Вычисление определенного интеграла методами трапеций и средних прямоугольников
Характеристика методов вычисления определенного интеграла - метода трапеций и средних прямоугольников, которые не дают точного значения, а только приближенное. Составление формул площадей. Алгоритм работы и листинг программы, написанной на языке Паскаль.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.04.2011 |
Размер файла | 289,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
БЕЛОРУССКИЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
КУРСОВАЯ РАБОТА
на тему “вычисление определенного интеграла методами трапеций и средних прямоугольников”
Студента 2-го курса: Полушкина О.А.
Научный руководитель: Севернева Е.В.
Минск, 1997
Содержание
- Введение, математическое обоснование и анализ задачи
- Алгоритм и его описание
- Листинг программы
- Исходные данные. Результаты расчетов и анализ
- Заключение и выводы
- Список литературы
Введение, математическое обоснование и анализ задачи
Известно, что определенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла -- метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3).
Рис. 1. Криволинейная трапеция.
Рис. 2. Метод трапеций.
Рис. 3. Метод средних прямоугольников.
По методам трапеций и средних прямоугольников соответственно интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине. Соответственно получаем формулы площадей - для метода трапеций:
,
для метода средних прямоугольников:
.
Соответственно этим формулам и составим алгоритм.
Алгоритм
Рис. 4. Алгоритм работы программы integral.pas.
Листинг программы
Программа написана на Tubro Pascla 6.0 для MS-DOS. Ниже приведен ее листинг:
program Integral;
uses
Crt, Dos;
var
dx,x1,x2,e,i:real;
function Fx(x:real):real;
begin
Fx:=2+x; {В этом месте запишите функцию, для вычисления интеграла.}
end;
procedure CountViaBar;
var
xx1,xx2:real;
c:longint;
begin
writeln('------------------------------------------------');
writeln('-->Метод средних прямоугольников.');
writeln('Всего итераций:',round(abs(x2-x1)/e));
i:=0;
for c:=1 to round(abs(x2-x1)/e) do begin
write('Итерация ',c,chr(13));
xx1:=Fx(x1+c*e);
xx2:=Fx(x1+c*e+e);
i:=i+abs(xx1+xx2)/2*e;
end;
writeln('------------------------------------------------');
writeln('Интеграл=',i);
end;
procedure CountViaTrap;
var
xx1,xx2,xx3:real;
c:longint;
begin
writeln('------------------------------------------------');
writeln('-->Метод трапеций.');
writeln('Всего итераций:',round(abs(x2-x1)/e));
i:=0;
for c:=1 to round(abs(x2-x1)/e) do begin
write('Итерация ',c,chr(13));
xx1:=Fx(x1+c*e);
xx2:=Fx(x1+c*e+e);
if xx2>xx1 then xx3:=xx1 else xx3:=xx2;
i:=i+abs(xx2-xx1)*e+abs(xx3)*e;
end;
writeln('------------------------------------------------');
writeln('Интеграл=',i);
end;
begin
writeln('------------------------------------------------');
writeln('-=Программа вычисления определенного интеграла=-');
writeln('Введите исходные значения:');
write('Начальное значение x (x1)=');Readln(x1);
write('Конечное значение x (x2)=');Readln(x2);
write('Точность вычисления (e)=');Readln(e);
CountViaBar;
CountViaTrap;
writeln('------------------------------------------------');
writeln('Спасибо за использование программы ;^)');
end.
Исходные данные. Результаты расчетов и анализ
Ниже приведен результат работы написанной и откомпилированной программы:
-= Программа вычисления определенного интеграла =-
Введите исходные значения:
Начальное значение x (x1)=0
Конечное значение x (x2)=10
Точность вычисления (e)=0.01
-->Метод средних прямоугольников.
Всего итераций:1000
Интеграл = 7.0100000000E+01
-->Метод трапеций.
Всего итераций:1000
Интеграл = 7.0150000001E+01
Спасибо за использование программы ;^)
Расчет проверялся для функции , а определенный интеграл брался от 0 до 10, точность 0,01.
В результате расчетов получаем:
Интеграл .
Методом трапеций .
Методом средних прямоугольников .
Также был произведен расчет с точностью 0,1:
Интеграл .
Методом трапеций .
Методом средних прямоугольников .
Заключение и выводы
Таким образом очевидно, что при вычислении определенных интегралов методами трапеций и средних прямоугольников не дает нам точного значения, а только приближенное.
Чем ниже задается численное значение точности вычислений (основание трапеции или прямоугольника, в зависимости от метода), тем точнее результат получаемый машиной. При этом, число итераций составляет обратно пропорциональное от численного значения точности. Следовательно для большей точности необходимо большее число итераций, что обуславливает возрастание затрат времени вычисления интеграла на компьютере обратно пропорционально точности вычисления.
Использование для вычисления одновременно двух методов (трапеций и средних прямоугольников) позволило исследовать зависимость точности вычислений при применении обоих методов.
Следовательно, при понижении численного значения точности вычислений результаты расчетов по обеим методам стремятся друг к другу и оба к точному результату.
интеграл листинг паскаль трапеция
Список литературы
Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.
Зуев Е.А. Язык программирования Turbo Pascal. М.1992 г.
Скляров В.А. Знакомьтесь: Паскаль. М. 1988 г.
Размещено на Allbest.ru
Подобные документы
Сущность и особенности применения метода средних треугольников. Порядок расчета по методу трапеций и Ньютона-Котеса. Формула Чебышева и значения узлов ее квадратуры. Составление блок-схемы программы и ее основных процедур различными численными методами.
курсовая работа [482,7 K], добавлен 03.01.2010Математическое описание, алгоритм и программа вычисления определенного интеграла методом трапеций. Расчет n-значений исследуемой функции и вывод их в виде таблицы. Технические и программные средства. Входные и выходные данные, функциональное назначение.
курсовая работа [21,0 K], добавлен 03.01.2010Разработка программы нахождения значения определенного интеграла с помощью метода трапеций. Оценка абсолютной погрешности метода. Использование среды программирования Visual Studio Community 2015 для написания программы. Работа с графическим интерфейсом.
курсовая работа [573,8 K], добавлен 17.03.2016Формулирование и создание программы по вычислению определенного интеграла по формуле трапеций с тремя десятичными знаками и по формуле Симпсона. Выбор Delphi как программного средства разработки программы. Создание алгоритма и листинг программы.
курсовая работа [990,9 K], добавлен 15.06.2009MPI - библиотека передачи сообщений на языке программирования C/C++, ее переносимость, стандартизация, эффективная работа, функциональность. Форматы фактических вызовов MPI. Метод прямоугольников для приближенного вычисления определенного интеграла.
курсовая работа [286,0 K], добавлен 20.06.2012Средства Delphi для разработки Windows приложений. Математическая формулировка задачи, описание программы вычисления определенного интеграла по формуле левых прямоугольников. Руководство пользователя, методика испытаний продукта. Листинг программы.
курсовая работа [178,1 K], добавлен 14.11.2010Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.
курсовая работа [1,3 M], добавлен 21.09.2011Численные методы. Создание программного продукта, использование которого позволит одновременно исследовать два метода вычисления определенных интегралов: метод трапеций и метод Симпсона. Рассмотрен ход вычисления интеграла в виде кода программы.
курсовая работа [834,6 K], добавлен 14.04.2019Рассмотрение методов прямоугольников и трапеций как способов вычисления определенных интегралов. Характеристика графика зависимости погрешности от числа разбиений N. Создание приложения по вычислению интеграла с помощью методов приближенного вычисления.
курсовая работа [1,6 M], добавлен 20.06.2012Рассмотрение методов приближенного численного анализа. Формулы интегрирования, прямоугольников, трапеций, формула Симпсона. Оценка погрешностей интегрирования. Вычисление интеграла по формуле трапеций с тремя десятичными знаками и по формуле Симпсона.
курсовая работа [995,7 K], добавлен 09.07.2012