Понятие алгоритма и его свойства

Понятие точного предписания, определяющего последовательность действий для получения требуемого результата из исходных данных. Характеристика языка блок-схем, создание алгоритма. Процесс решения задачи как последовательное выполнение простых шагов.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 12.06.2011
Размер файла 62,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Понятие алгоритма и его свойства

2. Язык блок-схем

3. Алгоритмические структуры (типы алгоритмов)

1. Понятие алгоритма и его свойства

Одним из фундаментальных понятий в информатике является понятие алгоритма. Происхождение самого термина «алгоритм» связано с математикой. Это слово происходит от Algorithmi - латинского написания имени Мухаммеда аль-Хорезми (787 - 850) выдающегося математика средневекового Востока. В своей книге "Об индийском счете" он сформулировал правила записи натуральных чисел с помощью арабских цифр и правила действий над ними столбиком. В дальнейшем алгоритмом стали называть точное предписание, определяющее последовательность действий, обеспечивающую получение требуемого результата из исходных данных. Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством. Создание алгоритма, пусть даже самого простого, - процесс творческий. Он доступен исключительно живым существам, а долгое время считалось, что только человеку. В XII в. был выполнен латинский перевод его математического трактата, из которого европейцы узнали о десятичной позиционной системе счисления и правилах арифметики многозначных чисел. Именно эти правила в то время называли алгоритмами [1].

Данное выше определение алгоритма нельзя считать строгим - не вполне ясно, что такое «точное предписание» или «последовательность действий, обеспечивающая получение требуемого результата». Поэтому обычно формулируют несколько общих свойств алгоритмов, позволяющих отличать алгоритмы от других инструкций.

Такими свойствами являются [2]:

* Дискретность (прерывность, раздельность) - алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

* Детерминированность (однозначная определенность). Многократное применение одного алгоритма к одному и тому же набору исходных данных всегда дает один и тот же результат.

* Определенность (формальность) - каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

* Результативность (конечность) - алгоритм должен приводить к решению задачи за конечное число шагов.

* Массовость - алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

На основании этих свойств иногда дается определение алгоритма, например: “Алгоритм - это последовательность математических, логических или вместе взятых операций, отличающихся детерменированностью, массовостью, направленностью и приводящая к решению всех задач данного класса за конечное число шагов” [2].

Такая трактовка понятия “алгоритм” является неполной и неточной. Во-первых, неверно связывать алгоритм с решением какой-либо задачи. Алгоритм вообще может не решать никакой задачи. Во-вторых, понятие “массовость” относится не к алгоритмам как к таковым, а к математическим методам в целом. Решение поставленных практикой задач математическими методами основано на абстрагировании - мы выделяем ряд существенных признаков, характерных для некоторого круга явлений, и строим на основании этих признаков математическую модель, отбрасывая несущественные признаки каждого конкретного явления. В этом смысле любая математическая модель обладает свойством массовости. Если в рамках построенной модели мы решаем задачу и решение представляем в виде алгоритма, то решение будет “массовым” благодаря природе математических методов, а не благодаря “массовости” алгоритма [1].

Разъясняя понятие алгоритма, часто приводят примеры “бытовых алгоритмов”: вскипятить воду, открыть дверь ключом, перейти улицу и т. д.: рецепты приготовления какого-либо лекарства или кулинарные рецепты являются алгоритмами. Но для того, чтобы приготовить лекарство по рецепту, необходимо знать фармакологию, а для приготовления блюда по кулинарному рецепту нужно уметь варить. Между тем исполнение алгоритма - это бездумное, автоматическое выполнение предписаний, которое в принципе не требует никаких знаний. Если бы кулинарные рецепты представляли собой алгоритмы, то у нас просто не было бы такой специальности - повар. Правила выполнения арифметических операций или геометрических построений представляют собой алгоритмы. При этом остается без ответа вопрос, чем же отличается понятие алгоритма от таких понятий, как “метод”, “способ”, “правило”. Можно даже встретить утверждение, что слова “алгоритм”, “способ”, “правило” выражают одно и то же (т.е. являются синонимами), хотя такое утверждение, очевидно, противоречит “свойствам алгоритма”. Само выражение “свойства алгоритма” некорректно. Свойствами обладают объективно существующие реальности. Можно говорить, например, о свойствах какого-либо вещества. Алгоритм - искусственная конструкция, которую мы сооружаем для достижения своих целей. Чтобы алгоритм выполнил свое предназначение, его необходимо строить по определенным правилам. Поэтому нужно говорить не о свойствах алгоритма, а о правилах построения алгоритма, или о требованиях, предъявляемых к алгоритму [2].

Первое правило - при построении алгоритма прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные. Это правило позволяет сразу отделить алгоритмы от “методов” и “способов”. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм [2].

Второе правило - для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти. В школьной “теории алгоритмов” эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил. В языках программирования распре-деление памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило - дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно. Четвертое правило - детерменированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки. Пятое правило - сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

2. Язык блок-схем

алгоритм схема задача

Алгоритм можно описать разными способами: словами, на языке программирования, а также с помощью блок-схем [1].

На языке блок-схем каждый шаг алгоритма описывается с помощью соответствующей фигуры, а последовательность выполнения шагов определяется линиями-связями. Блок схемы читаются сверху вниз и слева направо [3].

Блок-схемы полезны тем, что обеспечивают легкую «читаемость» алгоритма. Однако это не всегда так: стоит попытаться нарисовать блок-схему для более-менее сложного алгоритма, как она разрастается до невероятных размеров и теряет все свое наглядное преимущество. Поэтому блок-схемы хороши в структурном программировании для описания коротких алгоритмов.

Язык блок-схем прост (хотя существуют его расширенные варианты):

· Прямоугольник - выполнение действия (например, c = a + b)

· Ромб - проверка условия (например, a > b). Если условие выполняется, то алгоритм идет по линии «да», если не выполняется - то по линии «нет».

· Скругленный прямоугольник - начало и конец алгоритма

· Скошенный прямоугольник - ввод-вывод данных (например, получение значения переменной, вывод результата на экран монитора).

Это не полное описание языка блок-схем. Более полное описание приведено в таблице ниже.

1. Процесс

Выполнение операции или группы операций, в результате которых изменяется значение, форма представления или нахождение данных

2. Решение

Выбор направления выполнения алгоритма или программы в зависимости от некоторых сменных условий

3. Модификация

Выполнение операций, которые изменяют команды, или группы команд, которые изменяют программу

4. Определенный процесс

Использование созданных раньше и отдельно описанных алгоритмов или программ

5.Ввод-Вывод

Преобразование данных в форму, есть самым удобным для обработки (ввод) или отображение результатов обработки (вывод)

6. Соединитель

Указание связи между прерванными линиями потока, которые соединяют символы

7.Пуск-останов

Начало, конец, прерывание процесса обработки данных или выполнение программы

8. Комментарий

Связь между элементом схемы и объяснением

9. Междустрочный соединитель

Указание связи между разъединенными частями схем алгоритмов и программ, расположенных на разных письмах

3. Алгоритмические структуры (типы алгоритмов)

В рамках структурного программирования задачи, имеющие алгоритмическое решение, могут быть описаны с использованием следующих алгоритмических структур [3]:

· Следование. Предполагает последовательное выполнение команд сверху вниз. Если алгоритм состоит только из структур следования, то он является линейным.

· Ветвление. Выполнение программы идет по одной из двух, нескольких или множества ветвей. Выбор ветви зависит от условия на входе ветвления и поступивших сюда данных.

· Цикл. Предполагает возможность многократного повторения определенных действий. Количество повторений зависит от условия цикла.

· Функция (подпрограмма). Команды, отделенные от основной программы, выполняются лишь в случае их вызова из основной программы (из любого ее места). Одна и та же функция может вызываться из основной программы сколь угодно раз.

Алгоритмические структуры на языке блок-схем бывают следующие [4]:

Ветвление if - это самый простой тип ветвления. Если результат вычисления выражения-условия возвращает true (правда), то выполнение алгоритма идет по ветке «Да», в которую включены дополнительные выражения-действия. Если условие возвращает false (ложь), то выполнение алгоритма идет по ветке «нет», т.е продолжает выполняться основная ветка программы.

Ветвление if-else - если выражение-условие возвращает true (правда), то выполнение алгоритма идет по ветке «Да», если условие не выполняется (false), то выполнение идет по ветке «Нет». При любом результате выражения-условия нельзя вернуться в основную ветку программы, минуя дополнительные действия.

Ветвление if-elif-else. Количество условий может быть различно. Если выполняется первое, то после выполнения действий, программа переходит к основной ветке, не проверяя дальнейшие условия. Если первое условие возвращает ложь, то проверяется второе условие. Если второе условие возвращает правду, то выполняются действия, включенные в вторую ветку конструкции. Последнее условие проверяется лишь в том случае, если ни одно до него не дало в результате true. Данную алгоритмическую конструкцию (if - elif - else) не следует путать с алгоритмической конструкцией «Выбор» [4].

Цикл while. Пока условие выполняется (результат логического выражения дает true), будут выполняться действия тела цикла. После очередного выполнения вложенных действий условие снова проверяется. Для того чтобы выполнение алгоритма не зациклилось, в теле цикла (помимо прочих действий) должно быть выражение, в результате выполнения которого будет изменяться переменная, используемая в условии. Тело цикла может ни разу не выполнится, если условие с самого начала давало false.

Цикл do. В этом цикле первый раз условие проверяется лишь после выполнения действий тела цикла. Если условие возвращает true, то выражения-действия повторяются снова. Каким бы ни было условие, тело данного цикла хотя бы раз, но выполнится [3].

Цикл for. Данный цикл также называют циклом «Для» (for). В его заголовке указывается три параметра: начальное значение переменной (от), конечно значение (до) и ее изменение с помощью арифметической операции на каждом «обороте» цикла (шаг).

Список использованной литературы

1. Электронный ресурс: http://www.algoritmy.info/algolmean.html

2. Электронный ресурс: http://www.inf1.info/algorithmtype

3. Электронный ресурс: http://www.rusedu.info/Article553.html

4. Электронный ресурс: http://www.gmcit.murmansk.ru/text/information_science/base/algorithm/materials/1-2.htm

Размещено на Allbest.ru


Подобные документы

  • Изучение понятия и свойств алгоритма. Определение сущности технологии Robson. Исполнитель, а также блок-схема алгоритма или его графическое представление, в котором он изображается в виде последовательности связанных между собой функциональных блоков.

    реферат [155,9 K], добавлен 19.10.2013

  • Основные свойства алгоритма. Формальный и неформальный исполнитель алгоритма, система его команд. Способы записи алгоритма. Словесное описание, построчная запись, опорный конспект. Характеристики алгоритмического языка. Выполнение алгоритма компьютером.

    презентация [2,0 M], добавлен 04.04.2014

  • Элементы и переменные, используемые для составления записи в Паскале. Основные числовые типы языка Turbo Pascal. Составление блок-схемы приложения, программирование по ней программы для вычисления функции. Последовательность выполнения алгоритма.

    лабораторная работа [256,9 K], добавлен 10.11.2015

  • Описание решения задачи, ее постановка, общий подход к решению. Представление исходных данных, условий задачи и целей ее решения. Составление алгоритма решения поставленной задачи. Написание программного обеспечения и тестирование конечного продукта.

    курсовая работа [1,1 M], добавлен 03.07.2011

  • Общее понятие графа, его виды и сущность вершинного покрытия. Написание точного алгоритма решения задачи о надежности сети, нахождение минимального покрытия. Реализация данного алгоритма на языке TurboC++. Код программы, решающий поставленную задачу.

    курсовая работа [1,3 M], добавлен 27.06.2014

  • Создание и реализация алгоритма решения транспортной задачи методом наименьших стоимостей. Схема алгоритма основной программы. Основные шаги алгоритма решения транспортной задачи. Инструкция по эксплуатации программы и обзор результатов ее выполнения.

    курсовая работа [2,0 M], добавлен 12.02.2013

  • Транспортная задача как одна из самых распространенных специальных задач линейного программирования: понятие, основное назначение. Формальное описание метода минимального элемента. Характеристика этапов разработки алгоритма решения поставленной задачи.

    курсовая работа [713,3 K], добавлен 19.10.2012

  • Задачи, решаемые методом динамического программирования. Основные этапы нахождения деревянного алгоритма решения задачи. Выполнение алгоритма Прима. Построение Эйлерового цикла. Решение задач средствами Excel. Алгоритм основной программы - Derevo.

    курсовая работа [586,3 K], добавлен 04.04.2015

  • Изучение особенностей создания алгоритмов вычислительных задач. Визуальное программирование стандартных компонентов среды программирования Delphi. Технология создания компонента Delphi для решения производственной задачи. Выполнение блок-схемы алгоритма.

    курсовая работа [638,0 K], добавлен 30.01.2015

  • Написание модуля на языке Ассемблер для вычисления значения выражения. Составление программы корректного ввода исходных данных в таблицу и вывода результата в виде таблицы. Создание модуля для обработки строк и программы корректного ввода исходных данных.

    курсовая работа [36,8 K], добавлен 18.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.