приведении результата к принятой форме представления модели.

Экспериментальные методы основаны на использовании внешних проявлений свойств объекта, фиксируемых во время эксплуатации однотипных объектов или при проведении целенаправленных экспериментов.

Несмотря на эвристический характер многих операций, моделирование имеет ряд положений и приемов, общих для получения моделей различных объектов. Достаточно общий характер имеют: методика макро моделирования, математические методы планирования экспериментов, алгоритмы формализуемых операций расчета численных значений параметров и определения областей адекватности.

3.2 Использование математических моделей

Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.

При составлении математической модели от исследователя требуется:

- изучить свойства исследуемого объекта;

- умение отделить главные свойства объекта от второстепенных;

- оценить принятые допущения.

Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.

Алгоритм решения задачи на ЭВМ связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.

Формализация задачи и применение численных методов позволяют использовать хорошо изученные приемы решения и стандартное (универсальное) математическое обеспечение ЭВМ.

Применение ЭВМ повышает эффективность научных исследований, позволяет проводить моделирование сложных объектов и явлений.

Заключение

Делая выводы, отметим важную особенность системы автоматизированного проектирования. Ее применяют, чтобы повысить качество проектирования, снизить материальные затраты на него, сократить сроки выполнения. Научно обоснованное распределение функций между человеком и ЭВМ подразумевает, что человек должен решать задачи, носящие творческий характер, а ЭВМ -- задачи, решение которых поддается алгоритмизации.

Существенным отличием автоматизированного проектирования от неавтоматизированного является возможность замены дорогостоящего и занимающего много времени физического моделирования -- математическим моделированием.

Список использованных источников

1. Авиация: Энциклопедия. -- М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.;

2. Очков В.Ф. Mathcad 8 Pro для студентов и инженеров. - М.: КомпьютерПресс, 1999;

3. Плис А.И., Сливина Н.А. Mathcad: математический практикум. - М: Финансы и Статистика. - 1999;

4. Потемкин В.Г. MATLAB 5 для студентов. Справочное пособие. М: Диалог-МИФИ, 1998. - 314 с.

Размещено на Allbest.ru


Подобные документы

  • Технологии автоматизированного проектирования, автоматизированного производства, автоматизированной разработки и конструирования. Концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа как результат подпроцесса синтеза.

    реферат [387,2 K], добавлен 01.08.2009

  • Структура и классификация систем автоматизированного проектирования. Виды обеспечения САПР. Описание систем тяжелого, среднего и легкого классов. Состав и функциональное назначение программного обеспечения, основные принципы его проектирования в САПР.

    курсовая работа [37,7 K], добавлен 18.07.2012

  • Характеристика состава, интерфейса и основных возможностей программы схемотехнического моделирования и проектирования семейства Micro-Cap8, которая относится к наиболее популярным системам автоматизированного проектирования (САПР) электронных устройств.

    реферат [108,0 K], добавлен 12.03.2011

  • Основные цели и принципы построения автоматизированного проектирования. Повышение эффективности труда инженеров. Структура специального программного обеспечения САПР в виде иерархии подсистем. Применение методов вариантного проектирования и оптимизации.

    презентация [259,7 K], добавлен 26.11.2014

  • Понятие и функции систем автоматизированного проектирования (САПР), принципы их создания и классификация. Проектирующие и обслуживающие подсистемы САПР. Требования к компонентам программного обеспечения. Этапы автоматизации процессов на предприятии.

    реферат [19,8 K], добавлен 09.09.2015

  • Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.

    контрольная работа [1,3 M], добавлен 26.09.2010

  • Роль и место профессиональных компьютерных программ в современном обществе. Программы автоматизированного рабочего места (АРМ), системы автоматизированного проектирования (САПР), автоматизированные системы научных исследований (АСНИ) и управления (АСУ).

    реферат [105,7 K], добавлен 30.04.2014

  • Требования, предъявляемые к техническому обеспечению систем автоматизированного проектирования. Вычислительные сети; эталонная модель взаимосвязи открытых систем. Сетевое оборудование рабочих мест в САПР. Методы доступа в локальных вычислительных сетях.

    презентация [1,1 M], добавлен 26.12.2013

  • Основные преимущества 3D-систем автоматизированного проектирования. Характеристика назначения и основных методов создания твердотельных параметрических моделей в системе КОМПАС-3D, предназначенной для создания трехмерных параметрических моделей деталей.

    лабораторная работа [85,1 K], добавлен 25.06.2013

  • Основные направления развития системы автоматизированного проектирования, состав его лингвистического обеспечения. Назначение и принципиальное устройство ввода-вывода информации. Сущность и группы языков программирования, их роль в переработке информации.

    курсовая работа [1,9 M], добавлен 18.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.